
A Timeout-Based Congestion Control Scheme for
Window Flow-Controlled Networks

Abstract-During overload, most networks drop packets due to
buffer unavailability. The resulting timeouts at the source provide an
implicit mechanism to convey congestion signals from the network to
the source. On a timeout, a source should not only retransmit the lost
packet, but it should also,reduce its load on the network. Based-on this
realization, we have developed a simple congestion control scheme using
the acknowledgment timeouts as indications of packet loss and conges-
tion. This scheme does not require any new message formats, there-
fore, it can be used in any network with window flow control, e.g.,
ARPAnet or ISO.

A
INTRODUCTION

network with a high packet loss rate is perceived by
'ts user as unreliable even if all hardware and soft-

ware is up. Packets are lost if they cannot find buffers at
intermediate nodes or at the destination. The problem of
finding buffers at the destination is easily handled by ap-
propriate flow control. The problem of ensuring avail-
ability of buffers at the-intermediate nodes is rather diffi-
cult. In connectionless networks, which do not have a
preset path for packets and do not have a predetermined
set of intermediate nodes, the problem of ensuring buffers
at the intermediate nodes is even more complicated than
that in connection-oriented networks.

Generaliy , networks are highly underloaded, therefore,
buffer availability is normally not an issue. However, dur-
ing overload conditions, queues build up and the perfor-
mance degrades severely due to buffer unavailability and
the resulting loss of packets. The throughput may drop to
zero and the response time may approach infinity during
overload.

A strategy to reduce the impact of overload in a net-
work is called congestion control. We distinguish be-
tween the terms $ow control and congestion -control as
follows. Flow control is an agreement between a source
and a destination to limit the flow of packets without tak-
ing into account the load on the network. The purpose of
flow control is to ensure that a packet arriving at a desti-
nation will find a buffer there. Congestion control is pri-
marily concerned with controlling the traffic to reduce
overload on the network. Flow control limits traffic based
on buffer availability at the destination, whereas, conges-
tion control limits traffic based on buffer availability at
intermediate nodes. Flow control is a bipartisan agree-

Manuscript received November 20, 1985; revised May 15, 1986.
The author is with Digital Equipment Corporation, Littleton, MA 01460.
IEEE Log Number 8609843.

ment. Congestion control is a social (network-wide) law.
Different connections on a network can choose different
flow control strategies but nodes on the network should
follow the same congestion control strategy, if it is to be
useful. It should be noted that there is considerable dis-
agreement among researchers regarding the relationship
between flow and congestion control. Some authors [2]
consider congestion control to be a special case of flow
control, while others [12] distinguish them as above.

A number of papers on flow and congestion control have
been published. See [2] for an excellent survey. The key
strategies us,ed for dealing with congestion are the follow-
ing [12]:

1) preallocation of resources to avoid congestion,
2) allowing intermediate nodes to discard packets at

3) restricting the number of packets allowed in the sub-

4) using flow control, and
5) choking off input when congestion occurs.
In connectionless networks, such as ARPAnet and dig-

ital network architecture (DNA) paths for packets in a
connection are not preset. Therefore, preallocation of re-
sources at intermediate nodes (which are not known) is
not feasible. Isarithmic schemes, which restrict the num-
ber.of packets allowed in the subnet are difficult to imple-
ment and do not guarantee that a particular node will not
get congested. Choking schemes generally require send-
ing choke packets to sources of traffic when congestion
occurs. Introducing additional packets in the networks
during congestion is not desirable. Dropping packets
without reducing the input to the network is not sufficient
and may result in continuous packet losses leading to zero
throughput.

Having discarded strategies 1 and 3 above, we propose
to combine strategies 2, 4 and 5 in such a manner as to
avoid their disadvantages. Actually, what $ve need is a
mechanism for the network to teli the source that the net-
work is congested and a mechanism for the source to ad-
just its load on the network. In window flow controlled
networks, the window size provides an obvious way to
adjust the load put by a source. Also since most networks
drop packets during congestion due to buffer unavailabil-
ity, the resulting timeouts at the source provide an im-
plicit mechanism to convey congestion information from
the network to the source. Exglicit choke packets are not
required.

will,

net,

0733-8716/86/100O-1162$01 .OO O 1986 IEEE

Raj Jain
jain@cse horizontal

JAIN: TIMEOUT-BASED CONGESTION CONTROL SCHEME

Based on the above arguments we have developed a
simple congestion control scheme called CUTE (conges-
tion control using timeouts at the end-to-end layer). This
scheme requires sources to reduce the load put on the net-
work when congestion is sensed. The acknowledgment
timeouts are used as indicators of packet loss and conges-'
tion.

