
General weighted fairness and its support in explicit rate
switch algorithmsq

B. Vandalore* , S. Fahmy1, R. Jain, R. Goyal2, M. Goyal

Department of Computer and Information Science, The Ohio State University, 2015 Neil Avenue Mall, Columbus, OH 43210-1277, USA

Received 24 February 1999; received in revised form 15 July 1999; accepted 30 July 1999

Abstract

This paper gives a new definition of general weighted (GW) fairness and shows how this can achieve various fairness definitions, such as
those mentioned in the ATM Forum TM 4.0 specifications. The GW fairness can be achieved by calculating theExcessFairshare(weighted
fairshare of the left over bandwidth) for each VC. We show how a switch algorithm can be modified to support the GW fairness by using the
ExcessFairshareterm. We use ERICA1 as an example switch algorithm and show how it can be modified to achieve the GW fairness. For
simulations, the weight parameters of the GW fairness are chosen to map a typical pricing policy. Simulation results are presented to
demonstrate that, the modified switch algorithm achieves GW fairness. An analytical proof for convergence of the modified ERICA1
algorithm is given in the appendix.q 2000 Elsevier Science B.V. All rights reserved.

Keywords: ATM switch algorithms; Pricing policy; ABR service; Traffic management

1. Introduction

The asynchronous transfer mode (ATM) is the chosen
technology to implement Broadband Integrated Services
Digital Network (B-ISDN). Different traffic characteristics
ranging from non-real-time to real-time are supported in
ATM through its various service categories (CBR: constant
bit rate, rt-VBR: real-time variable bit rate, nrt-VBR: non-
real-time VBR, ABR: available bit rate, UBR: unspecified
bit rate). The ATM Forum is currently in the process of
standardizing the Guaranteed Frame Rate (GFR) service
category. The International Telecommunication Union
(ITU-T) defines similar service categories for ATM.

The ABR service category is the only service category
which uses closed-loop feedback for flow control. All other
service categories have open loop flow control. In ABR, one
Resource Management (RM) cell is sent for everyNrm2 1
(value of Nrm parameter is usually 32) data cells by the
source. The source indicates its current source rate in the
RM cell. The RM cell is turned around at the destination and

sent back to the source (Fig. 1). The switches along the RM
cell path indicate the current maximum rate, which they can
support in the explicit rate field of the RM cell. The sources
adjust their rates accordingly.

To get a guarantee for the minimum amount of service the
user can specify a minimum cell rate (MCR) in ATM ABR
service. The ABR service guarantees that the allowed cell
rate (ACR) is never less than MCR. When MCR is zero for
all sources, the available bandwidth can be allocated equally
among the competing sources. This allocation achieves
max–min fairness. When MCRs are non-zero, ATM
Forum TM 4.0 specification [1] recommends, other defini-
tions of fairness that allocate the excess bandwidth (which
is, available ABR capacity less the sum of MCRs) equally
among sources, or proportional to MCRs. In this paper, we
give a different definition of sharing the excess bandwidth
using predetermined weighted than the one recommended in
ATM Forum specifications [1]. In the real world, the users
prefer to get a service, which reflects the amount they are
paying. The pricing policy requirements can be realized by
appropriately mapping the policy to the weights associated
with the sources.

The specification of the ABR feedback control algorithm
(switch algorithm) is not yet standardized. The earliest
algorithms used binary feedback techniques [2]. Distributed
algorithms [3] that emulated a centralized algorithm were
proposed in Refs. [4,5]. Improved, simpler distributed

Computer Communications 23 (2000) 149–161

COMCOM 1670

0140-3664/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00157-7

www.elsevier.com/locate/comcom

q This paper is an expanded version of a paper which appeared in the
Proceedings of ICNP’98.
* Corresponding author. Tel.:11-614-688-4482; fax:11-614-292-2911.
E-mail address:vandalor@cis.ohio-state.edu (B. Vandalore).
1 Now with Department of Computer Sciences, Purdue University, IN,

USA.
2 Now with Nexabit Networks, MA, USA.

Raj Jain
jain@cse thin horizontal

algorithms which achieved max–min fairness were
proposed in Refs. [6–11]. Recently, a discussion on general-
ized definition of max–min fairness and its distributed
implementation is given in Refs. [12,13]. A weight-based
max–min fairness policy and its implementation in ABR
service is given in Ref. [14]. The fairness in the presence
of MCR guarantees is discussed in Refs. [15,16].

