
HYPER-VINES: A HYbrid Learning Fault and
Performance Issues ERadicator for VIrtual

NEtwork Services over Multi-Cloud Systems

Lav Gupta
Dept. of Computer Science &

Engineering
Washington University in St. Louis

St. Louis, USA
lavgupta@wustl.edu

Aiman Erbad
Dept. of Computer Science &

Engineering
Qatar University

Doha, Qatar
aerbad@qu.edu.qa

Tara Salman
Dept. of Computer Science &

Engineering
 Washington University in St. Louis

St. Louis, USA
tara.salman@wustl.edu

Raj Jain
Dept. of Computer Science &

Engineering
Washington University in St. Louis

St. Louis, USA
jain@cse.wustl.edu

Ria Das
Dept. of Computer Science &

Engineering
Washington University in St. Louis

St. Louis, USA
ria.das@wustl.edu

Mohammed Samaka
Dept. of Computer Science &

Engineering
Qatar University

Doha, Qatar
samaka.m@qu.edu.qa

Abstract—Fault and performance management systems, in
the traditional carrier networks, are based on rule-based
diagnostics that correlate alarms and other markers to detect
and localize faults and performance issues. As carriers move to
Virtual Network Services, based on Network Function
Virtualization and multi-cloud deployments, the traditional
methods fail to deliver because of the intangibility of the
constituent Virtual Network Functions and increased
complexity of the resulting architecture. In this paper, we
propose a framework, called HYPER-VINES, that interfaces
with various management platforms involved to process
markers through a system of shallow and deep machine
learning models. It then detects and localizes manifested and
impending fault and performance issues. Our experiments
validate the functionality and feasibility of the framework in
terms of accurate detection and localization of such issues and
unambiguous prediction of impending issues. Simulations with
real network fault datasets show the effectiveness of its
architecture in large networks.

Keywords— Network Function Virtualization, Virtual
Network Function, Service Function Chain, Virtual Network
Service, Multi-Cloud Environments, Fault Management,
Performance Management, FCAPS, Machine Learning, Deep
Learning

I. INTRODUCTION
Virtualization of datacenter resources has been

immensely successful in the Information Technology (IT)
world. Carriers (an entity providing telecommunication or
Internet services) see Network Function Virtualization
(NFV) as a paradigm that could help them transpose this
success to their networks by instantiating network functions
on virtual resources, like Virtual Machines (VMs), hosted on
commercial, off-the-shelf servers. The resulting Virtual
Network Functions (VNFs), e.g., virtual routers and virtual
load-balancers, form the basic building blocks of the Virtual
Network Services (VNSs) like cellular mobile service and
broadband service. To carriers, such deployments mean
freedom from proprietary solutions, ease of scaling, reduced
cost of operation and reduced time to market. Additionally,
instantiating a VNS on multiple clouds adds advantages like
proximity to users and avoidance of a single point of failure.

The catch in this utopian scheme is that VNSs do not yet
meet the requirements of five-nines availability and quality
of service that the traditional, largely physical and standards-
based carrier networks have been assiduously built to
provide [1]. Areas like the quality of service, performance
monitoring and useful metrics are current research challenges
relating to NFV [2]. Our study shows that the lack of
credible Fault, Configuration, Accounting, Performance and
Security (FCAPS) standards, the complexity of architecture
and ill-defined interfaces, among the involved management
platforms, are the primary causes for these services not
measuring up.

In this paper, we make a case for the HYbrid Learning
Fault and Performance Issues ERadicator for VIrtual
NEtwork Services over a Multi-cloud (HYPER-VINES)
framework that will improve the availability and reliability
of VNSs thereby benefitting the carriers as well as their
subscribers. This framework is designed to work with the
available markers (alarms, notifications, counter values and
measurements) and uses an innovative combination of
predictive shallow and deep machine learning models for
detection and localization of faults and performance issues in
operational VNS deployments. Symbolically, much like
friendly vines help in choking harmful weed in plantations,
HYPER-VINES reaches deep into networks to weed out
fault and performance issues.