This paper is organized as follows. It begins with a de-
scription of the network architecture assumed and the re-
lationship between load on the network and flow control
window sizes. We then describe the CUTE scheme, dis-
cuss alternative designs that were considered, and present
performance graphs. The benefits of the proposed scheme
in terms of ease of implementation are also discussed.
More details on design and development of the CUTE
scheme can be found in [7].

ARCHITECTURAL ASSUMPTIONS
In designing the congestion control scheme, a number

of assumptions have to be made about the underlying net-
work architecture. For obvious reasons, we assumed the
network to be a connectionless network with window flow
control, which is what digitals network architecture
(DNA) is. Although we used DNA as our network model,
we believe that the final scheme can be used by any con-
nectionless network that has window flow control, e.g.,
ARPAnet or ISO.

In window flow controlled networks, the key parameter
determining the load on the network and hence its peform-
ance is the window sizes used by the sources. As the user
increases the window size, throughput increases initially.
The user is thus tempted to inject more and more packets
into the network. However, if the window size is larger
than a certain amount (depending upon the number of
buffers at the intermediate nodes), the throughput starts
dropping due to packet loss. The window size at the point
of congestion is called the buffer capacity of the path. In
the case of multiple users, the sum of the window sizes
of all users,passing through an intermediate node should
be less than the buffer capacity of the node. Notice that
the number of buffers at the bottleneck router generally
determines the buffer capacity of a path.

THE CUTE SSCHEME
The CUTE scheme requires sources to follow a set of

self-restraining rules, so that the number of packets in-
jected into the network by a source is limited, if conges-
tion is sensed. The source,dynamically adjusts its window
size (WS) between a specified minimum and maximum as
is shown in Fig. 1 . On a timeout (packet loss), the win-
dow is reset to one. There are five specifications: a max-
imum, a minimum, an initialization policy, an increase
policy, and a decrease policy. A number of alternatives
were considered for each of these five specifications. The
alternatives are compared in the next section. The scheme,
as finally designed, is described in this section.

I) Maximum: The window size (WS) should never be

c

1163

Timeout
/

Window
Size

1
Time

Fig. 1. Dynamic window adjustment using CUTE scheme.

more than a limit called pipe size (PS) which is specified
by the network layer.

WSmax = PS
The network layer determines PS from the currently

known information about the path to the destination. Ba-
sically, PS is the optimal number of packets that should
be allowed on the path. Given line speeds and number of
users, one can calculate PS. If line speeds are not avail-
able, we recommend that (for paths not including satellite
links) PS be three times the number of hops. For paths
going through a satellite, PS will need to be calculated
using a more sophisticated algorithm using satellite band-
width and propagation delay.

A source cannot send more packets than specified by
the destination. Therefore,

WS,, = min { PS, Credits from the destination}

If the number of hops is not available, then the only fea-
sible alternative is to let the destination decide the maxi-
mum, i.e.,

WS,; = Credits from the destination

2) Minimum: The lower limit on WS is one.

WSmin = 1

Thus, when reducing the window during congestion, the
sources cannot reduce window size below one.

3) Initialization: The initial value of WS is immaterial
as long as, it lies within the-bounds specified by the above
two rules. In a heavily loaded network it is safer to start
at WSmin. In a lightly loaded network it is more efficient
to start at WS,,,. Other alternatives are to start at the WS
used during the last connection to the same node, or to
start half-way between minimum and maximum.

In any case, the choice has little effect on the perfor-
mance over a long period. The following adaptive fea-
tures will soon bring WS to a value suitable for the con-
gestion state of the network.

4) Increase: WS can be. increased by one after the
number of packets acknowledged since the last change
(increase or decrease) becomes greater than or equal to
the current value of WS. This gives a parabolic rise to WS
when plotted against packets acknowledged. Notice how-
ever, the rise is approximately linear in time because with
n packets outstanding, it takes one round-trip delay to get
an acknowledgment for the n packets. Thus, WS increases
by one every round-trip delay interval.

1164 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. VOL. SAC-4, NO. 7, 0CTOBER 1986

5) Decrease: On a timeout, the source .should reset WS
to the minimum allowed value.

ws +- WS,,
The next section is devoted to justification of these five

rules and comparisons to other alternatives.

