
A Timeout-Based  Congestion  Control  Scheme for 
Window  Flow-Controlled  Networks 

Abstract-During overload,  most  networks  drop  packets due to 
buffer  unavailability.  The  resulting  timeouts  at  the  source  provide an 
implicit  mechanism  to  convey  congestion  signals  from the network  to 
the  source. On  a timeout, a source  should  not  only  retransmit  the lost 
packet,  but it should  also,reduce  its  load  on  the  network.  Based-on  this 
realization, we have  developed a simple  congestion  control  scheme using 
the  acknowledgment  timeouts as indications of packet loss and  conges- 
tion.  This  scheme  does  not  require  any new message  formats,  there- 
fore, it can be used in any  network  with window  flow control, e.g., 
ARPAnet or ISO. 

A 
INTRODUCTION 

network with  a  high packet loss  rate  is perceived by 
'ts  user  as  unreliable  even if all  hardware and soft- 

ware is up. Packets are lost if they cannot find buffers at 
intermediate nodes or  at  the destination.  The problem of 
finding buffers at  the  destination  is  easily handled by ap- 
propriate flow control. The problem of ensuring avail- 
ability of buffers at  the-intermediate nodes is  rather diffi- 
cult.  In  connectionless  networks, which do not have  a 
preset path for  packets  and do not have  a predetermined 
set of intermediate  nodes,  the problem of ensuring buffers 
at the  intermediate nodes is  even  more complicated than 
that in connection-oriented networks. 

Generaliy , networks are highly underloaded,  therefore, 
buffer availability is normally not an  issue.  However,  dur- 
ing overload  conditions,  queues build up  and  the perfor- 
mance degrades  severely  due  to buffer unavailability and 
the resulting loss of packets.  The throughput may drop  to 
zero  and  the  response  time may approach infinity during 
overload. 

A strategy to reduce  the  impact of overload in  a net- 
work is called congestion control.  We  distinguish be- 
tween the  terms  $ow control and  congestion -control as 
follows. Flow control is  an  agreement  between  a  source 
and a  destination to limit  the flow of packets without tak- 
ing into  account  the  load  on  the network. The purpose of 
flow control is to  ensure  that  a  packet  arriving at a  desti- 
nation will find a buffer there.  Congestion control is pri- 
marily concerned with controlling the traffic to reduce 
overload on  the  network.  Flow  control  limits traffic based 
on buffer availability  at  the  destination,  whereas, conges- 
tion control limits traffic based on buffer availability  at 
intermediate  nodes.  Flow  control  is  a  bipartisan  agree- 
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ment. Congestion  control is a  social (network-wide) law. 
Different connections on  a network can  choose different 
flow control strategies but nodes on  the network should 
follow the  same congestion control  strategy, if it is to  be 
useful.  It should be noted that  there  is  considerable  dis- 
agreement among researchers regarding the  relationship 
between flow and congestion control. Some authors [2] 
consider congestion control to be  a special case of flow 
control, while others [12] distinguish them as above. 

A number of papers on flow and congestion control have 
been published.  See [2] for  an  excellent  survey.  The key 
strategies us,ed for dealing with congestion are  the  follow- 
ing [12]: 

1) preallocation of resources to avoid congestion, 
2) allowing intermediate nodes to discard packets  at 

3) restricting the number of packets allowed in  the  sub- 

4) using flow control, and 
5 )  choking off input when congestion  occurs. 
In connectionless networks,  such  as ARPAnet and  dig- 

ital network architecture  (DNA) paths for  packets  in  a 
connection are not preset.  Therefore,  preallocation of re- 
sources at  intermediate nodes (which are not known) is 
not feasible.  Isarithmic  schemes, which restrict the num- 
ber.of  packets  allowed  in  the subnet are difficult to imple- 
ment and do not guarantee  that  a  particular node will not 
get  congested. Choking schemes generally require  send- 
ing choke packets to  sources of traffic when congestion 
occurs.  Introducing additional packets in the networks 
during congestion  is not desirable.  Dropping packets 
without reducing the  input  to  the network is not sufficient 
and may result in continuous packet losses  leading to zero 
throughput. 

