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Abstract—Fault and performance management systems, in 
the traditional carrier networks, are based on rule-based 
diagnostics that correlate alarms and other markers to detect 
and localize faults and performance issues. As carriers move to 
Virtual Network Services, based on Network Function 
Virtualization and multi-cloud deployments, the traditional 
methods fail to deliver because of the intangibility of the 
constituent Virtual Network Functions and increased 
complexity of the resulting architecture. In this paper, we 
propose a framework, called HYPER-VINES, that interfaces 
with various management platforms involved to process 
markers through a system of shallow and deep machine 
learning models. It then detects and localizes manifested and 
impending fault and performance issues. Our experiments 
validate the functionality and feasibility of the framework in 
terms of accurate detection and localization of such issues and 
unambiguous prediction of impending issues. Simulations with 
real network fault datasets show the effectiveness of its 
architecture in large networks. 

Keywords— Network Function Virtualization, Virtual 
Network Function, Service Function Chain, Virtual Network 
Service, Multi-Cloud Environments, Fault Management, 
Performance Management, FCAPS, Machine Learning, Deep 
Learning 

I. INTRODUCTION 
Virtualization of datacenter resources has been 

immensely successful in the Information Technology (IT) 
world. Carriers (an entity providing telecommunication or 
Internet services) see Network Function Virtualization 
(NFV) as a paradigm that could help them transpose this 
success to their networks by instantiating network functions 
on virtual resources, like Virtual Machines (VMs), hosted on 
commercial, off-the-shelf servers. The resulting Virtual 
Network Functions (VNFs), e.g., virtual routers and virtual 
load-balancers, form the basic building blocks of the Virtual 
Network Services (VNSs) like cellular mobile service and 
broadband service. To carriers, such deployments mean 
freedom from proprietary solutions, ease of scaling, reduced 
cost of operation and reduced time to market. Additionally, 
instantiating a VNS on multiple clouds adds advantages like 
proximity to users and avoidance of a single point of failure. 

The catch in this utopian scheme is that VNSs do not yet 
meet the requirements of five-nines availability and quality 
of service that the traditional, largely physical and standards-
based carrier networks have been assiduously built to 
provide [1]. Areas like the quality of service, performance 
monitoring and useful metrics are current research challenges 
relating to NFV [2]. Our study shows that the lack of 
credible Fault, Configuration, Accounting, Performance and 
Security (FCAPS) standards, the complexity of architecture 
and ill-defined interfaces, among the involved management 
platforms, are the primary causes for these services not 
measuring up.  

In this paper, we make a case for the HYbrid Learning 
Fault and Performance Issues ERadicator for VIrtual 
NEtwork Services over a Multi-cloud (HYPER-VINES) 
framework that will improve the availability and reliability 
of VNSs thereby benefitting the carriers as well as their 
subscribers. This framework is designed to work with the 
available markers (alarms, notifications, counter values and 
measurements) and uses an innovative combination of 
predictive shallow and deep machine learning models for 
detection and localization of faults and performance issues in 
operational VNS deployments. Symbolically, much like 
friendly vines help in choking harmful weed in plantations, 
HYPER-VINES reaches deep into networks to weed out 
fault and performance issues.  

The framework achieves detection and localization 
accuracies which are substantially better than the baseline 
and any reported results in a similar environment. The main 
contributions of this work are summarized below: 

i) Examination of the major reasons for performance and
availability challenges in NFV and cloud-based VNS
deployments. We find that handling detection and
localization of faults and performance issues is difficult
because of multiple layers in implementation and
distributed and overlapping responsibilities for fault
management. Besides, incomplete definition of
interfaces among cloud, NFV and operation support
platforms worsen the situation.

eprint 
International Conference on Computing, Networking and Communications (ICNC 2019), 

Honolulu, Hawaii, Feb. 18-21, 2019



ii) Development of mechanisms, within the described 
architectural framework, which make use of the 
network’s operational markers for detection and 
localization of faults and performance issues. 

iii) The innovative use of shallow and deep predictive 
algorithms to obtain high accuracy of detection and 
localization. We achieve accuracies markedly better than 
the baselines and any other reported result in similar 
environment.  

iv) Demonstration of the feasibility and effectiveness of the 
proposed HYPER-VINES framework using real 
network data 

II. BACKGROUND 

A. Terminology Related to VNSs 
Figure 1 illustrates a broadband service created on virtual 

resources, i.e., as a VNS. It consists of a Service Function 
Chain (SFC), an ordered and linked collection of VNFs, 
containing four VNFs, viz., an aggregation switch, two types 
of Broadband Remote Access Servers (BRAS) and a core 
router. It also has multiple instances of a Physical Network 
Function (PNF), viz., Digital Subscriber Line Access 
Multiplexers (DSLAMs), retained from the legacy networks. 
The switch has a built-in load balancing function for 
distributing traffic between the two forked paths. 