ANALYSIS OF THE ALTERNATIVE DESIGNS
In order to study various alternatives; we developed a

simulation model [6] . A simple configuration consisting
of two local area networks (LAN's) interconnected via a
slower speed wide area network (WAN) was simulated.
Fig. 2 shows a logical representation of it. There are n
sources sharing a common path through m intermediate
nodes. There is no limitation on the number of sources or
the number of intermediate nodes. Although most of the
ideas came from the simulation, here we use simple ana-
lytical arguments to justify the rules of the proposed
congestion control policy.

I) Maximum: The maximum determines the perfor-
mance under no loss. Normally the window specified by
the destination sets the upper limit. For destinations that
allow very large windows, PS acts as the upper bound
beyond which the performance gain is very little. Here,
the performance is measured in terms of network power
[3] which is defined as the ratio of total throughput to the
average response time.

Given a path shared by n users, one can compute the
optimal number of packets per user that should be allowed
in the network. This number should be used as ,WS,,,. It
can be shown that for any terrestrial network, this number
will always be less then 3h, where h is the number of
hops. This is therefore the recommended' value in the ab-
sence of more information. The bound is arrived at as fol-
lows:

a) Using mean value analysis [l 11, it can be shown
that a closed queueing network consisting of N + 1 M /
M/1 queues, all with the same exponentially distributed
mean service rate of one, and C customers circulating as
shown in Fig. 3, will have:

Response time = N + C
Throughput C

Power =
Response time (N + C)*

- -

dP
dC

For Maximum Power, - = 0 C = N

That is, the power is maximum when the number of
customers is equal to the number of queues minus one.
Using balanced job bounds [13], it can be shown that if
server speeds are .different, the number of customers C
that optimizes power is even less. Increasing C beyond N
always leads to a decrease in power.

b) An h-hop computer network can be represented by
a closed queue in network as shown in Fig. 4. Packets to

Fig. 2. A logical representation of the network configuration simulated.

Fig. 3. A queueing network consistng of C customers circulating in
N + 1 identical queues.

Router

I I
I

\ I

Data - Acks
(Thick lines) - (thin lines)

Fig. 4. An h-hop computer network contains 3h + 1 queues.

be transmitted are queued by the source CPU to a transmit
queue on the network layer, serviced at the line speed.
These packets are then received at the router and put into
a receive queue by the data-link layer. The CPU services
this queue and puts the packets on an appropriate out-
going transmission queue. In this manner, the packet fi-
nally reaches the destination receive queue. The destina-
tion CPU generates an ack for the packet and the ack trav-
els through various transmit queues and receive queues in
the reverse direction. In Fig. 4, thick lines represent data
packets and thin lines represent returning acks. The thin-
ness signifies that the number of acks can be less than the
number of packets, since some acki may acknowledge
more than one packet. Also, the lines have been assumed
to be full-duplex so that the traffic going in the forward
direction is serviced by a different queue than that going
in the reverse direction.

It is seen from the figure that, assuming fulllduplex lines
and one ack per packet. the number of queues in an h-hop
network is 3h + 1,' consisting of

h Forward transmit queues (15) used by data pack-

h . Reverse transmit queues (L) used by acks.
h + 1 Receive queues serviced by node CPU's and

shared by traffic in'both directions.

If the lines are half-duplex so that the traffic going in
the two directions shares the same lines, the reverse trans-
mit queues can be omitted and the number of queues

ets.

JAIN: TIMEOUT-BASED CONGESTION CONTROL SCHEME

would be 2h + 1. Similarly, if the CPU’s are so fast that
the. receive queues are serviced without queueing, h CPU
queues can be omitted from the model. Finally, if there
are no acks, h reverse transmit queues used by acks can
be omitted. In this manner, given line types (full- or half-
duplex), individual CPU speeds, line speeds, and average
number of packets per ack, one can calculate the optimal
WS. These variables vary from one network configuration
to the next. In any case the optimal number will be be-
tween l and 3h. There is never any gain in increasing
window beyond 3h (excluding satellite networks). In [101,
this analysis has been extended to networks with satellite
links and it is shown that for such networks, the pipe size
is approximately equal to the ratio of the minimum path
delay (sum of all server’s service times including propa-
gation delay) to the bottleneck server’s service time.