Having discarded  strategies 1 and 3 above,  we propose 
to  combine  strategies 2, 4 and 5 in  such  a  manner  as to 
avoid their  disadvantages.  Actually, what $ve need is  a 
mechanism for  the network to teli the  source that the net- 
work is  congested  and  a mechanism for  the  source to ad- 
just  its load on the  network.  In window flow controlled 
networks,  the window size provides an  obvious way to 
adjust the load put by a  source. Also since most networks 
drop packets during  congestion  due to buffer unavailabil- 
ity,  the resulting timeouts at  the  source  provide  an im- 
plicit mechanism to convey congestion information  from 
the network to  the  source.  Exglicit  choke packets are not 
required. 
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Based on  the  above arguments we have developed a 
simple  congestion control scheme called  CUTE (conges- 
tion control using timeouts at the end-to-end layer). This 
scheme requires sources  to reduce the  load put on  the net- 
work when congestion is sensed.  The acknowledgment 
timeouts are used as indicators of packet loss and conges-' 
tion. 

This paper is organized as  follows. It begins with a de- 
scription of the network architecture assumed and the re- 
lationship between load on the network and flow control 
window sizes.  We  then describe the  CUTE scheme, dis- 
cuss alternative designs  that  were  considered, and present 
performance graphs.  The benefits of the proposed scheme 
in terms of ease of implementation  are  also discussed. 
More details on  design  and  development of the  CUTE 
scheme can  be found in [7]. 

ARCHITECTURAL ASSUMPTIONS 
In designing the congestion control scheme, a number 

of assumptions have to be made about the underlying net- 
work architecture. For  obvious  reasons,  we assumed the 
network to be a connectionless network with window flow 
control, which is what digitals network architecture 
(DNA) is. Although we used DNA  as  our network model, 
we believe that  the final scheme  can  be used by any con- 
nectionless network that  has window flow control, e.g., 
ARPAnet or ISO. 

In window flow controlled networks,  the key parameter 
determining the  load  on  the network and  hence  its peform- 
ance is the window sizes used by the  sources. As the  user 
increases the window size, throughput increases initially. 
The  user  is thus tempted to inject more and more packets 
into  the network. However, if the window size  is  larger 
than a certain amount (depending upon  the number of 
buffers at  the  intermediate  nodes),  the throughput starts 
dropping due to packet loss.  The window size at the point 
of congestion is called  the buffer capacity of the path. In 
the case of multiple users,  the  sum of the window sizes 
of all  users,passing through an  intermediate node should 
be less than the buffer capacity of the node. Notice  that 
the number of buffers at  the bottleneck router generally 
determines the buffer capacity of a path. 

THE CUTE SSCHEME 
The  CUTE scheme requires sources  to follow a set of 

self-restraining rules, so that  the number of packets in- 
jected  into  the network by a source is limited, if conges- 
tion is sensed. The  source,dynamically  adjusts  its window 
size (WS) between a specified minimum and maximum as 
is shown in  Fig. 1 .  On a timeout (packet loss), the win- 
dow is reset to one.  There  are five specifications: a max- 
imum, a minimum,  an  initialization  policy,  an increase 
policy, and a decrease policy. A number of alternatives 
were considered for  each of these five specifications. The 
alternatives are compared in the next section. The  scheme, 
as finally designed,  is  described  in this section. 

I )  Maximum: The window size (WS) should never be 
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Fig. 1. Dynamic  window  adjustment  using CUTE scheme. 

more than a limit called pipe size (PS) which is specified 
by the network layer. 

WSmax = PS 
The network layer  determines PS from  the currently 

known information about the path to the destination. Ba- 
sically, PS is  the  optimal number of packets that should 
be allowed on the  path.  Given  line  speeds and number of 
users,  one  can  calculate PS. If line  speeds  are not avail- 
able,  we recommend that (for paths not including satellite 
links) PS be  three times the number of hops. For paths 
going through a satellite, PS will need to be calculated 
using a more sophisticated algorithm using satellite band- 
width and propagation delay. 

A source cannot send more packets than specified by 
the destination. Therefore, 

WS,, = min { PS, Credits from the destination} 

If the number of hops is not available, then the only fea- 
sible alternative  is  to  let  the destination decide  the maxi- 
mum, i.e., 

WS,; = Credits from the destination 

2) Minimum: The  lower  limit  on WS is one. 

WSmin = 1 

Thus, when reducing the window during  congestion,  the 
sources cannot reduce window size below one. 

