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High-definition video streams’ unique statistical characteristics and their high bandwidth requirements are considered to be a
challenge in both network scheduling and resource allocation fields. In this paper, we introduce an innovative way to model and
predict high-definition (HD) video traces encoded with H.264/AVC encoding standard. Our results are based on our compilation
of over 50 HD video traces. We show that our model, simplified seasonal ARIMA (SAM), provides an accurate representation
for HD videos, and it provides significant improvements in prediction accuracy. Such accuracy is vital to provide better dynamic
resource allocation for video traffic. In addition, we provide a statistical analysis of HD videos, including both factor and cluster
analysis to support a better understanding of video stream workload characteristics and their impact on network traffic. We discuss
our methodology to collect and encode our collection of HD video traces. Our video collection, results, and tools are available for
the research community.

1. Introduction

Web-based video streaming websites facilitate the creation
and distribution of digital video contents to millions of
people. Websites like YouTube [1] are now considered to be
among the most accessed websites by Internet users. Such
websites are now accounting for 27 percent of the Internet
traffic, rising from 13 percent in one year [2]. Internet video
traffic is expected to amount to 50% of consumer Internet
traffic in 2012 [3].

This surge in traffic percentage can be explained by the
latest surveys that show that the percentage of US Internet
users watching streaming videos has increased from 81%
to 84.4%, and the average time spent per month increased
from 8.3 to 10.8 hours/month in just three months period
July–October of 2009 [4, 5]. Additionally, several websites,
for example, Hulu [6] and Netflix [7], have started offering
access to TV shows and selected movies that has increased
the reliance of the daily Internet users on such websites and

augmented their expectations of the level of services and
quality of delivery.

Resource and bandwidth allocation schemes for video
streaming are dependent on their ability to predict and
manage the time variant demand of video streams. Existing
dynamic resource allocation schemes [8–10] utilize video
traffic prediction to offer better accommodation for existing
video traffic, and allow higher admission rates. The traffic
predictor is the most important part in dynamic bandwidth
allocation. It is can be based either on traffic characteristics or
on the video content. Video-content-based traffic predictors
have shown their superiority over their traffic-based counter-
parts [10].

Therefore, it essential to analyze and model video traffic
to allow better quality of service (QoS) support. In this paper,
we present the results of our model-based predictor and
discuss its video traffic prediction capabilities.

Modeling video streams is a challenging task because of
the high variability of video frame sizes. Such variability has
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increased with the introduction of MPEG4-Part10/advanced
video codec (AVC)/H.264 high-definition video codec stan-
dard. AVC provides better compression rate (i.e., lower mean
values) than its predecessors. Yet at the same time, it results
in higher frame size variability [11].

In this paper, we present our work to analyze, model,
and predict high-definition (HD) video traces encoded with
the H.264/AVC codec. We present results based on over
50 HD video traces. We compare three modeling methods:
autoregressive (AR) [12], autoregressive integrated moving
average (ARIMA) [12] using the approach proposed in [13],
and our Simplified Seasonal ARIMA Model (SAM) that was
developed for the less resource demanding mobile video
traces [14, 15]. In addition we compare these models in their
prediction accuracy.

There have been several contributions that aimed to
achieve a better understanding of the relationship between
the statistical characteristics of video traces and their impact
on data networks. In [16], the authors presented a statistical
and factor analysis study of 20 MPEG1 encoded video traces
and their impact on ATM networks. Similar approaches
were presented in [17] with emphasis on video trace frame
size distribution. The author in [18] performed a statistical
analysis on four MPEG4-AVC encoded video traces demon-
strating the quantization effects over several statistical meas-
urements, including the intercorrelation between video
frames. In [11], the authors compared the statistical char-
acteristics of AVC standard versus its predecessor, namely,
MPEG4-Part2 in terms of bit rate distortion performance,
bit rate variability, and long-range dependence (LRD).

In this paper, we present our work of analyzing and
modeling over 50 HD video traces from YouTube HD videos
section. We aim through this contribution to investigate the
main statistical characteristics that define an HD video trace.
This identification is important for two main reasons: it helps
in clustering video traces depending on certain statistical cri-
teria to help choose the correct traffic workload, or in other
possible data mining processes [16]. Additionally, it helps
define the main statistical attributes of HD video traces that
should be considered to achieve a valid statistical model [19].