2) Minimum: For a minimum value of WS, we exper-
imented with the following three alternatives:

a) WSmin = 1
b) WSmin = number of hops
c) WSmin = m times number of hops, where m is a

In our simulations, policy a) showed better perfor-
mance than b) or c). The choice of the minimum impacts
the upper limit on the number of users supportable. Since
the total number of outstanding packets from all users
should be below the buffer capacity of the path

fixed parameter = 2, 3 , 4, - - .

number of connections * WSmin c

max. number of connections <

By choosing WSmin = 1, we are trying to support as
many users as possible.

Another important reason for choosing WSmin = 1 is
that it makes caching of out-of-order packets optional. In
networks without out-of-order caching, loss of a single
packet may lead to a cycle where every packet is trans-
mitted twice. By allowing WS to be reduced to one, it is
possible to break this cycle. If we chose any higher value
for WSmin, the cycle would continue indefinitely‘, degrad-
ing the performance seriously.

3) Initialization: This is probably the least important
policy decision in the sense that network performance over
a long period does not depend upon the initialization. The
only case where the initial value matters is during short
data transfers. In such cases, a good initial choice may
slightly improve the performance. The CUTE scheme al-
lows the implementors to choose any of the initialization
policies discussed earlier.

4) Increase Policy: The first set of alternatives that we
experimented with were a set of linear increase policies
(see Fig. 5) . The Nth policy is to increment WS by one
for every N successful transmissions. Thus, N controls the
slope of the rise as shown in Fig. 5 . Larger N results in
slower rise.

The simulation showed that. for a lightlv loaded net-

1165

A

Packets Acked

Fig. 5 . Increase policies considered.

work, the best policy is to rise to the maximum as soon
-as possible, i.e., N = 1 is the best. For a highly congested
network, the best policy is to keep the WS at one and not
rise at all, i.e., N = 00 is the best. For intermediate levels
of congestions, intermediate values of N provide the best
results.

The parabolic increase policy eventually chosen pro-
vides a compromise for all situations. As the WS rises,
the chances for congestion increase, and the slope of rise
decreases. Initially the scheme works like ’ N = 1, and
finally it works like N = 00.

5) Decrease Policy: Among the five components of the
CUTE scheme, the decrease policy turned out to be the
most important in terms of its impact on the performance.
We tried four different alternatives:

a) Sudden Decrease: WS is reduced to its minimum
value.

buffer capacity of bottleneck router

buffer capacity
WSmin

b) Gradual Decrease: WS is decreased by one on

c) Binary Decrease: WS is reduced to half its value

d) Combinations of the above.

every timeout.

and rounded to an integer.

The simulation results showed that in most cases, the
sudden decrease policy results in the least loss and the
best performance. The explanation is as follows.

If the destination does not cache out-of-order packets,
a single packet loss results in all subsequent arrivals being
dropped at the destination. Thus, each real loss is fol-
lowed by n successive timeouts, where n = WS, and all
of the above decrease policies will finally take WS to one.

On the other hand, if the destination does cache out-of-
order packets, and assuming that a timeout indicates a real
overload, it can be shown that jumping to the minimum
window size gives the least number of packet losses. Fig.
6 shows a hypothetical curve of WS over time. Each peak
represents a timeout and hence a packet loss. The binary
decrease policy, for example, would result in twice as
many packet losses as the sudden decrease policy. Simi-
larly, other schemes would also result in higher losses.

Policies b)-d) show a performance superior to a) only if
Y d a significant number of timeouts are simply false alarms

1166 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. 7, OCTOBER 1986

Timeouts
with other

Timeouts with . alternatives
sudden decrease

,/&$/t,/// * Window
Size

Time
Fig. 6. If each timeout represents a real loss, a sudden decrease to the

minimum window size gives the least number of losses as compared to
any other alternative.

and not real overloads. One of the basic assumptions to
be made in designing a policy is that the timeout param-
eters have been set correctly so that there are very few
false alarms.

The proposed policy requires sources to reexplore the
maximum after every timeout. An alternative scheme
would be to remember the previously achieved maximum
and not cross it. Such a scheme will lead to unfairness
[7]. Also, every scheme with memory requires a forget-
ting scheme so that when the conditions improve the
sources forget their previous maximum.

We have been using the CUTE policy since 1983 [4].
Since then, the fact that the best alternative on a timeout
is to reduce the window size to one has also been discov-
ered independently by Bux and Grillo [l] in the context
of interconnection of their ring networks.

PERFORMANCE
We compared the performance of various alternatives

using metrics of throughput, response time (round-trip de-
lay), power, fairness, and loss probability. For n users
sharing the same path, the faimess is defined as follows:

Fairness =

n C T?
i = l

where Ti is the throughput of the ith user. The reasons
for using this formula are discussed in [5] .