In this paper, we generalize the definition of the fairness,
by allocating the excess bandwidth proportional to weights
associated with each source. We show how a switch scheme
can support non-zero MCRs and achieve the GW fairness.
As an example, we show how the ERICA1 [6] switch
scheme can be modified to support the GW fairness.

The modified scheme is tested using simulations with
various network configurations. The simulations test the
performance of the modified algorithm, with different
weights, using a simple configuration, a transient source
configuration, a link bottleneck configuration, and a source
bottlenecked configuration. Scalability and robustness are
tested using a configuration with hundred TCP sources
and a background VBR connection carrying long range
dependent traffic. These simulations show that the scheme
realizes various fairness definitions in ATM TM 4.0
specification that are special cases of the generalized
fairness.

Section 2 discusses the GW fairness definition and shows
how the various other definitions of fairness can be realized
using this general definition. Then, we show how a switch
scheme can achieve general fairness. As an example, we
show how ERICA1 is modified to support the GW fairness.
An analytical proof of convergence for the modified algo-
rithm is given in Appendix A. Simulation configurations and
the results for the modified algorithm are given next.
Finally, we give our conclusions and discuss some future
work.

2. General weighted fairness: definition

We first define the following parameters:

Al total available bandwidth for all ABR connections
on a given linkl

Ab sum of bandwidth of under-loaded connections that
are bottlenecked elsewhere

A Al 2 Ab; excess bandwidth, to be shared by
connections bottlenecked on this link

Na number of active connections
Nb number of active connections bottlenecked else-

where
n Na 2 Nb; number of active connections bottle-

necked on this link
m i MCR of connectioni
m

Pn
i�1 mi ; sum of MCRs of active connections

bottlenecked at this link
wi preassigned weight associated with the connectioni
gi GW fair allocation for connectioni

The general weighted fair allocation is defined as follows:

gi � mi 1
wi�A 2 m�Xn

j�1

wj

Note that this definition of fairness is different from the
weighted allocation given as an example fairness criterion
in ATM TM 4.0 specifications. In the above definition, only
the excess bandwidth is allocated proportional to weights.
The above definition ensures the allocation is at least MCR.

2.1. Mapping TM 4.0 fairness to general weighted fairness

Here we show how the different fairness criteria
mentioned in ATM TM 4.0 specification, can be realized
using the above fairness definition.

1. Max–Min: in this case MCRs are zero and the bandwidth
is shared equally.

gi � A=n

This is a special case of general weighted fairness with
mi � 0; andwi � c; wherec is a constant.

2. MCR plus equal share:the excess bandwidth is shared
equally.

gi � mi 1 �A 2 m�=n
By assigning equal weights, we achieve the above
fairness.

3. Proportional to MCR:The allocation is proportional to
its MCR.

gi � A × mi

m
� �m 1 A 2 m�mi

m
� mi 1

�A 2 m�mi

m

By assigningwi � mi ; we can achieve the above fairness.

3. Relationship to pricing/charging policies

In real world users expect a service related to the price
they are paying for the service. In this section we discuss a
simple pricing policy and arrive at a weight function to
support such a policy.

B. Vandalore et al. / Computer Communications 23 (2000) 149–161150

Fig. 1. ABR flow control. RM cells are sent periodically by the source. The
RM cell is turned around at the destination. The RM cells in the forward
direction are called FRM cells and those in the backward direction are
called BRM cells. The switches along the RM cell path indicate the rate
which they can currently support.

Consider a very small intervalT of time. The chargeC
that a customer pays for using a network during this interval
is a function of the number of bitsW that the network
transported successfully:

C � f �W;R�
whereR�W=T is the average rate.

It is reasonable to assume thatf() is a non-decreasing
function of W. That is, those sending more bits do not pay
less. The functionf() should also be a non-increasing func-
tion of time T or equivalently a non-decreasing function of
rateR.

For economy of scale, it is important that the cost per bit
does not increase as the number of bits goes up. That is,C/W
is a non-decreasing function ofW.

Mathematically, we have three requirements:

2C=2W $ 0

2C=2R $ 0

2�C=W�=2W # 0

One simple function that satisfies all these requirements is

C � c 1 wW 1 rR

Here,c is the fixed cost per connection;w the cost per bit;
andr is the cost per Mbps. In general,c, w andr can take any
non-negative value.

In the presence of MCR, the above discussion can be
generalized to

C � f �W;R;M�
whereM is the MCR. All arguments given above forRapply
to M also except that the customers requesting largerM
possibly pay more. One possible function is

C � c 1 wW 1 rR 1 mM

wherem is dollars per Mbps of MCR. In effect, the customer
paysr 1 m dollars per Mbps up toM and then pays onlyr
dollars per Mbps for all the extra bandwidth he/she gets over
and aboveM.