One of the main challenges in developing a valid video
workload model is the availability of an adequate number
of traces to test the proposed model. The available traces
on the web are scarce and do not represent all the different
types of videos. Thus, one of the aims of this contribution is
to provide researchers with a sufficient number of traces to
support their future studies. All our tools, results, and video
traces are available through our website [20].

In addition to analyzing and modeling these video traces,
we provide several tools: a trace generator based on our mod-
el that can be used to generate user-defined traces with the
desired statistical characteristics, and a simple GUI interface
to provide the essential statistical analysis and comparison
graphs for HD video traces. The trace generator can also be
used to produce a new movie trace that represents a blend of
different video characteristics. Figure 1 summarizes the main
steps taken in analyzing and modeling the selected videos and
shows each step’s corresponding outputs.

Our encoding process starts with an HD YouTube video
in mp4 format, which is then converted to a YUV (4 : 2 : 0)
raw video format. Such format allows video frames to be
much more compressible [21]. The raw video is consequently
encoded with AVC, and the process produces the following:
an encoded movie file, its encoding statistics file, and a full
verbose description of the encoding process. The verbose
output is then parsed using our analysis tool to get the
video trace information, which is then modeled using AR,
ARIMA, or SAM. The video trace is used also to produce
the video frames autocorrelation function (ACF) and the
partial autocorrelation function (PACF) graphs. ACF plots
are commonly used tools to check for randomness in a
data series by plotting the data set values over several time
lags [22]. Given a data series Xt, PACF for a lag k is the
autocorrelation between Xt and Xt−k that is not accounted
for by lags 1 to k − 1 inclusive.

The SAM parameters for each video can be used in
either video traffic prediction analysis, or in generating
video traces. SAM frame generator uses these parameters to
generate a movie trace that is statistically close to the original
movie trace.

This paper is organized as follows: Section 2 discusses
the methodology of obtaining and encoding our collection
of HD videos. Section 3 shows the results of our statistical
analysis, including both factor and cluster analysis. In
Section 4, we compare the results of modeling the video
traces and provide a simple introduction to SAM. Section 5
discusses the approach to evaluate the prediction accuracy of
the compared models and the comparisons results. Section 6
illustrates our tools design and their implementations.
Finally, we conclude the paper and give some insights to the
impact of our results and our future work.

2. Encoding YouTube HD Videos

To represent real life video traffic load, we chose YouTube
website as our source. YouTube is currently the most popular
video streaming website on the Internet [23]. Our first step
in selecting the candidate videos from YouTube was to make
sure that we have a good variety of both texture/details and
motion levels. To select a representative group of the available
videos, we started our selection process with 9 videos of the
most visited videos in YouTube HD section [1]. Then, we
increased our collection by selecting three random videos
from each of the 15 subcategories available for YouTube
website’s users. In total we have collected 54 video files in mp4
format.

Then, we analyzed the collected videos using MediaInfo
[24] to determine the encoding parameters for the various
videos and to select the most commonly used parameter
values. We made sure that the parameter values we selected
were consistent with those recommended in [25, 26] for
YouTube video encoding. Our next step was to convert all
these videos to raw or YUV (4 : 2 : 0) format. This step is
important to ensure unified encoding parameters for all
the collected videos to allow objective comparisons. We
performed the conversion process using the open source
coding library FFMPEG [27].
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Figure 1: Modeling, analyzing, and generating video traces processes.

Table 1: Encoding parameters for the selected YouTube video col-
lection.

Encoding parameter Value

FrameRate 24

OutputWidth 1280

OutputHeight 720

ProfileIDC 100 (High)

LevelIDC 40 (62914560 samples/sec)

NumberBFrames 2

IDRPeriod 24

NumberReferenceFrames 3

QP (quantization parameter) I = 28, P = 28, B = 30

To convert YUV files to the H.264/AVC format, we tested
two publically available encoding libraries: x264 [28] and
JM reference software [29]. Though x264 is significantly
faster than JM reference software, it provided us with less
information about the encoding process. Table 1 lists the
main encoding parameters used with JM reference software.

These parameters were chosen to represent the majority
of the videos we have collected. We used in our encoding
process Instantaneous Decoding Refresh (IDR) frames [25].
IDR frames are special type of I frames that allow better
seeking precision and thus enhance the user’s experience. We
used closed-GOP setting [26] to ensure that all I frames are
IDR frames, hence improving the user’s online experience.
The majority of the collected videos have a frame rate of 24
fps. IDRPeriod defines the periodicity of IDR frames.