 
Fig. 1. Broadband Access Virtual Network Service 

B. Fault and Performance Management of VNS over 
Multiple Cloud Systems 

In VNSs over multi-cloud systems, we deal with three 
interacting platforms. (i) The Management and Orchestration 
(MANO) platform that creates and manages VNSs over the 
virtual resources provided by one or more cloud service 
providers, (ii) A multi-cloud management and control 
platform (MMCP) that optimizes and manages the complete 
placement across all used clouds and collects performance 
and other telemetry information from various clouds [3] and,  
(iii) The Operation Support System (OSS) that manages the 
carrier's network. Figure 2 shows how these platforms are 
positioned relative to each other. Communication among all 
the platforms, flows through the reference interconnection 
points as shown. The broken line shows that the specific 
interconnection has not been defined yet. 

The responsibility of the fault and performance 
management of VNS, within MANO, is distributed among 
its three main modules (Figure 2). The Virtualized 
Infrastructure Manager (VIM) records the events and collects 
performance measurements of the resources which are part 

of a service provider’s NFV-Infrastructure (NFVI) domain. 
The Virtual Network Function Manager (VNFM) manages 
VNFs and carries out fault and performance related functions 
for them. The NFV Orchestrator (NFVO) interacts with the 
carrier’s OSS for fault management of network services [4]. 

 
Fig. 2. Virtual Network Service and its Management 

C. Unsuitability of the Existing Systems in the VNS 
Environments 
The traditional systems are not equipped to handle the 

complexities of the VNS environments. The former's built-in 
diagnostic systems directly probe the hardware and software 
through well-defined interconnections between the control 
unit and other sub-systems. Even though the possible set of 
markers is relatively small, maintenance personnel still have 
to work through the linked set of tables of possible causes to 
reach the root cause of the problem. VNSs have the added 
complexity of having multiple layers - physical 
infrastructure, virtual resource and VNFs - all possibly 
owned by different providers. The same faults may have a 
different appearance across layers. For instance, a bootable 
disk failure in the physical layer may manifest as a VM crash 
in the virtual resource layer and as a failure of a VNF 
instance in the virtual network function layer. The failed 
VNF could be, for example, a virtual router in a broadband 
SFC and would result in a low-performance issue or a total 
failure of the service. 

The situation in VNS gets even more intractable and 
fuzzy, as the locations of the appliances, middleboxes and 
links, that form part of a service, do not remain fixed. Many 
instances relating to the same appliances may be created on 
different servers and even on different clouds. Virtual 
resources are routinely migrated for optimization of factors 
like cost and performance. Any fault and performance 
framework, which attempts to work in the NFV multi-cloud 
VNS environment, has to meet the following challenges: 
Challenge 1: The framework should be able to handle gaps 
in the specifications proposed by standards bodies [2] [5]. 
Additionally, it should be able to reconcile overlapping 
responsibilities among the management platforms. Both the 
OSS and the MANO have to manage the VNS jointly. Both 
the MMCP and the MANO are jointly involved in the 
creation of the virtual infrastructure on which the VNFs are 
instantiated. 
Challenge 2: There are many more layers of abstraction in 
virtualized networks than in physical networks. Pinpointing 
the location and exact nature of the fault is not trivial. 



Additionally, the variety of issues relating to the fault and 
performance problems that can affect such a system is large, 
making the work of diagnosis difficult [6] [7]. 
Challenge 3: The data is high dimensional making extraction 
of anomalous conditions difficult. Markers pertaining to 
different events overlap, making differential diagnosis 
difficult. 