3) Initialization: The initial value of WS is immaterial 
as long as, it lies within the-bounds specified by the above 
two rules.  In a heavily loaded network it  is  safer to start 
at WSmin. In a lightly loaded network it is more efficient 
to start at WS,,,. Other alternatives are  to  start  at  the WS 
used during the  last connection to  the  same  node,  or  to 
start half-way between minimum and maximum. 

In any case,  the  choice has little effect on  the perfor- 
mance over a long  period.  The following adaptive  fea- 
tures will soon bring WS to a value suitable  for  the  con- 
gestion state of the network. 

4) Increase: WS can be. increased by one  after  the 
number of packets acknowledged since  the  last change 
(increase or decrease)  becomes  greater than or equal to 
the  current  value of WS. This  gives a parabolic rise to WS 
when plotted against packets acknowledged. Notice how- 
ever,  the  rise  is approximately linear  in  time because with 
n packets outstanding, it takes one round-trip delay to get 
an acknowledgment for  the n packets.  Thus, WS increases 
by one every round-trip delay interval. 
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5) Decrease: On a timeout,  the  source .should reset WS 
to the minimum allowed  value. 

ws +- WS,, 
The next section is devoted to justification of these five 

rules and  comparisons to other  alternatives. 

ANALYSIS OF THE ALTERNATIVE DESIGNS 
In order  to study various alternatives; we developed a 

simulation model [ 6 ] .  A simple configuration consisting 
of two  local  area  networks  (LAN's) interconnected via a 
slower  speed wide area network (WAN) was simulated. 
Fig. 2 shows a logical representation of it.  There  are n 
sources  sharing a common path through m intermediate 
nodes. There is no limitation  on  the  number of sources or 
the number of intermediate nodes. Although most of the 
ideas  came  from  the  simulation,  here we use  simple ana- 
lytical  arguments to justify  the rules of the proposed 
congestion  control  policy. 

I )  Maximum: The maximum determines  the perfor- 
mance  under no loss. Normally the window specified by 
the  destination  sets  the upper limit.  For destinations that 
allow very large  windows, PS acts  as the upper bound 
beyond which  the  performance gain is very little.  Here, 
the  performance is measured  in  terms of network power 
[3] which is defined as  the ratio  of total throughput to  the 
average response time. 

Given a path shared by n users,  one  can  compute  the 
optimal number  of  packets  per  user  that should be allowed 
in  the  network.  This  number should be used as ,WS,,,. It 
can  be  shown  that  for  any  terrestrial  network,  this number 
will always  be  less  then 3h, where h is the number of 
hops. This is therefore  the  recommended'  value in the ab- 
sence of more  information. The bound is arrived at as fol- 
lows: 

a) Using mean value analysis [l 11, it  can be shown 
that a closed queueing network consisting  of N + 1 M /  
M/1 queues, all with  the  same  exponentially  distributed 
mean service  rate of one, and C customers circulating as 
shown  in  Fig. 3, will have: 

Response time = N + C 
Throughput C 

Power = 
Response time (N + C)* 

- - 

dP 
dC 

For Maximum Power, - = 0 C = N 

That is,  the  power is maximum when the number of 
customers is equal  to  the number of queues  minus  one. 
Using balanced job bounds [13], it  can  be shown that if 
server  speeds  are  .different,  the number of customers C 
that  optimizes  power is even less. Increasing C beyond N 
always  leads  to a decrease  in  power. 

b) An h-hop computer network can be represented by 
a closed queue  in  network as shown  in Fig. 4. Packets to 

Fig. 2. A logical representation of the network configuration simulated. 

Fig. 3.  A queueing network consistng of C customers circulating in 
N + 1 identical queues. 

Router 

I I 
I 

\ I 

Data - Acks 
(Thick lines) - (thin lines) 

Fig. 4. An h-hop computer network contains 3h + 1 queues. 

be transmitted are queued by the  source  CPU  to a transmit 
queue on the network layer,  serviced  at  the  line  speed. 
These packets are then received at  the  router and put  into 
a receive queue by the  data-link  layer.  The  CPU  services 
this queue and puts the packets on an  appropriate out- 
going transmission  queue.  In  this  manner,  the packet fi- 
nally reaches the  destination  receive  queue.  The  destina- 
tion CPU  generates  an  ack  for  the  packet  and  the  ack  trav- 
els  through  various  transmit  queues  and  receive  queues  in 
the  reverse  direction.  In  Fig. 4, thick  lines represent data 
packets and thin lines represent returning acks.  The thin- 
ness signifies that  the number of  acks  can  be  less  than  the 
number of packets,  since  some acki  may acknowledge 
more than one  packet. Also, the  lines  have been assumed 
to be full-duplex so that  the  traffic  going in the  forward 
direction  is  serviced by a different queue  than  that  going 
in the reverse direction. 