The ProfileIDC parameter defines the video profile,
which, in this case, is set to high. This parameter, along with
the LevelIDC parameter, specifies the capabilities that the
client decoder must have in order to decode the video stream.
Parameter NumberBFrames specifies the number of B slices
or frames between I , IDR, and P frames. The quantization
parameters used are the default values for the encoder.
The parameter NumberReferenceFrames sets the maximum
number of reference frames stored in the decoder buffer, and
it is set to three frames. All other encoding parameters are set

to the default values of JM reference software. In the course
of our analysis and encoding processes, we used two versions
of JM reference software: v15.1 and v16.0.

The encoding procedure is both time and resource
consuming process. The encoding of a single video file
took on average 37 hours, with an average encoding rate of
0.02 fps. The average size of a raw YUV (4 : 2 : 0) video file is
around 4 GB. The encoding was done using a 2.8 GHz Core
i7 machine with 6 GB of DDR3 RAM. These figures support
our conviction of the necessity to have a valid trace model
and generator. The output of the encoding process is then
run through our parser to extract the video trace frame size
information needed for the next steps of our analysis and
modeling.

3. Factor and Cluster Analysis of Video Traces

In this section we discuss the steps taken to perform a full
statistical analysis of the collected video traces in order to
achieve a better understanding of the main factors that can
be used to represent a video trace in order to develop a
representative statistical model.

Multivariate analysis is used to reveal the full structure of
the collected data, and any hidden patterns and key features
[30]. Multivariate analysis is used especially when the
variables are closely related to each other, and there is a need
to understand the underlying relationship between them. We
have computed the following statistical quantitative values
for traces frame sizes: mean, minimum, maximum, range,
variance, standard deviation, the coefficient of variance, and
the median value. In addition, we computed the Hurst
exponent value, as shown in (4), which indicates the video
sequence’s ability to regress to its mean value, with higher
values indicating a smoother trend, less volatility, and less
roughness. Its value varies between 0 and 1. This is also
an indication of the strength of the long-range dependence
(LRD) among video frames [19]. The Hurst exponent can be
computed by first calculating the mean adjusted series Y :

Yi = xi − x, i = 1, 2, . . . ,N , (1)
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Table 2: Range of statistical values for the collected video traces.

Mean Range Variance Hurst Coefficient of variance Median Skewness Kurtosis

Max 83340.43 1198416 13767760363 0.902836 3.9860815 62748 6.58066 61.34631

Min 9782.01 65576 154362485 0.498937 0.6875022 448 0.2287191 1.643709

where x i is the frame size at index i, x is the mean frame
size over the trace length N , then we calculate the cumulative
deviate vector S:

St =
i∑

j=1

Yj , i = 1, 2, . . . ,N. (2)

The next step is to calculate the range value R, and we divide
it over the standard deviation value denoted by σ :

R = max(S)−min(S)
σ

, (3)

Hurst Index = log(R)
log(N)− log(2)

, (4)

where xi is the frame size at index i, x is the mean frame
size, and N is the number of frames in the trace. We also
computed the skewness value that represents the symmetry
of the observed distribution around its center point [19]:

Skewness =
∑N

i=1 (xi − x)3

(N − 1)× std3 . (5)

Here std is the standard deviation of the frames sizes.
Additionally, we computed the kurtosis value, which is an
indication whether the observed video trace distribution is
peaked or flat relative to a normal distribution [19]. The
kurtosis equation is illustrated below

Kurtosis =
∑N

i=1 (xi − x)4

(N − 1)× std4 . (6)

As Table 2 shows, the collected videos represent a statis-
tically diverse data samples. And as we mentioned before,
the video frame size variance of HD videos is considerably
substantial. The table shows the most important variables
that have been collected. We noticed through our prepara-
tion analysis that min variable does not contribute to the
total variance significantly, and thus it was disregarded. Both
max and range, and variance and standard deviation pairs are
almost identical. We picked range and variance to represent
the two pairs, respectively. In the next subsections, we will
discuss the methodology and results of performing both
factor and cluster analysis.

3.1. Principal Component Analysis. One of the most common
factor analysis methods is principal component analysis
(PCA) [16], where a group of possibly related variables are
analyzed and then reduced to a smaller number of uncorre-
lated factors. These factors accounts for most of the variance
in the observed variables. By performing this process, we aim
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Figure 2: Scree plot for the HD video collection data based on the
eight selected variables which indicates two principal components.

to minimize the number of variables to represent a video
trace without much loss of information [30].