The framework achieves detection and localization
accuracies which are substantially better than the baseline
and any reported results in a similar environment. The main
contributions of this work are summarized below:

i) Examination of the major reasons for performance and
availability challenges in NFV and cloud-based VNS
deployments. We find that handling detection and
localization of faults and performance issues is difficult
because of multiple layers in implementation and
distributed and overlapping responsibilities for fault
management. Besides, incomplete definition of
interfaces among cloud, NFV and operation support
platforms worsen the situation.

eprint
International Conference on Computing, Networking and Communications (ICNC 2019),

Honolulu, Hawaii, Feb. 18-21, 2019

ii) Development of mechanisms, within the described
architectural framework, which make use of the
network’s operational markers for detection and
localization of faults and performance issues.

iii) The innovative use of shallow and deep predictive
algorithms to obtain high accuracy of detection and
localization. We achieve accuracies markedly better than
the baselines and any other reported result in similar
environment.

iv) Demonstration of the feasibility and effectiveness of the
proposed HYPER-VINES framework using real
network data

II. BACKGROUND

A. Terminology Related to VNSs
Figure 1 illustrates a broadband service created on virtual

resources, i.e., as a VNS. It consists of a Service Function
Chain (SFC), an ordered and linked collection of VNFs,
containing four VNFs, viz., an aggregation switch, two types
of Broadband Remote Access Servers (BRAS) and a core
router. It also has multiple instances of a Physical Network
Function (PNF), viz., Digital Subscriber Line Access
Multiplexers (DSLAMs), retained from the legacy networks.
The switch has a built-in load balancing function for
distributing traffic between the two forked paths.

Fig. 1. Broadband Access Virtual Network Service

B. Fault and Performance Management of VNS over
Multiple Cloud Systems

In VNSs over multi-cloud systems, we deal with three
interacting platforms. (i) The Management and Orchestration
(MANO) platform that creates and manages VNSs over the
virtual resources provided by one or more cloud service
providers, (ii) A multi-cloud management and control
platform (MMCP) that optimizes and manages the complete
placement across all used clouds and collects performance
and other telemetry information from various clouds [3] and,
(iii) The Operation Support System (OSS) that manages the
carrier's network. Figure 2 shows how these platforms are
positioned relative to each other. Communication among all
the platforms, flows through the reference interconnection
points as shown. The broken line shows that the specific
interconnection has not been defined yet.

The responsibility of the fault and performance
management of VNS, within MANO, is distributed among
its three main modules (Figure 2). The Virtualized
Infrastructure Manager (VIM) records the events and collects
performance measurements of the resources which are part

of a service provider’s NFV-Infrastructure (NFVI) domain.
The Virtual Network Function Manager (VNFM) manages
VNFs and carries out fault and performance related functions
for them. The NFV Orchestrator (NFVO) interacts with the
carrier’s OSS for fault management of network services [4].

Fig. 2. Virtual Network Service and its Management

C. Unsuitability of the Existing Systems in the VNS
Environments
The traditional systems are not equipped to handle the

complexities of the VNS environments. The former's built-in
diagnostic systems directly probe the hardware and software
through well-defined interconnections between the control
unit and other sub-systems. Even though the possible set of
markers is relatively small, maintenance personnel still have
to work through the linked set of tables of possible causes to
reach the root cause of the problem. VNSs have the added
complexity of having multiple layers - physical
infrastructure, virtual resource and VNFs - all possibly
owned by different providers. The same faults may have a
different appearance across layers. For instance, a bootable
disk failure in the physical layer may manifest as a VM crash
in the virtual resource layer and as a failure of a VNF
instance in the virtual network function layer. The failed
VNF could be, for example, a virtual router in a broadband
SFC and would result in a low-performance issue or a total
failure of the service.