A number of researchers, and standards bodies like 
ETSI, believe that the fault and performance management in 
the NFV environment needs predictive analysis [8] [9]. In 
Section IV, we will see the design of the proposed 
framework for such analyses. 

III. RELATED WORK 
Relevant to FCAPS are ETSI specifications of NFV 

resiliency requirements [9] and service quality metrics [10]. 
The former provides a list of faults and relationship between 
them while the latter gives VNF related metrics useful for 
quality of service. Both ETSI and ONAP describe the 
specifications for fault management support functionality 
[11] [12]. 

There has been extensive work on performance 
modeling systems for distributed Internet applications of the 
pre-NFV era, notably TIPME (2000) [13], Pinpoint (2002) 
[14] and Magpie (2003) [15]. TIPME helps in identifying 
and eliminating causes of long response times. Pinpoint uses 
data mining to correlate the behavior of each active user 
request with the past failures and successes to determine 
failed components. Magpie works on individual user requests 
and compares the observed behavior, with saved normal 
models, to identify anomalous requests and malfunctioning 
components. Recently, the ‘mPlane’ consortium of European 
telecom companies and academic institutions, has worked on 
developing a measurement plane for Internet and CDN 
(2013-2016). The core of the project is ‘mpAD-Resoner,’ 
which uses machine learning to detect anomalies involving 
multiple flows or users. It compares the current distribution 
with stored average distributions [16]. The OPNFV Doctor 
project deals with the problems of the underlying hardware 
[7]. 

Most techniques relate to the IT environment with the 
aim to achieve three nines availability as against the five 
nines required for carrier networks. These techniques work 
on the static or dynamic dependency models, which makes 
previously unobserved faults difficult to detect. These 
methods are limited by the implausibility of having up-to-
date models in a dynamic environment. They deal with faults 
in the physical compute components. The NFV over cloud 
networks have a virtual network function layer that calls for 
a totally different set of markers, metrics and methods.  

The proposed HYPER-VINES framework has been 
designed to overcome the problems of the legacy 
frameworks and work in a multi-cloud VNS environment. It 
works on markers at physical and virtual levels, works with 
multiple instances, can discover known and unknown fault 
and performance issues, and predict impending faults with 
good accuracy. In the next section, we discuss this 
framework in detail. 

IV. DESIGN AND IMPLEMENTATION OF HYPER-VINES 
The operational basis of the HYPER-VINES framework 

is to consume markers from large volumes of multi-source 
and high dimensional operational data to accurately detect 
and localize faults and performance issues of VNSs in a 
carrier's environment. Figure 3 gives a simplified illustration 
of the process. 

 Fig. 3. HYPER-VINES Fault and performance management 
mechanism 

In the training mode, the data is curated and partitioned 
into training and test datasets. Shallow machine learning and 
deep learning models, used in various stages of detection and 
localization, are trained and tested. The models are fine-
tuned till the mean square error of classification or prediction 
is optimized. The framework is called hybrid as it involves 
both machine leaning and deep learning models. During 
operation, the generated markers are pre-processed and run 
through the trained models for detection and localization. We 
discuss more details of the process in the next sub-section.  

A. Architecture of the Proposed Framework 
The relationship of the HYPER-VINES framework with 

its environment is shown in Figure 4. It collects 
performance markers primarily from MANO, OSS and the 
cloud management platforms over standard interfaces. 
Additional information about operational statuses of 
individual VNFs comes from the EMS via OSS or is pulled 
directly by HYPER-VINES. Since HYPER-VINES obtains 
markers from multiple sources, it mitigates the problem of 
overlapping responsibilities and ill-defined interfaces of the 
management platforms.  

The internal architecture of HYPER-VINES is shown in 
Figure 5. The main sub-systems are the Detection and 
Localization functions with an optional inclusion of the data 

 

Fig. 4. The environment of HYPER-VINES 



pre-processing module. We discuss the important details of 
the framework below. 