Our first step is to determine the smallest number of
variables to represent each video trace. Table 3 shows the
correlation between the selected variables. These variables
collectively represent the majority of the samples variation.

The importance of each factor is represented by its
eigenvalue. To determine the number of factors to extract
we used Kaiser-Guttman rule [31]. By following this rule,
we excluded the factors with eigenvalue less than 1. We
supported our selection by performing the Scree test [32] as
shown in Figure 2, where we plotted the relationship between
the number of factors and their cumulative contribution to
the total variance of the data set, and we looked for either
large spaces between the plotted variables or a knee in the
graph to determine the number of factors to be considered.

Our analysis resulted in choosing two factors with the
following eigenvalues: λ1 = 3.51, and λ2 = 2.82. These
factors account for 79%[(λ1 +λ2)/8] of the total standardized
variance. We confirmed that the number of factors is
sufficient to explain the intercorrelations among variables by
performing several nongraphical tests [33].

To simplify the factor structure and spread out the
correlations between the variables and the factors (their
loadings values) as much as possible, we performed both
orthogonal and oblique rotations on the factors [34]. We
chose varimax orthogonal rotation as it gave the best results.
As shown in Figure 3, the two significant groups are the mean
and skewness groups. Table 4 shows the loadings values for
both varimax rotated and unrotated factors.

As can be noticed, the rotated factors are better spread
out and simpler to interpret. From Table 4 we can note that
the first factor F∗1 defines mainly mean and variance values.
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Table 3: Correlation between the selected variables.

Mean Range Var Hurst c.var Median Skew Kurt

Mean 1 0.48 0.73 0.48 −0.40 −0.9 −0.36 −0.23

Range 0.48 1 0.74 0.34 0.19 0.25 0.51 0.6

Var 0.73 0.74 1 0.36 0.13 0.41 0.13 0.14

Hurst 0.48 0.34 0.36 1 −0.44 0.41 0.25 0.17

c.var −0.40 0.19 0.13 −0.44 1 −0.56 0.71 0.51

Median −0.9 0.25 0.41 0.41 −0.56 1 −0.49 −0.33

Skew −0.36 0.51 0.13 0.25 0.71 −0.49 1 0.93

Kurt −0.23 0.6 0.14 0.17 0.51 −0.33 0.93 1

Table 4: Estimated and rotated factors loadings.

Estimated Rotated (varimax)

F1 F2 F∗1 F∗2
Mean 0.84 0.46 0.93 —

Range — 0.95 0.73 0.62

Variance 0.39 0.80 0.84 —

Hurst 0.62 — 0.64 —

C. Var −0.75 0.35 — 0.77

Median 0.87 — 0.77 −0.46

Skewness −0.75 0.62 — 0.97

Kurtosis −0.62 0.67 — 0.91
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Figure 3: Scatter plot of varimax rotated factors F∗1 and F∗2 in the
space of the two principal components.

The second factor defines mainly skewness and kurtosis
values. We chose mean to represent the first factor since it has
the highest load. We chose kurtosis as a representative of F∗2
since it has the lowest correlation between it and the mean
(−0.23). This analysis shows the importance of skewness
and kurtosis in HD videos traces. These two variables were
considered irrelevant in previous video analysis [16]. This
realization can be explained by the dependence of these vari-
ables on the standard deviation that accounts for a significant
proportion of the total variance of HD videos traces.

3.2. Cluster Analysis Using k-Means Clustering. We have
demonstrated that the selected two factors, or principal
components, are sufficient to characterize a HD video trace.
The second step of our analysis is to group the collected
video traces into clusters. We used one of the most popular
clustering methods: k-means clustering algorithm [35]. k-
means algorithm achieves clustering by minimizing the
within-cluster sum of squares as shown in

arg min
s

k∑

i=1

∑

xj∈Si

∥∥∥xj − μi
∥∥∥

2
, (7)

where xi is the video trace at index i, k is the number of sets
(k < n, n: number of video traces), Si is the ith set, and μi is
the mean of Si.