In this section, we present only throughput curves.
Other performance. curves can be found in [7]. We sim-
ulated many different possible configurations. What fol-
lows are the cases that we believe provide meaningful in-
sight.

Case 1: This is a case where the number of users shar-
ing the same path is small but the congestion is caused by
the destinations allowing large flow control windows. The
window size permitted by the destination can be called
credits. A source cannot increase its window size beyond
the credits issued to it by the destination (CID). Fig. 7
shows performance as a function of CID for three sources
sharing the same intermediate path. Each intermediate
node has a buffer capacity of 42 packets. Depending on
whether the source follows'the CUTE policy, and whether
the destination provides the out-of-order packets caching
(OOC), there are four possibilities. Without dynamic

1 . 0 -

0.0-

i
3
%
y 0 . 6 -
I

0
IT
I
i-

0 :q 0.4-
_ I

4'

cn V

0 . 2 -

0.0-

I

o-- - - - * No CUTE, No OOC

+-+ CUTE, No OOC
. No CUTE, OOC

x---X CUTE and OOC

I I '.
' , ' \
' 1

0 10 20 ' 30 49

C r e d i t s I s s u e d b y Destination
Fig. 7. Performance for Case 1 .

window control, the throughput drops to zero as soon as
the sum of credits exceeds the buffer capacity. The deg-
radation is slower if there is out-of-order packet caching.
With window control, the throughput is independent of
credits after a certain maximum. Also, it does not matter
(during this case of slight congestion) whether we have
caching or not. This is because there are enough buffers
to support WS,,, packets for each source and no packet is
ever lost. The case of lost packets is discussed next.

Case 2: Fig. 8 shows network throughput as a function
of number of sources sharing the same physical path for
a network with moderate congestion. Each intermediate
node has a buffer capacity of 80 packets, and each desti-
nation issues 8 credits. Without dynamic window control,
the throughput drops to zero as soon as the sum of credits
exceeds the buffer capacity. With window control, the to-
tal network throughput improves if there is out of order
packet caching. Without caching, the throughput first
drops, but eventually all sources operate effectively at sin-
gle credit and caching does not matter.

IMPLEMENTATION ISSUES
The following features of the CUTE scheme, make it

easy to implement in.any computer network architecture.
1) It does not require changes to any meisage formats.

No new bits are required.
2) It does not require any new messages. For example,

no choke packets [9] are required.
3) It is transparent to network applications. Applica-

tions can issue any number of credits without worrying
about number of buffers at intermediate nodes. The win-
dow stops increasing after reaching pipisize computed by
the network layer.

4) Nodes with and without self-restraint can live on the
same network. Nodes following the CUTE policy as well
as those not following it lose packets during congestion.
However, those not following the policy lose more pack-
ets than those following it. Nonetheless, as congestion is

JAIN: TIMEOUT-BASED CONGESTION CONTROL SCHEME 1167

o-----* No CUTE. No OOC

t--* CUTE, No OOC
. No CUTE. OOC

CUTE and OOC 1
0.0

0.6

0 . 4

NUMBER OF SOURCES

Fig. 8. Performance for Case 2.

a network-wide phenomenon, it is preferable that all nodes
follow the same policy.

5) The necessity of providing out-of-order caching is
reduced. Without out-of-order caching, a single packet
loss can result in all subsequent packets being transmitted
twice. This cycle is broken by dropping the window size
to one on a single loss. Thus, the performance without
caching is at an acceptable level.

6) The scheme does not require any explicit feedback
from the network. Black box schemes like CUTE are nec-
essary if congestion (loss of packets) can occur at nodes
that work transparently, e.g., bridges.

7) Window reduction at packet loss is necessary but
not sufficient. More sophisticated congestion control
schemes need to be developed that control the load on the
network before it starts loosing packets. In networks hav-
ing such mechanisms, CUTE can be used as a backup
strategy which would be called only when congestion be-
comes so severe that it becomes necessary to drop pack-
ets.

SUMMARY
The key ideas presented in this paper are: renewed im-

portance of the congestion control, relationship between
timeout and congestion, and a dynamic window control
policy to handle congestion.

Solvihg the congestion problem has become more im-
portant due to the recent introduction of local area net-
works resulting in increased range of line speeds. Speed
mismatch between incoming and outgoing lines results
in queue buildup and packet loss.