 Fig. 5. Architecture of HYPER-VINES 
i) Data Pre-Processing: The marker data, obtained from 
various sources, are collated and normalized to remove 
biases. The pre-processing policy may involve reduction of 
features based on some criterion like correlation with the 
labels. Tools like Weka can be used to select features based 
on correlation with the labels [24]. With the dataset used in 
this study, inclusion of features up to a correlation threshold 
of 23% improved accuracy. This may be changed based on 
the dataset used. In the training mode, the available dataset is 
split into training and test datasets, which are used to train 
and test all the models. During operation, the marker data is 
run through the framework to detect and localize problems. 
We shall see more details of the actual datasets in the next 
section. 
ii) The Detection Subsystem: We have organized the 
detection subsystem into two levels of chained binary 
classification. Level 1 uses a shallow machine learning 
model to filter out the no-fault cases, which are much larger 
in number than fault cases. Level 2 classifies ‘fault’ cases 
into ‘manifested’ and ‘impending’ fault conditions. A two-
stage model removes ‘skewness’ in the data and performs 
better than one level classifiers [17]. It also enhances the 
accuracy of prediction [18]. Algorithm 1 describes the 
process succinctly. X and Y are predictor variable and labels, 
respectively, in training or test datasets. Hyper-parameters 
{pd} and {pd'} pertain to detection models at the two layers, 
{ps} and {pn} are for models at the localization layers 1 and 
2 and {pi} are for deep learning model for impending faults.  
 

iii) The Localization Subsystem: Algorithm 2 explains the 
localization function. X, Y and the set of hyper-parameters 
{p} have the same meaning as before (sparsity parameters 
have been explained in Section V). Details of the models and 
strategies manifested and the impending fault classes are 
explained below. 

Manifest Faults: The manifested fault analysis has been 
designed as a multi-layered, multi-class strategy based on 
actual data from a carrier’s network. For this study, we have 
limited the broad fault classes, at Layer 1, to 7 (Table I). At 
Layer 2, we have N (=7 in our case with 7 broad classes) 
separate multi-class models, one for each of the broad 
classes. Some examples of Layer 2 issues that would fall 
under Class Category 1 (Network Availability) are antenna 
height, backhaul failure, traffic channel congestion, radio 
unit failure and power module failure. For the multi-class 
classification with SVM, we chose to work with simple 
models like One vs. One (OvO) and One vs. All (OvA) [19]. 
We eventually selected OvA since it provided more 
accuracy and was comparable to OvO in training and actual 
operations. In the OvA approach, for the ith classifier fi, the 
examples can be classified with f(x)=argmaxifi(x), i.e., 
choose the class that classifies the example with the 
maximum margin. 

 Impending Faults: In traditional systems, in the absence 
of predictive analysis, preventive maintenance is relied to 
catch issues early. In HYPER-VINES localization of 
impending faults consists of predicting the severity and 
location of the fault. An operational network produces data 
continuously. In a stable network, most of these would be 
normal data with markers indicating anomalous conditions 

Algorithm 1: Detection Levels 1 & 2 
procedure detect_level1 (X,Y) 
#fault/no-fault classification 
{pd}  values of hyper-parameters for the chosen model 
use trained model for detect_level1 with X,Y, {pd}) 
if ‘fault’ is true 
 call detect_level2 (X',Y') 
produce detection report 
procedure detect_level2 (X',Y') 
# classify as manifest/impending and call localization 
{pd'}  values of hyper-parameters for the chosen model 
use trained model for detect_level2 with X,Y, {pd'} 
if manifest is true 
 call manifest_localization (X,Y) #defined in Algorithm2 
elseif impending is true 
 call impending_localization (X,Y) #defined in Algorithm2 

Algorithm 2: Localization Layers 1 & 2 
procedure manifest_localization (X,Y) 
# Coarse grain localization 
{ps}  values of hyper-parameters for the chosen model 
call localize_layer1( X,Y,{ps}) 
# fine grain localization with the appropriate model  
if class_category ==1 

{p1}  hyper-parameters class_category 1 
 call localize_layer2(X",Y",{p1}) 

… 
if class_category==7 

{p7}  hyper-parameters class_category 7 
 call localize_layer2(X",Y",{p7}) 
produce localization report 

procedure localize_layer1(X,Y, {ps}) 
use trained model localize_layer1 with X,Y, {ps} 
procedure localize_layer2(X'',Y'',{pn}) 
use trained model localize_layer2 with X,Y, {pn} 
procedure impending_localization (X,Y) 
{pi}  parameters neurons, sparsity parameters 
use deep_learning_model (X,Y,{pd} 
produce impending fault report 