The situation in VNS gets even more intractable and
fuzzy, as the locations of the appliances, middleboxes and
links, that form part of a service, do not remain fixed. Many
instances relating to the same appliances may be created on
different servers and even on different clouds. Virtual
resources are routinely migrated for optimization of factors
like cost and performance. Any fault and performance
framework, which attempts to work in the NFV multi-cloud
VNS environment, has to meet the following challenges:
Challenge 1: The framework should be able to handle gaps
in the specifications proposed by standards bodies [2] [5].
Additionally, it should be able to reconcile overlapping
responsibilities among the management platforms. Both the
OSS and the MANO have to manage the VNS jointly. Both
the MMCP and the MANO are jointly involved in the
creation of the virtual infrastructure on which the VNFs are
instantiated.
Challenge 2: There are many more layers of abstraction in
virtualized networks than in physical networks. Pinpointing
the location and exact nature of the fault is not trivial.

Additionally, the variety of issues relating to the fault and
performance problems that can affect such a system is large,
making the work of diagnosis difficult [6] [7].
Challenge 3: The data is high dimensional making extraction
of anomalous conditions difficult. Markers pertaining to
different events overlap, making differential diagnosis
difficult.

A number of researchers, and standards bodies like
ETSI, believe that the fault and performance management in
the NFV environment needs predictive analysis [8] [9]. In
Section IV, we will see the design of the proposed
framework for such analyses.

III. RELATED WORK
Relevant to FCAPS are ETSI specifications of NFV

resiliency requirements [9] and service quality metrics [10].
The former provides a list of faults and relationship between
them while the latter gives VNF related metrics useful for
quality of service. Both ETSI and ONAP describe the
specifications for fault management support functionality
[11] [12].

There has been extensive work on performance
modeling systems for distributed Internet applications of the
pre-NFV era, notably TIPME (2000) [13], Pinpoint (2002)
[14] and Magpie (2003) [15]. TIPME helps in identifying
and eliminating causes of long response times. Pinpoint uses
data mining to correlate the behavior of each active user
request with the past failures and successes to determine
failed components. Magpie works on individual user requests
and compares the observed behavior, with saved normal
models, to identify anomalous requests and malfunctioning
components. Recently, the ‘mPlane’ consortium of European
telecom companies and academic institutions, has worked on
developing a measurement plane for Internet and CDN
(2013-2016). The core of the project is ‘mpAD-Resoner,’
which uses machine learning to detect anomalies involving
multiple flows or users. It compares the current distribution
with stored average distributions [16]. The OPNFV Doctor
project deals with the problems of the underlying hardware
[7].

Most techniques relate to the IT environment with the
aim to achieve three nines availability as against the five
nines required for carrier networks. These techniques work
on the static or dynamic dependency models, which makes
previously unobserved faults difficult to detect. These
methods are limited by the implausibility of having up-to-
date models in a dynamic environment. They deal with faults
in the physical compute components. The NFV over cloud
networks have a virtual network function layer that calls for
a totally different set of markers, metrics and methods.

The proposed HYPER-VINES framework has been
designed to overcome the problems of the legacy
frameworks and work in a multi-cloud VNS environment. It
works on markers at physical and virtual levels, works with
multiple instances, can discover known and unknown fault
and performance issues, and predict impending faults with
good accuracy. In the next section, we discuss this
framework in detail.

IV. DESIGN AND IMPLEMENTATION OF HYPER-VINES
The operational basis of the HYPER-VINES framework

is to consume markers from large volumes of multi-source
and high dimensional operational data to accurately detect
and localize faults and performance issues of VNSs in a
carrier's environment. Figure 3 gives a simplified illustration
of the process.

 Fig. 3. HYPER-VINES Fault and performance management
mechanism

In the training mode, the data is curated and partitioned
into training and test datasets. Shallow machine learning and
deep learning models, used in various stages of detection and
localization, are trained and tested. The models are fine-
tuned till the mean square error of classification or prediction
is optimized. The framework is called hybrid as it involves
both machine leaning and deep learning models. During
operation, the generated markers are pre-processed and run
through the trained models for detection and localization. We
discuss more details of the process in the next sub-section.

A. Architecture of the Proposed Framework
The relationship of the HYPER-VINES framework with

its environment is shown in Figure 4. It collects
performance markers primarily from MANO, OSS and the
cloud management platforms over standard interfaces.
Additional information about operational statuses of
individual VNFs comes from the EMS via OSS or is pulled
directly by HYPER-VINES. Since HYPER-VINES obtains
markers from multiple sources, it mitigates the problem of
overlapping responsibilities and ill-defined interfaces of the
management platforms.