It is seen from the figure that, assuming fulllduplex  lines 
and  one  ack  per  packet.  the  number of queues  in  an h-hop 
network is 3h + 1,' consisting of  

h Forward transmit queues (15) used by data pack- 

h . Reverse transmit queues (L) used by acks. 
h + 1 Receive  queues  serviced by node CPU's  and 

shared by traffic in'both  directions. 

If the  lines  are half-duplex so that  the traffic going in 
the two  directions  shares  the  same  lines,  the  reverse  trans- 
mit queues  can  be omitted and  the number of queues 

ets. 
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would be 2h + 1. Similarly,  if  the  CPU’s  are so fast  that 
the.  receive queues are  serviced  without  queueing, h CPU 
queues can be omitted from  the  model.  Finally, if there 
are no acks,  h  reverse transmit queues used by acks can 
be omitted. In this  manner, given line  types (full- or half- 
duplex),  individual  CPU  speeds,  line  speeds,  and  average 
number of packets  per  ack,  one  can  calculate  the  optimal 
WS. These variables vary from  one network configuration 
to the  next.  In any case  the  optimal number will be be- 
tween l and 3h.  There is never any gain in increasing 
window beyond 3h (excluding satellite networks). In [ 101, 
this analysis has been extended to networks with satellite 
links and it is shown  that  for  such  networks,  the  pipe  size 
is approximately equal to the  ratio of the minimum path 
delay (sum of all  server’s service times including propa- 
gation delay) to the bottleneck server’s  service  time. 

2) Minimum: For  a minimum value of WS, we exper- 
imented with the following three alternatives: 

a) WSmin = 1 
b) WSmin = number of hops 
c) WSmin = m times number of hops, where m is a 

In our  simulations, policy a) showed better perfor- 
mance than b) or c).  The  choice of the minimum impacts 
the upper limit  on  the  number of users supportable.  Since 
the total number of outstanding packets from  all users 
should be below the buffer capacity of the path 

fixed parameter = 2, 3 ,  4, - - . 

number of connections * WSmin c 

max. number of connections < 

By choosing WSmin = 1, we  are trying to  support  as 
many users  as  possible. 

Another important reason for choosing WSmin = 1 is 
that it makes caching of out-of-order packets optional.  In 
networks without out-of-order  caching,  loss of a  single 
packet may lead to  a  cycle  where  every packet is  trans- 
mitted twice. By allowing WS to be reduced to  one,  it  is 
possible to  break this cycle. If we chose any higher  value 
for WSmin, the  cycle would continue indefinitely‘, degrad- 
ing the performance seriously. 

3) Initialization: This  is probably the  least important 
policy decision in the  sense that network performance over 
a long period does not depend upon the initialization. The 
only case where the initial value matters is  during  short 
data  transfers.  In such cases,  a good initial choice may 
slightly improve the performance. The  CUTE scheme  al- 
lows the implementors to  choose any of the initialization 
policies discussed earlier. 

4) Increase Policy:  The first set of alternatives that we 
experimented with were a  set of linear  increase policies 
(see  Fig. 5 ) .  The Nth policy is  to increment WS by one 
for every N successful  transmissions.  Thus, N controls the 
slope of the  rise as shown in  Fig. 5 .  Larger N results in 
slower rise. 

The simulation showed that. for  a lightlv loaded net- 
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Fig. 5 .  Increase policies considered. 

work, the best policy is to  rise to the maximum as soon 
-as possible, i.e., N = 1 is the best. For  a highly congested 
network, the best policy is  to  keep  the WS at  one and not 
rise at  all,  i.e., N = 00 is the  best.  For  intermediate  levels 
of congestions, intermediate  values of N provide the best 
results. 

The parabolic increase policy eventually chosen pro- 
vides a  compromise  for  all  situations. As the WS rises, 
the chances for congestion increase,  and  the  slope of rise 
decreases. Initially  the  scheme works like ’ N = 1, and 
finally it works like N = 00. 