TABLE I.  LOCALIZATION LAYER 1 FAULT CLASSES 
Class 

# 
Class Category Class 

# 
Class Category 

1 Network Availability 5 Virtualization-Component 
Failure 

2 Connection 
Maintenance 

6 Virtualization – Software 
vulnerabilities 

3 Network Performance 7 Miscellaneous 
4 Security   



interspersed sporadically. While our data has more than 800 
features, any anomalous condition would present <5% of 
these! Thus, the data are quite sparse. Impending faults may 
also contain previously unseen faults. Thus, while manifest 
faults are manageable with shallow models, impending faults 
have been tackled with deep learning. We have used Stacked 
Sparse Autoencoder (SSAE) (a type of deep neural 
networks). A single SAE contains an input, an output and a 
hidden layer. With an undercomplete hidden layer, the 
autoencoder is forced to learn the most useful features 
(automatic feature selection). The advantage can be 
accentuated with stacking a number of autoencoders and 
carefully designing the hidden layers [20].  

 Figure 6 shows the stack of three sparse autoencoders 
used in this work. Input layer [x], an output layer [p] and 
three hidden layers consisting of paired encoders and 
decoders. The colored neurons show three matching pairs of 
encoders and decoders. By reducing the size of hidden 
layers, the output is made reliant on increasingly lesser but 
richer features. Such a network can be trained in an 
unsupervised mode to reconstruct input data at the output 
with good accuracy. These networks can be tuned well for 
sparse data by using parameters like sparsity regularization 
and sparsity proportion as discussed in the evaluation 
section. 

We train our model to have good reconstruction of the 
input at the output (decided by the L2-norm), with 
unsupervised data, in a layerwise greedy method (one hidden 
layer at a time). A model that reconstructs well also gives 
good predictions [24]. During training, features (z) learned 
by each hidden layer are input to the next layer. Pairs of 
{weights, biases}, viz., (ω1, b1), (ω2, b2) and (ω3, b3), are 
learned in achieving good reconstruction. 

                                  argmin{L2_norm(x,x’), k=1 
{ωk, bk,, ωk’, bk’} =       
                                 argmin{L2_norm(zk-l, zk-l’}, k> 1       (1) 
z1 = f(ω1, x)                                                                 (2) 
 zk = f(ωk, zk-1), k>1                                                      (3) 
  After achieving good reconstruction of the input, the 

decoders are removed and a prediction layer is added in 
tandem with the encoded representation layer. This layer is 
trained in a supervised manner to learn ω4 and produce 
predictions y’ for given labels y. ω4 are the weights for 
minimum prediction MSE (mean square error). Thus, for 
labels y and its prediction y’ we have, 

 {ω1, ω2, ω3, ω4} = argmin {L2_norm (y, y’)}                      (4) 

The model is fine-tuned using back-propagation, for 
improving predictions [20] [22]. 

V. EVALUATION OF HYPER-VINES AND DISCUSSION 
OF RESULTS 

In this section, we discuss the dataset used and the 
evaluation of the proposed approach. The performance of the 
HYPER-VINES framework is demonstrated by good 
accuracies achieved by the detection and the localization 
subsystem. 

A. Analysis of the Dataset Used 
Having been drawn from the real fault logs of the Telstra 

Telecommunications' network, the Telstra dataset, provides a 
good basis for evaluating our models [23]. The complete 
dataset consists of sub-datasets for resource_type, 
event_type, event_volume, features, fault_severity and 
severity_type. All sub-datasets have ‘id’ as the common 
field. The event_type sub-dataset encodes the fault and 
performance events. Each event is given an id, which also 
gives a chronology of these events. This sub-dataset contains 
31,170 events recorded with 53 unique event types. There 
are 21,076 examples in the resource_type sub-dataset with 
many events involving multiple resources. The features sub-
dataset with 58,671 records gives reported markers with each 
incident generating some of the feature1 to feature386. The 
training and test datasets have id, location, and 
fault_severity. The fault_severity feature describes the 
severity level of a fault event and has values 0, 1, or 2 for no 
faults, a few faults, and many faults, respectively. The 
severity_type feature describes the intensity of the warning 
with values 1 to 5 with 5 being the highest. 