The internal architecture of HYPER-VINES is shown in
Figure 5. The main sub-systems are the Detection and
Localization functions with an optional inclusion of the data

Fig. 4. The environment of HYPER-VINES

pre-processing module. We discuss the important details of
the framework below.

 Fig. 5. Architecture of HYPER-VINES
i) Data Pre-Processing: The marker data, obtained from
various sources, are collated and normalized to remove
biases. The pre-processing policy may involve reduction of
features based on some criterion like correlation with the
labels. Tools like Weka can be used to select features based
on correlation with the labels [24]. With the dataset used in
this study, inclusion of features up to a correlation threshold
of 23% improved accuracy. This may be changed based on
the dataset used. In the training mode, the available dataset is
split into training and test datasets, which are used to train
and test all the models. During operation, the marker data is
run through the framework to detect and localize problems.
We shall see more details of the actual datasets in the next
section.
ii) The Detection Subsystem: We have organized the
detection subsystem into two levels of chained binary
classification. Level 1 uses a shallow machine learning
model to filter out the no-fault cases, which are much larger
in number than fault cases. Level 2 classifies ‘fault’ cases
into ‘manifested’ and ‘impending’ fault conditions. A two-
stage model removes ‘skewness’ in the data and performs
better than one level classifiers [17]. It also enhances the
accuracy of prediction [18]. Algorithm 1 describes the
process succinctly. X and Y are predictor variable and labels,
respectively, in training or test datasets. Hyper-parameters
{pd} and {pd'} pertain to detection models at the two layers,
{ps} and {pn} are for models at the localization layers 1 and
2 and {pi} are for deep learning model for impending faults.

iii) The Localization Subsystem: Algorithm 2 explains the
localization function. X, Y and the set of hyper-parameters
{p} have the same meaning as before (sparsity parameters
have been explained in Section V). Details of the models and
strategies manifested and the impending fault classes are
explained below.

Manifest Faults: The manifested fault analysis has been
designed as a multi-layered, multi-class strategy based on
actual data from a carrier’s network. For this study, we have
limited the broad fault classes, at Layer 1, to 7 (Table I). At
Layer 2, we have N (=7 in our case with 7 broad classes)
separate multi-class models, one for each of the broad
classes. Some examples of Layer 2 issues that would fall
under Class Category 1 (Network Availability) are antenna
height, backhaul failure, traffic channel congestion, radio
unit failure and power module failure. For the multi-class
classification with SVM, we chose to work with simple
models like One vs. One (OvO) and One vs. All (OvA) [19].
We eventually selected OvA since it provided more
accuracy and was comparable to OvO in training and actual
operations. In the OvA approach, for the ith classifier fi, the
examples can be classified with f(x)=argmaxifi(x), i.e.,
choose the class that classifies the example with the
maximum margin.

 Impending Faults: In traditional systems, in the absence
of predictive analysis, preventive maintenance is relied to
catch issues early. In HYPER-VINES localization of
impending faults consists of predicting the severity and
location of the fault. An operational network produces data
continuously. In a stable network, most of these would be
normal data with markers indicating anomalous conditions

Algorithm 1: Detection Levels 1 & 2
procedure detect_level1 (X,Y)
#fault/no-fault classification
{pd} values of hyper-parameters for the chosen model
use trained model for detect_level1 with X,Y, {pd})
if ‘fault’ is true
 call detect_level2 (X',Y')
produce detection report
procedure detect_level2 (X',Y')
classify as manifest/impending and call localization
{pd'} values of hyper-parameters for the chosen model
use trained model for detect_level2 with X,Y, {pd'}
if manifest is true
 call manifest_localization (X,Y) #defined in Algorithm2
elseif impending is true
 call impending_localization (X,Y) #defined in Algorithm2

Algorithm 2: Localization Layers 1 & 2
procedure manifest_localization (X,Y)
Coarse grain localization
{ps} values of hyper-parameters for the chosen model
call localize_layer1(X,Y,{ps})
fine grain localization with the appropriate model
if class_category ==1