Our next step is to estimate the number of clusters or
groups to consider for k-means clustering. PCA helps give an
insight of how many clusters the video traces can be grouped
into [36]. In our case, PCA suggests that we need two
clusters. In order to verify the analysis results from PCA, we
proceeded with computing the within-cluster sum of squares
for different number of clusters. Our aim is to select the
minimum number of clusters that allows the minimal possi-
ble value for the within-cluster sum of squares. By plotting
these values to represent a graph similar to the previously
shown scree test in Figure 2, the large spaces between the
plotted variables and the graph knee values indicate the
possible values are two, three, and four clusters as shown
in the Figure 4(a). To further investigate the best possible
number of clusters to use, we performed a hierarchical
clustering to identify the number of clusters using Ward’s
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method [35]. As shown in Figure 4(b), the video traces are
divided into two main clusters. Our choice of grouping
the video traces into two clusters was further verified by
performing silhouette validation method [37].

By performing k-means clustering we grouped the video
traces into 2 clusters. Table 5 shows the two chosen principal
components corresponding to the centroids of the two
clusters, and the two clusters main members. Figure 5 shows
the distribution of video groups over the two clusters.

In summary, video traces that belong to cluster 2 have
significantly lower mean values and have considerably low
peaks compared to normal distribution, and lighter tails as
indicated by their low Kurtosis values.

We also notice that films category video traces are spread
across both clusters. Most blogs and sport category videos are
characterized as peaky video traces because of their content.

News and comedy videos are less peaky and have lower
means than other movies.

To summarize, in this section, we demonstrated our
results of performing both factor and cluster analysis on our
collection of video traces. Both methods of analysis give us a
better understanding of the distribution of the movie traces
and their key statistical attributes.

4. Modeling HD Video Traces

In this section, we discuss and compare three statistical mod-
els to represent HD video traces. Several models to represent
VBR (Variable Bit Rate) MPEG traffic have been proposed in
the recent years. Some of the models proposed are based on
Markov chain models, which are known for their inefficiency
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Table 5: Clustering results using k-means clustering.

Variables Cluster 1 Cluster 2

Mean 59,251 32,582

Kurtosis 12.028829 9.099512

No. of elements 13 39

Main video groups Films, people and blogs, sports, educational Films, music, news, comedy, cars

in representing the long-range dependence (LRD) character-
istics of MPEG traffic [38, 39]. Due to the high influence
of LRD, multiplicative processes have been considered like
Fractional ARIMA (FARIMA), which have been shown to be
accurate, but also computationally demanding and provide
marginal improvements over ARIMA [12]. Wavelet-based
prediction has been shown to require more computation
resources, and to provide less accurate results than ARIMA
[40]. Our aim is to select a simple to implement, accurate,
and applicable model for all video traces without the need of
significant statistical background.

The chosen model should not require video-specific,
complex, and tedious steps. The model should be able to
not only represent video frame size distribution, but also
the correlation between the frames. These attributes are
important to achieve the desired results and to allow the anal-
ysis of our large collection of video traces. Our pre-anal-
ysis step resulted in choosing three modeling methods: auto-
regressive (AR) model, autoregressive integrated moving av-
erage (ARIMA) model using the approach proposed in [13],
and SAM model [14, 15]. All these models use maximum
likelihood estimation to determine the model terms coeffi-
cients and consider Akaike’s Information Criterion (AIC) as
their optimization goal. AIC is defined as

AIC = 2k + n
[

ln
(

RSS
n

)]
, (8)

here k is the number of parameters, n is the number of
the video frames, and RSS is the residual sum of squares.
AIC defines the goodness of fit for the models, considering
both their accuracy and complexity defined by their number
of parameters. Lower AIC values indicate better models in
terms of their validity and simplicity. Each of the modeling
methods is described briefly below.

4.1. AR Modeling. Autoregressive fitting takes into consider-
ation the previous values of the fitted trace. An autoregressive
model of order p can be written as

Xt =
p∑

i=1

ϕiXt−i + εt , (9)

where ϕi is the ith model parameter and εt is white noise.
We used maximum likelihood estimation (MLE) to esti-

mate the model parameters of the AR model. Using AR to fit
the video traces is a considerably simple process, but it does
not always yield accurate results. Additionally, each video
trace has its own set of parameters in terms of their numbers
and their coefficients values.

4.2. ARIMA Modeling. Autoregressive integrated moving
average model is a mathematical class model with both auto-
regressive and moving average terms. Moving average (MA)
terms describe the correlation between the current value of
the trace with the previous error terms. The integrated or
differencing part of the model can be used to remove the
nonstationarity of the trace.