TABLE II.  FEATURES FROM NETWORK FAULT DATASETS 

1 Id (1) 5 Resource type (10) 
2 Location (1) 6 Severity type (1) 
3 Features (386) 7 Event type (5) 
4 Volumes for features (386) 8 Fault severity (1) 

Table II gives a list of features contained in the sub-
datasets mentioned above with the number in brackets 
indicating how many can occur in one event. There are about 
800 features (columns) in the consolidated dataset. 
Following the mechanism given in Section IV, pre-
processing of data, including feature selection, has been 
carried out using label-class correlation method in weak to 
prepare the training and test datasets [24]. 

B. Evaluation of the Framework 
We provide, in this sub-section, the results of the 

evaluation of the detection and localization parts of the 
framework. Table III gives the metrics used. 

TABLE III.  METRIC USED 

Metric Interpretation 
Accuracy (TP+TN)/(TP+TN+FP+FN) 
Precision TP/(TP+FP) 
Recall TP/(TP+FN) 
TP=True Positive, TN=True Negative, FP=False Positive, FN=False 
Negative 

 i) Detection: The Telstra dataset prepared, as explained 
in Subsection V (A), was used in the binary supervised two-
stage model for ‘fault’/’no-fault’ and 
‘manifested’/‘impending’ classification. Various standard 
algorithms were tested for the two stages (called Level 1 and 
Level 2) in the framework. Tuning of various parameters, 

 

Fig. 6. Stacked Sparse Autoencoders 



peculiar to any model, was carried out judiciously. In the 
comparative test, it was seen that Support Vector Machine 
(SVM) with Radial Basis Function (RBF) kernel stands out 
with ≥ 95% accuracy for Level 1, with a high ratio of true 
positives to false positives, indicating good fault detection. 
Precision is high, indicating ‘no-fault’ cases are correctly 
classified. Compared to these results, the baseline results 
with Zero-R (which predicts the majority class) has 65% 
accuracy. We see some of the simulation results in Figure 7.  

  Fig. 7. Level 1 detection accuracy, using Telstra dataset  

 For the Level 2 classification into manifested/impending 
classes again a tuned SVM with RBF Kernel works well 
(Figure 8).  

  Fig. 8. Level 2 detection accuracy, using Telstra dataset  

For baseline at Level 2, we have used One-R, a simple 
but accurate classification algorithm, which generates one 
rule for each predictor and then selects the one with the 
smallest error [25]. Accuracy for HYPER-VINES is 95%, 
which is markedly higher than the baseline as shown in 
Figure 9. 

 
Fig. 9. Detection sub-system Level 2 classification, effectiveness 
compared to baseline 
ii) Localization: One of the main concerns handled in 

the framework is to localize impending faults and predict 
their severity levels. While preprocessing selected the 353 
features, further condensation was left to the stacked 
autoencoders used. 

The comparative reconstruction performance is given in 
Figures 10(a) through 10(d). It is seen that the model with 3 
hidden layers of 200/150/100 neurons, respectively, 
converges quite fast to a low mean-square error. 
Reconstruction accuracy is important as it affects the 
prediction based on the trained encoders, which the model is 
eventually used for [21]. 

 Sparsity in data is handled by using the Autoencoder 
parameters sparsity regulation (SR) and sparsity proportion 
(SP). SP gives the proportion of training examples a neuron 
reacts to. A low value of SP encourages sparsity. 

  (a) Single AE (b) 2-layer SSAE 

  (c) 3-layer SSAE (d) 4-layer SSAE 

Fig. 10. Mean Square Error for reconstruction of Input 

The graph in Figure 11 shows that the model has good 
generalization characteristics as MSE for the test dataset is 
close to that of the training dataset. Having achieved good 
reconstruction results, the model was tested for prediction of 
severity of impending fault and performance issues. Having 
achieved good reconstruction results with stacked 
autoencoders, the model was tested for prediction of severity 
of impending fault and performance issues. 

To see the effect of fine-tuning with backpropagation, 
experiments were carried out for SR=1 and SP=0.4. Figure 
12 shows that fine-tuning may yield better results for some 
configurations of the model. The accuracy ranges between 
72 and 85% with the abridged dataset (~1000 examples) and 
~92% with the enhanced dataset (~5000 examples).   