5) Decrease Policy: Among the five components of the 
CUTE  scheme,  the  decrease policy turned out to be  the 
most important in  terms of its  impact  on  the  performance. 
We tried  four different alternatives: 

a) Sudden Decrease: WS is reduced to  its minimum 
value. 

buffer capacity  of bottleneck router 

buffer  capacity 
WSmin 

b) Gradual Decrease: WS is decreased by one on 

c) Binary Decrease: WS is reduced to half its  value 

d) Combinations of the above. 

every timeout. 

and rounded to an  integer. 

The simulation results showed that in most cases,  the 
sudden decrease policy results in the  least  loss and the 
best performance. The  explanation is as  follows. 

If the destination does not cache out-of-order packets, 
a  single packet loss results in  all subsequent arrivals being 
dropped at the  destination.  Thus,  each real loss is fol- 
lowed by n successive  timeouts,  where n = WS, and all 
of the  above  decrease policies will finally take WS to  one. 

On the  other  hand, if the destination does  cache out-of- 
order  packets, and assuming that a timeout indicates a real 
overload,  it  can  be shown that  jumping to the minimum 
window size gives the  least number of packet losses.  Fig. 
6 shows a hypothetical curve of WS over  time.  Each peak 
represents a timeout and hence  a packet loss.  The binary 
decrease  policy,  for  example, would result in twice  as 
many packet losses  as  the sudden decrease policy. Simi- 
larly,  other  schemes would also result in higher  losses. 

Policies b)-d) show a  performance  superior  to a) only if 
Y d  a significant number of timeouts  are simply false  alarms 



1166 IEEE JOURNAL  ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. 7, OCTOBER 1986 

Timeouts 
with  other 

Timeouts  with . alternatives 
sudden  decrease 

,/&$/t,/// * Window 
Size 

Time 
Fig. 6. If each  timeout  represents  a  real loss, a  sudden  decrease  to  the 

minimum window size  gives the least number of losses as  compared  to 
any  other  alternative. 

and not real overloads.  One  of the basic assumptions to 
be made  in  designing  a policy is that the timeout param- 
eters  have been set  correctly so that  there  are very few 
false  alarms. 

The proposed policy requires  sources  to  reexplore the 
maximum after  every  timeout. An alternative scheme 
would be  to  remember  the previously achieved maximum 
and not cross  it.  Such  a  scheme will lead to unfairness 
[7]. Also,  every  scheme with memory requires a  forget- 
ting scheme so that when the  conditions improve the 
sources  forget  their  previous  maximum. 

We have been using the CUTE policy since 1983 [4]. 
Since  then,  the  fact  that  the best alternative on a timeout 
is to reduce the window size  to  one  has  also been discov- 
ered independently by Bux and  Grillo [l] in the  context 
of interconnection of their ring networks. 

PERFORMANCE 
We compared  the  performance of various alternatives 

using metrics of throughput, response time  (round-trip de- 
lay),  power,  fairness,  and  loss  probability.  For n users 
sharing the  same  path,  the  faimess is defined as follows: 

Fairness = 

n C T? 
i = l  

where Ti is  the throughput of the  ith  user.  The reasons 
for using this  formula  are  discussed  in [ 5 ] .  

In this section,  we present only throughput curves. 
Other performance. curves  can  be  found  in [7]. We sim- 
ulated many different possible configurations. What fol- 
lows  are  the  cases  that we believe provide meaningful in- 
sight. 

Case 1: This is a  case  where  the number of users shar- 
ing the  same  path is small  but  the  congestion  is  caused by 
the  destinations  allowing  large flow control  windows.  The 
window size  permitted by the  destination  can  be  called 
credits.  A  source  cannot  increase  its window size beyond 
the  credits  issued  to it by the  destination  (CID).  Fig. 7 
shows performance  as  a  function of CID  for  three  sources 
sharing the  same  intermediate  path.  Each  intermediate 
node has a buffer capacity of 42 packets. Depending on 
whether  the  source  follows'the CUTE policy,  and  whether 
the  destination provides the  out-of-order packets caching 
(OOC),  there  are  four  possibilities.  Without  dynamic 
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Fig. 7. Performance for Case 1 .  

window control,  the  throughput  drops to zero  as  soon  as 
the sum of credits  exceeds  the buffer capacity.  The  deg- 
radation is slower if there  is out-of-order packet caching. 
With window control,  the  throughput is independent of 
credits  after  a  certain  maximum.  Also,  it  does not matter 
(during this  case of slight  congestion)  whether  we  have 
caching or not.  This  is  because  there  are enough buffers 
to support WS,,, packets for each  source  and no packet is 
ever  lost.  The  case of lost  packets is discussed next. 