ARIMA is usually referred as ARIMA (p, d, q) where p
is the order of the autoregressive part, q is the order of the
moving average part, and d is the order of differencing part.
ARIMA model can be written as

⎛
⎝1−

p∑

i=1

φiL
i

⎞
⎠(1− L)dXt =

⎛
⎝1 +

q∑

i=1

θiL
i

⎞
⎠εt , (10)

where L is the lag operator and θi is the ith moving aver-
age parameter. We used the automatic ARIMA estimation
algorithm proposed in [13], which implements a unified
approach to specify the model parameters using a stepwise
procedure. It also takes into consideration the seasonality
of the trace to allow representing seasonal data series. This
approach also results in a separate set of parameters for each
video trace in terms of their numbers and their values. For
the rest of this paper we will refer to this approach simply as
ARIMA.

4.3. SAM Model. SAM is a mathematical model based on
Seasonal ARIMA (SARIMA) models [12]. SARIMA models
aim to achieve better modeling by identifying both nonsea-
sonal and seasonal parts of data traces. SARIMA is described
as

SARIMA = (p,d, q
)× (P,D,Q)s, (11)

where P is the order of the seasonal autoregressive part, Q
is the order of the seasonal moving average part, D is the
order of seasonal differencing, and s denotes the seasonality
of the time series. SAM as SARIMA model can be written
as

SAM = (1, 0, 1)× (1, 1, 1)s, (12)

where s is the video trace seasonality, in our case this is equal
to the frames rate.

SAM provides a unified approach to model video traces
encoded with different video codec standards using different
encoding settings [14, 15]. The model was developed to
model mobile video traces, and we investigate in this pa-
per its ability to model more resource-demanding HD
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video traces with higher resolutions and different encoding
settings. Seasonal ARIMA modeling can be represented by
two main steps: defining the model order, by selecting the
order of p, d, q, P, D, and Q terms, and then estimating the
order coefficients using methods like maximum likelihood
estimation. SARIMA models require a considerable degree
of analysis and statistical background to identify the model
terms order. SAM, on the other hand, has only four para-
meters, and therefore each model is represented with only
four coefficient values, while achieving similar results to the
SARIMA models calculated for each video trace [14, 15].
The values the parameters are determined using maximum
likelihood estimation and optimized using Nelder-Mead
method [41]. The four parameters are the coefficients
of autoregressive, moving average, seasonal autoregressive,
and seasonal moving average parts. Therefore, using SAM
simplifies the analysis process that is usually required for
seasonal series and removes manual processing and expert
analysis requirements.

4.4. Modeling Results. After performing the modeling anal-
ysis on 54 HD video traces, we evaluated the achieved re-
sults first by simply comparing the sum of the AIC values
for all the modeled video traces. We also calculated the num-
ber in which each model scored the best AIC, that is, low-
est value, for a certain video trace. Additionally, we compared
the three models using three statistical measures to eval-
uate how close the models values are to the actual traces: the
mean absolute error (MAE) as shown in (13), mean absol-
ute relative error (MARE) as shown in (14), and normal-
ized mean square error (NMSE), as shown in (15)

MAE = 1
N

N∑

i=1

|ei|, (13)

MARE = 1
N

N∑

i=1

|ei|
xi

, (14)

RMSE =

√√√√√ 1
N

N∑

i=1

(ei)
2, (15)

where N is number of frames, ei is the modeling error at
the ith frame, and xi is the ith frame size. The results are
shown in Table 6. It can be noted that SAM achieved the
best results, while AR and ARIMA came in second and last
place, respectively. The achieved results demonstrate two
main points: SAM is superior to the other two modeling
methods, and that the automated approach used with
ARIMA modeling does not always yield the expected results.

Additionally, we performed several graphical compar-
isons for all the video traces by comparing the original
video traces, their autocorrelation function (ACF) plots, and
their empirical cumulative distribution function (ECDF)
plots to ones achieved by the different models. Figure 6
shows an example of one of the compared video traces.
As we can notice, SAM has better results and represents
the traces statistical characteristics better than the other

Table 6: Comparison between AR, ARIMA, and SAM using AIC.

AR ARIMA SAM

Total MAE 830753 894700 641897

Total MARE 200.12 220.47 126.28

Total RMSE 1583607 1644015 1114846

Total AIC 3473929 3492401 3344490

No. of Best AIC 6 3 43

two models. For this example, modeling using AR required
12 parameters, using ARIMA required 7 parameters (two
AR parameters and five MA parameters), and using SAM
required only 4 parameters.