 
Fig. 11. MSE in Training and Test dataset  

We baselined the above results with those obtained with 
a shallow model, viz., SVM with RBF kernel which did quite 
well for detection, and could only obtain 70% accuracy in 
localizing impending faults. The deep structure, thus 
provided a substantial improvement in terms of accuracy of 
prediction of the severity level of the impending faults. 



 
Fig. 12. MSE of predictions before and after fine tuning 

VI. DISCUSSION AND CONCLUSION 
In this work, we have identified the challenges faced by 

carriers in creating virtual network services based on NFV 
and instantiated over multiple clouds. The primary concerns 
addressed are availability and performance of virtual network 
services. To overcome these problems, we propose HYPER-
VINES as a fault detection and localization framework to 
help cloud service providers, carriers, and independent NFVI 
providers to overcome these challenges. We demonstrated 
the effectiveness and feasibility of the hybrid framework 
using shallow machine learning and deep learning algorithms 
with a mix of unsupervised and supervised learning in a 
multi-layer configuration. We show that the proposed 
framework can handle both the detection and localization of 
faults and performance issues with good accuracy. Lastly, we 
believe that HYPER-VINES would be useful to the industry 
by improving the proliferation of NFV and cloud-based 
deployments and also spur other researchers to further 
develop and improve the framework.  

ACKNOWLEDGMENT 

This publication was made possible by NPRP grant #8-
634-1-131 from the Qatar National Research Fund (a 
member of Qatar Foundation) and NSF grants CNS-
1718929. The statements made herein are solely the 
responsibility of the authors. 

REFERENCES 
[1] R. Mijumbi et al., “ Network Function Virtualization: state-of-the-art 

and research challenges,” IEEE Communications Surveys and 
Tutorials, 2016, pp.236-262. 

[2] C. J. Bernardos et al., “ Network Virtualization research challenges,” 
Internet Engineering Task Force (IETF) Draft. 
https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-
10 Accessed Sept 2, 2019 

[3] H. R. Kouchaksaraei, and H. Karl, “Joint orchestration of cloud-based 
microservices and Virtual Network Functions. ArXiv: 1801.09984 
https://arxiv.org/pdf/1801.09984. Accessed Feb 13, 2018 

[4] ETSI GS NFV-MAN 001. “European Telecommunications Standards 
Institute: Network Functions Virtualization (NFV); Management and 
Orchestration,” 2017  

[5]  P. Moore, “The current state of NFV: Standards,” 2016 
https://www.itential.com/blog/the-current-state-of-nfv-intro/. 
Accessed Feb 21, 2018. 

[6]  T.Nakamura, “Network Functions Virtualization (NFV) Network 
Operator Perspectives on NFV priorities for 5G,” ETSI-White Paper, 
February 2017   

[7] OPNVF, “Building fault management into NFV deployments 
background and purpose of OPNFV’s Doctor Project,” 
https://www.opnfv.org/wpcontent/uploads/sites/12/2016/11/opnfv_fa
ultmgt_final.pdf. Accessed January 20, 2018 

[8] M. Ladki, “Developing a blueprint for zero-touch, end-to-end service 
orchestration across hybrid and multiple networks,” April 2017, 

https://inform.tmforum.org/features-and analysis/2017/04/developing-
blueprint-zero-touch-end-end-service-orchestration-across-hybrid-
multiple-networks/. Accessed March 21, 2018. 

[9] ETSI GS NFV-REL001, “European Telecommunications Standards 
Institute: Network Functions Virtualization (NFV); Resiliency 
Requirements,”  2015 

[10] ETSI GS NFV INF 010, “European Telecommunications Standards 
Institute: Network Functions Virtualization (NFV); Service Quality 
Metrics,” 2017 

[11] ETSI GS IFA 013, “European Telecommunications Standards 
Institute: Network Functions Virtualization (NFV); Management and 
Orchestration; Os-Ma-Nfvo reference point - Interface and 
Information Model Specification,” 2016. 

[12] ONAP Whitepaper, “Open Network Automation Platform: 
Architecture Overview,” 2017, 
https://www.onap.org/wpcontent/uploads/sites/20/2017/12/ONAP_Ca
seSolution_Architecture_120817_FNL.pdf, Accessed March 20, 2018 

[13] Y. Endo and M. Seltzer, “Improving interactive performance using 
TIPME,” Proc. ACM SIGMETRICS International Conference on 
Measurement and Modeling of Computer Systems, Volume 28, Issue 
1, 2000, pp. 240-251. 