{p1} hyper-parameters class_category 1
 call localize_layer2(X",Y",{p1})

…
if class_category==7

{p7} hyper-parameters class_category 7
 call localize_layer2(X",Y",{p7})
produce localization report

procedure localize_layer1(X,Y, {ps})
use trained model localize_layer1 with X,Y, {ps}
procedure localize_layer2(X'',Y'',{pn})
use trained model localize_layer2 with X,Y, {pn}
procedure impending_localization (X,Y)
{pi} parameters neurons, sparsity parameters
use deep_learning_model (X,Y,{pd}
produce impending fault report

TABLE I. LOCALIZATION LAYER 1 FAULT CLASSES
Class

Class Category Class

Class Category

1 Network Availability 5 Virtualization-Component
Failure

2 Connection
Maintenance

6 Virtualization – Software
vulnerabilities

3 Network Performance 7 Miscellaneous
4 Security

interspersed sporadically. While our data has more than 800
features, any anomalous condition would present <5% of
these! Thus, the data are quite sparse. Impending faults may
also contain previously unseen faults. Thus, while manifest
faults are manageable with shallow models, impending faults
have been tackled with deep learning. We have used Stacked
Sparse Autoencoder (SSAE) (a type of deep neural
networks). A single SAE contains an input, an output and a
hidden layer. With an undercomplete hidden layer, the
autoencoder is forced to learn the most useful features
(automatic feature selection). The advantage can be
accentuated with stacking a number of autoencoders and
carefully designing the hidden layers [20].

 Figure 6 shows the stack of three sparse autoencoders
used in this work. Input layer [x], an output layer [p] and
three hidden layers consisting of paired encoders and
decoders. The colored neurons show three matching pairs of
encoders and decoders. By reducing the size of hidden
layers, the output is made reliant on increasingly lesser but
richer features. Such a network can be trained in an
unsupervised mode to reconstruct input data at the output
with good accuracy. These networks can be tuned well for
sparse data by using parameters like sparsity regularization
and sparsity proportion as discussed in the evaluation
section.

We train our model to have good reconstruction of the
input at the output (decided by the L2-norm), with
unsupervised data, in a layerwise greedy method (one hidden
layer at a time). A model that reconstructs well also gives
good predictions [24]. During training, features (z) learned
by each hidden layer are input to the next layer. Pairs of
{weights, biases}, viz., (ω1, b1), (ω2, b2) and (ω3, b3), are
learned in achieving good reconstruction.

 argmin{L2_norm(x,x’), k=1
{ωk, bk,, ωk’, bk’} =
 argmin{L2_norm(zk-l, zk-l’}, k> 1 (1)
z1 = f(ω1, x) (2)
 zk = f(ωk, zk-1), k>1 (3)
 After achieving good reconstruction of the input, the

decoders are removed and a prediction layer is added in
tandem with the encoded representation layer. This layer is
trained in a supervised manner to learn ω4 and produce
predictions y’ for given labels y. ω4 are the weights for
minimum prediction MSE (mean square error). Thus, for
labels y and its prediction y’ we have,

 {ω1, ω2, ω3, ω4} = argmin {L2_norm (y, y’)} (4)

The model is fine-tuned using back-propagation, for
improving predictions [20] [22].

V. EVALUATION OF HYPER-VINES AND DISCUSSION
OF RESULTS

In this section, we discuss the dataset used and the
evaluation of the proposed approach. The performance of the
HYPER-VINES framework is demonstrated by good
accuracies achieved by the detection and the localization
subsystem.