The results show that SAM has a significant advantage
over the other two modeling methods especially on the
seasonal transition of the video trace. This advantage is also
apparent in ACF and ECDF plots comparisons. All graphical
comparison results for all the HD video traces are also
available through our website [20].

5. Forecasting HD Video Traffic

Because of the variability exhibited in video traffic and espe-
cially in AVC encoded videos, static bandwidth allocation
is considered not suitable for providing high utilization of
the network resources. Thus, dynamic bandwidth allocation
has been considered as an alternative approach [42]. The
heart of the dynamic bandwidth allocation schemes is the
traffic predictor that helps in making decisions for future
bandwidth allocations.

In order to evaluate the different prediction methods,
we characterized different requirements for the predictor
in which to operate. These requirements are set to test the
abilities of these models to operate under different network
traffic scenarios. The first criterion is the model’s ability
to correctly predict traffic to achieve long-term prediction.
The prediction process itself consumes network resources.
Thus, it is preferable to run the predictor as few times as
possible. On the other hand, we do not need the prediction
interval to be too large, because the video frame sizes change
frequently and do not follow a certain pattern for a long
period of time that may result in severe prediction errors.
Prediction errors results in either in inefficient use of network
resources, or result in an increased rate of dropped packets
due to insufficient space in the receiving network buffers.
We evaluated this criterion by comparing the three modeling
methods using four different prediction interval lengths: 48,
72, 96, and 120 frames that translate to 2, 3, 4, and 5 seconds,
respectively.

The second criterion is the ability of the predictor to
capture the statistical characteristics of the movie trace by
analyzing as few video frames as possible. We evaluated this
criterion by comparing the prediction accuracy in the cases
where the predictor has already processed 250, 500, 1000, and
1500 video frames. This translates to around 10, 20, 40, and
60 seconds, respectively.
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values.

Evidently, we seek out the best predictor that can achieve
the best prediction accuracy for the longest prediction
window with the least number of frames to be analyzed. We
chose the commonly used noise to signal (SNR−1) ratio as
our prediction accuracy metric. SNR−1 computes the ratio
between the sum of squares of the prediction errors, and
the sum of squares of the video frame size. SNR−1 can be
depicted as

SNR−1 =
∑

(e)2

∑
(size)2 , (16)

where e is the prediction error, and size is the video frame
size.

Figure 7 shows a summary of the main results. As seen
in this figure, the prediction error is directly related to the
increase of the prediction window size. It also shows that
the increase of the predictor knowledge, as represented in
the number of frames processed, provides better prediction
accuracy. It is obvious from the figure that SAM provides
significant improvements over the other two methods. Table
7 shows the improvements SAM provides over AR and
ARIMA when 1000 frames are processed. SAM improves up
to 55% over AR, and 53.3% over ARIMA.

To better understand the reasons behind the observed
improvement, we plot the three models predictions for a
prediction window of 48 after processing 1000 of video
frames. As shown in Figure 8, SAM not only manages to
predict the video frames accurately, it is the only one that can
predict the significant transitions of the frame sizes. SAM can
also provide accurate results with relatively fewer numbers
of frames. For instance, SAM results with 1500 preprocessed
frames have only 4.7% improvement over SAM with 250
preprocessed frames [19].
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Table 7: SNR−1 comparison between AR, ARIMA, and SAM.

AR 1000 ARIMA1000 SAM 1000

SNR−1 (avg) 47180 45457 21220

Improvement
over AR

— 3.6% 55%

Improvement
over ARIMA

−3.6% — 53.3%

We further investigated the possibility of using SAM with
even fewer numbers of frames. Theoretically, SAM needs a
minimum of 29 frames as suggested in [43]. Our results
showed that we need at least 100 frames to achieve the
desired accuracy. With SAM, using 1500 frames provided
only 1% improvement over using 100 frames on average.
Thus, based on our results, we recommend using SAM with
100 frames (∼4 seconds) to predict the subsequent 120
frames (5 seconds). This means that a dynamic bandwidth
allocation scheme needs only to negotiate the allocation once
every 5 seconds.

In this section we compared three possible models that
can be used to achieve the desired prediction accuracy with
HD video traces. Our results showed that SAM has a clear
edge over the two other models. In the next section we
discuss some of the developed tools.