The acknowledgment timeouts, which have tradition-
ally been used to ensure end-to-end delivery, also indicate
network congestion. On a timeout, therefore, we should
take steps to reduce the load along with retransmitting the

lost packet. If no steps are taken, the network may get
into an infinite cycle of packet loss bringing the through-
put down to zero.

Timeouts, in fact, indicate a severe state of congestion.
As the congestion in the network increases, the queues
build up. Only when the queueing becomes excessive,
does it become necessary to drop packets. Once in this
state, we need to take severe steps to reduce congestion.
We should shut off all further transmissions until we are
able to transmit successfully without loss. In particular,
we should retransmit only one packet-the lost one. Also
the window should be reduced to its smallest value. This
leads us to the key rule in the proposed CUTE scheme:
on a timeout, reset the window.to one.

REFERENCES
[l] W. Bux and D:Grillo, “Flow control in local-area networks of in-

terconnected token rings,” IEEE Trans. Commun., vol. COM-33,
no. 10, pp. 1058-1066, Oct. 1985.

[2] M. Gerla and L. Kleinrock, “Flow control: A comparative survey,”
iEEE Trans. Commun., vol. COM-28, no. 4, pp. 553-574, Apr. 1980.

[3] A. Giessler, J. Haanle, A. Konig, and E. Pade, “Free buffer alloca-
tion-An investigation by simulation,” Comput. Networks, vol. 1,
no. 3. DD. 191-204. Julv 1978.

~ 1 L I

R. K. Jain, “A dynamic window congestion control scheme for dig-
ita1 network architecture,” DEC Res. Rep. TR-275, June 1983.
R. K. Jain, Dah-Ming,Chiu, and William Hawe, “A quantitative
measure of fairness and discrimination for resource allocation in shared
systems,” DEC Res. Rep. TR-301, Sept. 1984.
R. K. Jain, “Using simulation to design a computer network conges-
tion control protocol,” in Proc. Sixteenth Annual Modeling and Sim-
ulation Conf., Pittsburgh, PA, Apr. 1985, pp. 987-993.
R. K. Jain,,“CUTE: A timeout-based congestion control scheme for
digital networking architecture,” DEC Res. Rep. TR-353, Apr. 1985.
R. K . Jain, “Divergence of timeout algorithms for packet retrans-
mission;” in Proc. 5th Int. IEEE Phoenix Con5 Comput. Comnzun.,
Scottsdale, AZ, Mar. 1986, pp. 174-179.
J. C. Majithia et a l . , “Experiments in congestion control tech-
niques,” in Proc. Int. Symp. Flow Control in Computer Networks,
Versailles, France, Feb. 1979, pp. 211-234.
K. K. Ramakrishnan, “Analysis of the dynamic window congestion
control protocol in heterogeneous environments including satellite
links,” DEC Res. Rep. TR-284, Aug. 1984; Proc. Comput. Net-
working Symp., Wastiington, DC, Nov. 1986, to be published.
M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed mul-
tichain queuing networks,” J . ACM, vol. 27, no. 2, pp. 313-322,
Apr. 1980.
A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1981.
J. Zahorjan, K. C. Sevcik, and B. Galler, “Balanced job bound anal-
ysis of queueing networks,” J . ACM, vol. 25, no. 2, pp. 134-141,
Feb. 1982.

I ,

Raj Jain (S’73-M’78-SM’86) received the B.E.
degree from A.P.S. University, Rewa, India, the
M.E. degree from Indian Institute of Science,
Bangalore, India, and the Ph.D. degree from Har-
vard University, Cambridge, MA, in 1972, 1974,
and 1978, respectively.

His Ph.D. dissertation entitled “Control The-
oretic Formulation of Operating Systems Re-
source Mangagement Policies” was published by
Gariand Publishing, Inc. ,of New York in their
“Outstanding Dissertations in the Computer Sci-

ences” series. Since 1978, he has been with Digital Equipment Corpora-
tion, where he has been involved in performance modeling and. analysis of
a number of computer systems and networks including VAX Clusters,
DECnet, and Ethernet. Currently, he is a Consulting Engineer in the Dis-
tributed Systems Architecture and Performance Group. He spent the 1983-
1984 academic year on a sabbatical at the Massachusetts Institute of Tech-
nology doing research on the performance of networks and local area sys-
tems. For two years he also taught a‘graduate course on computer systems
performance techniques at MIT and is writing a textbook on this subject.

Dr. Jain is a member of the Association for Computing Machinery.