Consider two users with MCRsM1 andM2. Suppose their
allocated rates areR1 andR2 and, thus, they transmitW1 and
W2 bits, respectively. Their costs are

C1 � c 1 wW1 1 rR1 1 mM1

C2 � c 1 wW2 1 rR2 1 mM2

Cost per bit (C/W) should be a decreasing function of bitsW.
Thus, if W1 $ W2 :

C1=W1 # C2=W2

c=W1 1 w 1 rR1=W1 1 mM1=W1

c=W2 1 w 1 rR2=W2 1 mM2=W2

SinceRi �Wi =T; we have:

c=�R1T�1 w 1 r =T 1 mM1=�R1T�
c=�R2T�1 w 1 r=T 1 mM2=�R2T�

c=R1 1 mM1=R1 # c=R2 1 mM2=R2

�c 1 mM1�=�c 1 mM2� # R1=R2

�a 1 M1�=�a 1 M2� # R1=R2

wherea �� c=m� is the ratio of the fixed cost and cost per
unit of MCR.

Note that the allocated rates should either be proportional
to a 1 MCR or be a non-decreasing function of MCR. We
have chosen to usea 1 MCR as the weight function in our
simulations.

4. General weighted fair allocation problem

In this section we give the formal specification of the
general weighted fair allocation problem, and give a moti-
vation for the need of a distributed algorithm.

The following additional notation is necessary:

L set of links,Ls set of links that sessions goes
through

S set of sessions,Sl set of sessions that go through
link l: N � uSu

A �Al ; l [L� set of available capacity
M �ms; s [S�; wherem s is the minimum cell rate

(MCR) for sessions
W �w1;w2;…;wN� denotes the weight vector
R �r1; r2;…; rN� the current allocation vector (or rate

vector)
G �g1;g2;…;gN� the general fair allocation;GSl

denotes the set of allocations of sessions going
over link l

Definition 1 (General weighted fair allocation problem).
The GW fair problem is to find the rate vector equal to the
GW fair allocation, i.e.R � G:; wheregi [GSl

is calcu-
lated for each linkl as defined in Section 2.

Note the 5-tuple�S;L;C;W;R� represents an instant of
the bandwidth sharing problem. When all weights are equal
the allocation is equivalent to the general max–min fair
allocation as defined in Refs. [12,13]. A simple centralized
algorithm for solving the above problem would be to first
find the correct allocation vector for the bottleneck links.
Then, solve the same problem of smaller size after deleting
bottleneck links. A similar kind of centralized, recursive
algorithm is discussed in Ref. [13]. Centralized algorithm

B. Vandalore et al. / Computer Communications 23 (2000) 149–161 151

implies that all information is known at each switch, which
is not feasible, hence a distributed algorithm is necessary.

5. Achieving general fairness

A typical ABR switch scheme calculates the excess band-
width capacity available for best effort ABR after reserving
bandwidth for providing MCR guarantee and higher priority
classes such as VBR and CBR. The switch fairly divides the
excess bandwidth among the connections bottlenecked at
that link. Therefore, the ACR can be represented by the
following equation:

ACR�i� � mi 1 ExcessFairshare�i�
ExcessFairshareis the amount of bandwidth allocated over
the MCR in a fair manner.

In the case of GW fairness, theExcessFairshareterm is
given by

ExcessFairshare�i� � wi�A 2 m�Xn
j�1

wj

If the network is near steady state�input rate�
available capacity�; then the above allocation enables the
sources to attain the GW fairness. The ATM TM 4.0 speci-
fication mentions that the value of�ACR2 MCR� can be
used in the switch algorithms. We use this term to achieve
the GW fairness. We have to ensure the�ACR2 MCR� term
converges toExcessFairsharevalue. We use the notion of
activity levelto achieve the above objective [17]. A connec-
tion’s excess activity level(EAL(i)) is defined as follows:

EAL�i� � minimum 1;
max�0;SourceRate�i�2 mi�

ExcessFairshare�i�
� �

SourceRate(i) is the rate at which the source is currently
transmitting data. Note thatSourceRate(i) is the ACR(i)
given as the feedback rate earlier by the switch. The excess
activity level indicates how much of theExcessFairshareis
actually being used by the connection. Excess activity level
is zero if SourceRate(i) is less thanm i. The activity level
attains the value of 1 when theExcessFairshareis used by
the connection. It is interesting to note that using activity
level for calculating is similar to theconsistent marking
technique of Charny [18], where the switch marks connec-
tions which have lower rate than theiradvertised rate. The
new advertised rate is calculated using the equation

Advertised Rate� Al 2
P

Rates of marked connections
uSl u 2

P
Marked connections

The activity level inherently captures the notion of marking,
i.e. when a source is bottlenecked elsewhere, then activity
level times the fairshare (based on available left over capa-
city) is the actual fairshare of the bottleneck source. The
computation of activity level can be done locally and is an

O(1) operation, compared to O(n) computations required in
consistent marking [18].