6. SAM-Based Developed Tools

In this section we demonstrate the design and implementa-
tion of two SAM-based tools: SAM-based traffic generator
that can be used to generate HD video traces for video
streaming simulations, and GUI interface to facilitate the
analysis of video traces.

6.1. SAM-Based Trace Generator. As we have mentioned
before, SAM allows researchers to represent the video traces
using only four parameters. In addition to that we need a fifth
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parameter to help initialize the simulation process needed
for the traffic generation. The fifth parameter is the standard
deviation of the modeling error.

In R [44], there are two functions that can be used
to generate time-series points based on ARIMA models:
arima.sim and garsim included in the gsarima package [45].
Unfortunately, these two functions can only simulate ARIMA
models and not work with SARIMA (seasonal ARIMA)
models. To overcome this obstacle, we converted SARIMA
model to an infinite series of AR coefficients [12, 46]. The
gsarima package provides a function “arrep” that is capable
of such conversion. From our experience, we found that
250 AR coefficients are sufficient to provide good results.
We implemented the SAM-based generator using C#. The
generator is based on the equation developed in [47].

Figure 9 shows a CDF comparison between the trace
obtained from our trace generator and the actual trace. The
provided trace generator implementation is also available for
the research community to improve and adjust to different
simulation setups.

6.2. SAM-Based Video Trace Analyzer. To ease the analysis
of video traces and the comparison of SAM model against
the original trace, we developed a simple GUI, shown in
Figure 10, that allows the users to load the video trace
frame size information from a text file. SAM analyzer then
processes the information and calculates the seasonality of
the trace, its SAM parameters, and its AIC value.

The user can plot the ACF and PACF graphs of the vid-
eo trace. In addition, the user can plot original video trace
versus SAM generated trace comparison graphs for ACF
and ECDF. Figure 11 shows an example an example of the
comparison graphs generated by SAM trace analyzer. Addi-
tional comparisons can be added upon user needs. SAM
trace analyzer is implemented using C#. Our implementation
provides an interface to R compiled code to allow full
utilization of its capabilities.

In this section we illustrated the usage of two of our
developed tools. In the next section we discuss the impor-
tance of our contribution and conclude the paper.

7. Conclusions

In this paper, we presented our work of encoding, analyzing,
and modeling over 50 HD video traces that represent a wide
spectrum of statistical characteristics.

We can summarize the key contributions of this paper in
the following points.

(1) We collected over 50 HD video traces from YouTube
website that represents a wide variety of video traces.
We encoded these traces using AVC standard with
the most common settings supported by experts’
recommendations. These traces provide the research
community with the means to test and research
new methods to optimize network resources, and
especially using dynamic bandwidth allocation. All
the video traces and the developed tools are available
to the research community through our website [20].
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Figure 9: CDF comparison between SAM-generator and actual
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Figure 10: SAM-based video trace analyzer GUI.

(2) We performed a full statistical analysis to show the
variance of the collected video traces using the most
common quantitative measures.

(3) We performed a factor analysis to determine the
principal components that define a HD video trace.
We concluded that both Mean and Kurtosis values
can be considered as the two main principal com-
ponents. Our analysis has shown that both Kurtosis
and Skewness values are important in defining a HD
video trace, contrary to what has been considered
before for MPEG1 encoded videos.

(4) We performed a cluster analysis on our collection
of HD videos using k-means clustering. Our results
showed that we can group these movies into two
main clusters. We supported our results using differ-
ent graphical and nongraphical methods.

(5) We compared three modeling methods in their ability
to model our collection of HD video traces. Our
results showed that SAM has a clear advantage over
both AR and ARIMA models in both accuracy and
simplicity as represented in its AIC values.

(6) We have also compared these methods in their ability
to forecast video traffic. Our prediction analysis was
based on several factors to ensure that the chosen
model is capable of providing the best results under
the lowest requirements. Our results showed once
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again that SAM has a significant improvement over
both AR and ARIMA, where it provided at least 50%
better SNR−1 values.

(7) Finally we illustrated the implementation of two
of our developed tools. We showed the ability of
the SAM-based generator of generating HD video
traces that can be configured and used in different
simulation scenarios.

This contribution provides the initial steps to achieve
a better dynamic bandwidth allocation schemes designed

to optimize bandwidth utilization with the presence of the
high-demanding HD video streams.
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