A. Analysis of the Dataset Used
Having been drawn from the real fault logs of the Telstra

Telecommunications' network, the Telstra dataset, provides a
good basis for evaluating our models [23]. The complete
dataset consists of sub-datasets for resource_type,
event_type, event_volume, features, fault_severity and
severity_type. All sub-datasets have ‘id’ as the common
field. The event_type sub-dataset encodes the fault and
performance events. Each event is given an id, which also
gives a chronology of these events. This sub-dataset contains
31,170 events recorded with 53 unique event types. There
are 21,076 examples in the resource_type sub-dataset with
many events involving multiple resources. The features sub-
dataset with 58,671 records gives reported markers with each
incident generating some of the feature1 to feature386. The
training and test datasets have id, location, and
fault_severity. The fault_severity feature describes the
severity level of a fault event and has values 0, 1, or 2 for no
faults, a few faults, and many faults, respectively. The
severity_type feature describes the intensity of the warning
with values 1 to 5 with 5 being the highest.

TABLE II. FEATURES FROM NETWORK FAULT DATASETS

1 Id (1) 5 Resource type (10)
2 Location (1) 6 Severity type (1)
3 Features (386) 7 Event type (5)
4 Volumes for features (386) 8 Fault severity (1)

Table II gives a list of features contained in the sub-
datasets mentioned above with the number in brackets
indicating how many can occur in one event. There are about
800 features (columns) in the consolidated dataset.
Following the mechanism given in Section IV, pre-
processing of data, including feature selection, has been
carried out using label-class correlation method in weak to
prepare the training and test datasets [24].

B. Evaluation of the Framework
We provide, in this sub-section, the results of the

evaluation of the detection and localization parts of the
framework. Table III gives the metrics used.

TABLE III. METRIC USED

Metric Interpretation
Accuracy (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
TP=True Positive, TN=True Negative, FP=False Positive, FN=False
Negative

 i) Detection: The Telstra dataset prepared, as explained
in Subsection V (A), was used in the binary supervised two-
stage model for ‘fault’/’no-fault’ and
‘manifested’/‘impending’ classification. Various standard
algorithms were tested for the two stages (called Level 1 and
Level 2) in the framework. Tuning of various parameters,

Fig. 6. Stacked Sparse Autoencoders

peculiar to any model, was carried out judiciously. In the
comparative test, it was seen that Support Vector Machine
(SVM) with Radial Basis Function (RBF) kernel stands out
with ≥ 95% accuracy for Level 1, with a high ratio of true
positives to false positives, indicating good fault detection.
Precision is high, indicating ‘no-fault’ cases are correctly
classified. Compared to these results, the baseline results
with Zero-R (which predicts the majority class) has 65%
accuracy. We see some of the simulation results in Figure 7.

 Fig. 7. Level 1 detection accuracy, using Telstra dataset

 For the Level 2 classification into manifested/impending
classes again a tuned SVM with RBF Kernel works well
(Figure 8).

 Fig. 8. Level 2 detection accuracy, using Telstra dataset

For baseline at Level 2, we have used One-R, a simple
but accurate classification algorithm, which generates one
rule for each predictor and then selects the one with the
smallest error [25]. Accuracy for HYPER-VINES is 95%,
which is markedly higher than the baseline as shown in
Figure 9.

Fig. 9. Detection sub-system Level 2 classification, effectiveness
compared to baseline
ii) Localization: One of the main concerns handled in

the framework is to localize impending faults and predict
their severity levels. While preprocessing selected the 353
features, further condensation was left to the stacked
autoencoders used.

The comparative reconstruction performance is given in
Figures 10(a) through 10(d). It is seen that the model with 3
hidden layers of 200/150/100 neurons, respectively,
converges quite fast to a low mean-square error.
Reconstruction accuracy is important as it affects the
prediction based on the trained encoders, which the model is
eventually used for [21].

 Sparsity in data is handled by using the Autoencoder
parameters sparsity regulation (SR) and sparsity proportion
(SP). SP gives the proportion of training examples a neuron
reacts to. A low value of SP encourages sparsity.

 (a) Single AE (b) 2-layer SSAE

 (c) 3-layer SSAE (d) 4-layer SSAE

Fig. 10. Mean Square Error for reconstruction of Input

The graph in Figure 11 shows that the model has good
generalization characteristics as MSE for the test dataset is
close to that of the training dataset. Having achieved good
reconstruction results, the model was tested for prediction of
severity of impending fault and performance issues. Having
achieved good reconstruction results with stacked
autoencoders, the model was tested for prediction of severity
of impending fault and performance issues.