[14] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox, “Pinpoint: 
problem determination in large, dynamic, internet services,” Proc. 
International Conference on Dependable Systems and Networks 
(IPDS Track), 2002, pp. 595-604. 

[15] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “ Magpie: online 
modeling and performance-aware systems,” Proc of the 9th 
conference on Hot Topics in Operating Systems, 2003, pp. 15-15. 

[16] B. Trammell et al., “mPlaneBuilding an intelligent measurement 
plane for the internet,” IEEE Communications Magazine, Volume: 
52, Issue: 5, 2014, pp. 148-156. 

[17] M. L.Antonie, O. R.Zaiane, and R. C. Holte, “Learning to use a 
learned model: a two-stage approach to classification,” IEEE 
International Conference on Data Mining, 2016, pp.33-42. 

[18] F.Hachmi and M.Limam, “A two-stage process based on data mining 
and optimization to identify false positives and false negatives 
generated by Intrusion Detection Systems,” IEEE International 
Conference on Computational Intelligence and Security, 2015, pp. 
308-311. 

[19] G. E. Hinton and R. Salakhutdinov, “Reducing the dimensionality of 
data with neural networks,” Science, Vol 313, Issue 5786, July 2006, 
pp. 504-507. 

[20] L. Wang et al., “A computational-based method for predicting drug-
target interactions by using stacked autoencoder deep neural 
network,” Journal of Computational Biology, 2018, pp. 361-373. 

[21] W. Huang, “ Dynamic boosting in deep learning using reconstruction 
error,” IEEE International Joint Conference on Neural Networks 
(IJCNN’14)., 2014, pp. 473-480. 

[22] I. Goodfellow, Y. Bengio, and A. Courville. 2016. “Deep Learning 
(1st. ed.)”, MIT Press book. 

[23]  Kaggle datasets, Available: https://www.kaggle.com/datasets. 
Accessed, March 12 2017 

[24] G. Holmes, A. Donkin, and I. H. Witten, “WEKA: A machine 
learning workbench,” Proc ANZIIS of the Australian and New 
Zealand Conference on Intelligent Information Systems, 1994, pp. 
357-361. 

[25] Saed Sayad, “Classification Methods,” 
http://chemeng.utoronto.ca/~datamining/Presentations/Basic_Method
s.pdf, Accessed March 2018 

https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-10
https://tools.ietf.org/html/draft-irtf-nfvrg-gaps-network-virtualization-10
https://arxiv.org/pdf/1801.09984
https://www.opnfv.org/wp-content/uploads/sites/12/2016/11/opnfv_faultmgt_final.pdf
https://www.opnfv.org/wp-content/uploads/sites/12/2016/11/opnfv_faultmgt_final.pdf
https://inform.tmforum.org/features-and-analysis/2017/04/developing-blueprint-zero-touch-end-end-service-orchestration-across-hybrid-multiple-networks/
https://inform.tmforum.org/features-and-analysis/2017/04/developing-blueprint-zero-touch-end-end-service-orchestration-across-hybrid-multiple-networks/
https://inform.tmforum.org/features-and-analysis/2017/04/developing-blueprint-zero-touch-end-end-service-orchestration-across-hybrid-multiple-networks/
https://www.onap.org/wp-content/uploads/sites/20/2017/12/ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.onap.org/wp-content/uploads/sites/20/2017/12/ONAP_CaseSolution_Architecture_120817_FNL.pdf
https://www.kaggle.com/datasets
http://chemeng.utoronto.ca/%7Edatamining/Presentations/Basic_Methods.pdf
http://chemeng.utoronto.ca/%7Edatamining/Presentations/Basic_Methods.pdf

	I. Introduction
	II. Background
	A. Terminology Related to VNSs
	B. Fault and Performance Management of VNS over Multiple Cloud Systems
	C. Unsuitability of the Existing Systems in the VNS Environments

	III. Related Work
	IV. Design and Implementation of HYPER-VINES
	A. Architecture of the Proposed Framework

	V. Evaluation Of HYPER-VINES And Discussion Of Results
	A. Analysis of the Dataset Used
	B. Evaluation of the Framework

	VI. Discussion and Conclusion
	References