Case 2: Fig. 8 shows network throughput  as  a  function 
of number of sources sharing the  same physical path for 
a network with moderate  congestion.  Each  intermediate 
node has a buffer capacity of 80 packets, and each  desti- 
nation issues 8 credits.  Without  dynamic window control, 
the throughput drops  to  zero  as  soon  as  the  sum of credits 
exceeds the buffer capacity.  With window control,  the to- 
tal network throughput  improves if there  is  out of order 
packet caching.  Without  caching,  the throughput first 
drops,  but eventually all  sources  operate effectively at sin- 
gle  credit  and  caching  does not matter. 

IMPLEMENTATION ISSUES 
The  following  features  of  the CUTE scheme,  make  it 

easy to implement in.any computer network architecture. 
1) It  does not require  changes  to any meisage  formats. 

No new bits  are  required. 
2) It  does not require any new messages. For example, 

no choke packets [9] are  required. 
3) It is transparent  to network applications. Applica- 

tions can  issue any number of credits without worrying 
about number of buffers at  intermediate nodes. The win- 
dow stops increasing after reaching pipisize computed by 
the network layer. 

4) Nodes with and without self-restraint  can  live on the 
same network. Nodes  following  the CUTE policy as well 
as  those not following it  lose  packets  during  congestion. 
However,  those not following the policy lose more pack- 
ets than those following it.  Nonetheless,  as congestion is 



JAIN: TIMEOUT-BASED CONGESTION CONTROL SCHEME 1167 

o-----* No CUTE. No OOC 

t--* CUTE, No OOC 
. No CUTE. OOC 

CUTE and OOC 1 
0.0 

0.6 

0 . 4  

NUMBER OF SOURCES 

Fig. 8. Performance for Case 2. 

a network-wide phenomenon, it is preferable that all nodes 
follow the same policy. 

5 )  The necessity of providing out-of-order caching is 
reduced. Without  out-of-order  caching,  a  single packet 
loss can result in  all subsequent packets being transmitted 
twice.  This  cycle is broken by dropping the window size 
to one on a  single  loss.  Thus,  the  performance without 
caching is at an  acceptable  level. 

6) The  scheme  does not require any explicit  feedback 
from the  network. Black box schemes like  CUTE  are nec- 
essary if congestion (loss of packets) can  occur at nodes 
that work transparently, e.g., bridges. 

7) Window reduction at packet loss is necessary but 
not sufficient. More sophisticated congestion control 
schemes need to  be developed that control the  load on the 
network before it  starts  loosing  packets.  In networks hav- 
ing such mechanisms, CUTE can be used as  a backup 
strategy which would be  called only when congestion be- 
comes so severe that it becomes necessary to  drop pack- 
ets. 

SUMMARY 
The key ideas presented in this  paper  are: renewed im- 

portance of the congestion control, relationship between 
timeout and congestion, and a  dynamic window control 
policy to handle congestion. 

Solvihg the congestion problem has become more im- 
portant due  to  the recent introduction of local  area net- 
works resulting in increased range of line  speeds. Speed 
mismatch between incoming and outgoing lines results 
in queue buildup  and  packet loss. 

The acknowledgment timeouts, which have  tradition- 
ally been used to ensure end-to-end delivery,  also  indicate 
network congestion. On a timeout,  therefore,  we should 
take  steps to reduce  the  load  along with retransmitting the 

lost packet. If no steps  are  taken,  the network may get 
into an infinite cycle of packet loss  bringing  the through- 
put down to zero. 

Timeouts, in fact,  indicate  a severe state of congestion. 
As the congestion in  the network increases,  the queues 
build up. Only when the queueing becomes excessive, 
does  it become necessary to drop  packets. Once in this 
state, we need to take severe steps to reduce congestion. 
We should shut off all  further transmissions until we are 
able  to transmit successfully without loss. In particular, 
we should retransmit only one packet-the lost  one. Also 
the window should be reduced to  its smallest value.  This 
leads us to  the key rule in the proposed CUTE scheme: 
on a timeout, reset  the window.to  one. 
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