To see the effect of fine-tuning with backpropagation,
experiments were carried out for SR=1 and SP=0.4. Figure
12 shows that fine-tuning may yield better results for some
configurations of the model. The accuracy ranges between
72 and 85% with the abridged dataset (~1000 examples) and
~92% with the enhanced dataset (~5000 examples).

Fig. 11. MSE in Training and Test dataset

We baselined the above results with those obtained with
a shallow model, viz., SVM with RBF kernel which did quite
well for detection, and could only obtain 70% accuracy in
localizing impending faults. The deep structure, thus
provided a substantial improvement in terms of accuracy of
prediction of the severity level of the impending faults.

Fig. 12. MSE of predictions before and after fine tuning

VI. DISCUSSION AND CONCLUSION
In this work, we have identified the challenges faced by

carriers in creating virtual network services based on NFV
and instantiated over multiple clouds. The primary concerns
addressed are availability and performance of virtual network
services. To overcome these problems, we propose HYPER-
VINES as a fault detection and localization framework to
help cloud service providers, carriers, and independent NFVI
providers to overcome these challenges. We demonstrated
the effectiveness and feasibility of the hybrid framework
using shallow machine learning and deep learning algorithms
with a mix of unsupervised and supervised learning in a
multi-layer configuration. We show that the proposed
framework can handle both the detection and localization of
faults and performance issues with good accuracy. Lastly, we
believe that HYPER-VINES would be useful to the industry
by improving the proliferation of NFV and cloud-based
deployments and also spur other researchers to further
develop and improve the framework.

ACKNOWLEDGMENT

This publication was made possible by NPRP grant #8-
634-1-131 from the Qatar National Research Fund (a
member of Qatar Foundation) and NSF grants CNS-
1718929. The statements made herein are solely the
responsibility of the authors.

REFERENCES
[1] R. Mijumbi et al., “ Network Function Virtualization: state-of-the-art

and research challenges,” IEEE Communications Surveys and
Tutorials, 2016, pp.236-262.

[2] C. J. Bernardos et al., “ Network Virtualization research challenges,”
Internet Engineering Task Force (IETF) Draft.
https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-
10 Accessed Sept 2, 2019

[3] H. R. Kouchaksaraei, and H. Karl, “Joint orchestration of cloud-based
microservices and Virtual Network Functions. ArXiv: 1801.09984
https://arxiv.org/pdf/1801.09984. Accessed Feb 13, 2018

[4] ETSI GS NFV-MAN 001. “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Management and
Orchestration,” 2017

[5] P. Moore, “The current state of NFV: Standards,” 2016
https://www.itential.com/blog/the-current-state-of-nfv-intro/.
Accessed Feb 21, 2018.

[6] T.Nakamura, “Network Functions Virtualization (NFV) Network
Operator Perspectives on NFV priorities for 5G,” ETSI-White Paper,
February 2017

[7] OPNVF, “Building fault management into NFV deployments
background and purpose of OPNFV’s Doctor Project,”
https://www.opnfv.org/wpcontent/uploads/sites/12/2016/11/opnfv_fa
ultmgt_final.pdf. Accessed January 20, 2018

[8] M. Ladki, “Developing a blueprint for zero-touch, end-to-end service
orchestration across hybrid and multiple networks,” April 2017,

https://inform.tmforum.org/features-and analysis/2017/04/developing-
blueprint-zero-touch-end-end-service-orchestration-across-hybrid-
multiple-networks/. Accessed March 21, 2018.

[9] ETSI GS NFV-REL001, “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Resiliency
Requirements,” 2015

[10] ETSI GS NFV INF 010, “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Service Quality
Metrics,” 2017

[11] ETSI GS IFA 013, “European Telecommunications Standards
Institute: Network Functions Virtualization (NFV); Management and
Orchestration; Os-Ma-Nfvo reference point - Interface and
Information Model Specification,” 2016.

[12] ONAP Whitepaper, “Open Network Automation Platform:
Architecture Overview,” 2017,
https://www.onap.org/wpcontent/uploads/sites/20/2017/12/ONAP_Ca
seSolution_Architecture_120817_FNL.pdf, Accessed March 20, 2018

[13] Y. Endo and M. Seltzer, “Improving interactive performance using
TIPME,” Proc. ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, Volume 28, Issue
1, 2000, pp. 240-251.

[14] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox, “Pinpoint:
problem determination in large, dynamic, internet services,” Proc.
International Conference on Dependable Systems and Networks
(IPDS Track), 2002, pp. 595-604.

[15] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “ Magpie: online
modeling and performance-aware systems,” Proc of the 9th
conference on Hot Topics in Operating Systems, 2003, pp. 15-15.

[16] B. Trammell et al., “mPlaneBuilding an intelligent measurement
plane for the internet,” IEEE Communications Magazine, Volume:
52, Issue: 5, 2014, pp. 148-156.

[17] M. L.Antonie, O. R.Zaiane, and R. C. Holte, “Learning to use a
learned model: a two-stage approach to classification,” IEEE
International Conference on Data Mining, 2016, pp.33-42.

[18] F.Hachmi and M.Limam, “A two-stage process based on data mining
and optimization to identify false positives and false negatives
generated by Intrusion Detection Systems,” IEEE International
Conference on Computational Intelligence and Security, 2015, pp.
308-311.

[19] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, Vol 313, Issue 5786, July 2006,
pp. 504-507.

[20] L. Wang et al., “A computational-based method for predicting drug-
target interactions by using stacked autoencoder deep neural
network,” Journal of Computational Biology, 2018, pp. 361-373.

[21] W. Huang, “ Dynamic boosting in deep learning using reconstruction
error,” IEEE International Joint Conference on Neural Networks
(IJCNN’14)., 2014, pp. 473-480.

[22] I. Goodfellow, Y. Bengio, and A. Courville. 2016. “Deep Learning
(1st. ed.)”, MIT Press book.

[23] Kaggle datasets, Available: https://www.kaggle.com/datasets.
Accessed, March 12 2017

[24] G. Holmes, A. Donkin, and I. H. Witten, “WEKA: A machine
learning workbench,” Proc ANZIIS of the Australian and New
Zealand Conference on Intelligent Information Systems, 1994, pp.
357-361.

[25] Saed Sayad, “Classification Methods,”
http://chemeng.utoronto.ca/~datamining/Presentations/Basic_Method
s.pdf, Accessed March 2018

https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-10
https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-10
https://arxiv.org/pdf/1801.09984
https://www.opnfv.org/wp-content/uploads/sites/12/2016/11/opnfv_faultmgt_final.pdf
https://www.opnfv.org/wp-content/uploads/sites/12/2016/11/opnfv_faultmgt_final.pdf
https://inform.tmforum.org/features-and-analysis/2017/04/developing-blueprint-zero-touch-end-end-service-orchestration-across-hybrid-multiple-networks/
https://inform.tmforum.org/features-and-analysis/2017/04/developing-blueprint-zero-touch-end-end-service-orchestration-across-hybrid-multiple-networks/
https://inform.tmforum.org/features-and-analysis/2017/04/developing-blueprint-zero-touch-end-end-service-orchestration-across-hybrid-multiple-networks/
https://www.onap.org/wp-content/uploads/sites/20/2017/12/ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2017/12/ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.kaggle.com/datasets
http://chemeng.utoronto.ca/%7Edatamining/Presentations/Basic_Methods.pdf
http://chemeng.utoronto.ca/%7Edatamining/Presentations/Basic_Methods.pdf

	I. Introduction
	II. Background
	A. Terminology Related to VNSs
	B. Fault and Performance Management of VNS over Multiple Cloud Systems
	C. Unsuitability of the Existing Systems in the VNS Environments

	III. Related Work
	IV. Design and Implementation of HYPER-VINES
	A. Architecture of the Proposed Framework

	V. Evaluation Of HYPER-VINES And Discussion Of Results
	A. Analysis of the Dataset Used
	B. Evaluation of the Framework

	VI. Discussion and Conclusion
	References