We expect that the links use theirExcessFairshare, but
this might not be the case. By multiplying the weights by the
activity level, and using these as the weights in calculating
the ExcessFairsharewe can make sure that the rates
converge to the GW fairness allocation. Therefore, the
ExcessFairshareshare term is defined as

ExcessFairshare�i� � wi�A 2 m�Xn
j�1

wjEAL�j�

Note thatwi is not multiplied byEAL(i) in the numerator,
since we desire to attain a value ofEAL�i� � 1 for all
sources and give excess bandwidth in proportion to the
weights. Due to this, sources which have not yet achieved
their fairshare are asked to increase their rate toExcessFair-
Share. Rate of sources which are bottlenecked elsewhere are
not affected. The rate of such a source depends only on the
explicit feedback rate, which it receives from switches at
which it is bottlenecked. Connections which are bottle-
necked at sources also receive the correct amount ofExcess-
FairShare.

There is a possibility that the denominator becomes zero
in the above expression, when all the sources are inactive
�SourceRate�i� , mi�: In this case theExcessFairshare
evaluates to a infinite value. This means that since there is
no load on the link, each source can have the whole avail-
able capacity as the fairshare. So in our simulations we
handle this special case by taking the minimum of available
bandwidth �A 2 m� and value calculated by the above
expression.

A switch algorithm can use the aboveExcessFairshare
term to achieve the GW fairness. In Section 6, we show how
the ERICA1 switching algorithm is modified to achieve the
GW fairness.

6. Example modifications to a switch algorithm

The ERICA1 algorithm operates at each output port of a
switch. The switch periodically monitors the load on each
link and determines a load factor (z), the available ABR
capacity, and number of currently active sources or VCs.
The measurement period is the “Averaging Interval”. These
measurements are used to calculate the feedback rate which
is indicated in the backward RM (BRM) cells. The measure-
ments are done in the forward direction and the feedback is
given in the backward direction. The complete description
of the ERICA1 algorithm can be obtained from Ref. [6].

The ERICA1 algorithm uses the termFairShare,
which is the bottleneck link capacity divided by the active
number of VCs. It also uses aMaxAllocPreviousterm,
which is the maximum allocation in the previous “Aver-
aging Interval”. This term is used to achieve max–min fair-
ness. We modify the algorithm by replacing theFairShare

B. Vandalore et al. / Computer Communications 23 (2000) 149–161152

term byExcessFairshare(i) and adding the MCR (m i). The
key steps in ERICA1 which are modified to achieve the
GW fairness are shown as follows:

Algorithm A.

At the end of Averaging Interval
Total ABR Cap← Link Cap2 VBR Cap2

Pn
i�0 min

(SourceRate(i),m i)
Target ABR Cap← Factor× Total ABR Cap
Input Rate← ABR Input Rate2

Pn
i�0 min

(SourceRate(i),m i)
z ← Input Rate=Target ABR Cap

foreach VCi

EAL(i) ← min(1,max(0,SourceRate(i)2 m i)/
ExcessFairshare(i))
SumOfWts← SumOfWts1 wiEAL�i�

endfor
foreach VCi

ExcessFairshare(i)← wi(Target ABR Cap)/
{SumOfWts}

endfor

The Factor term is dependent on the queue length
[19].When the Factor is less than 1,�1 2 Factor� ×
Total ABR Cap is used to drain the queues. A simple choice
is to use a constant queue control function (CQF), where the
Factor is set to a value less than 1, say 0.95. The remaining
5% of the link capacity is used for queue draining. Another
option is to use a dynamic queue control function (DQF). In
DQF, theFactor value is 1 for small queue lengths and
drops sharply as queue length increases. ERICA1 uses a

hyperbolic function for calculating value of theFactor
(Fig. 2).

When a BRM is received

VCShare← max�0;SourceRate�i�2 mi�
z

ER← mi 1 max�ExcessFairshare�i�;VCShare�

ERRM_Cell ← min�ERRM_Cell;ER;Target ABR Cap�
The VCShareis used to achieve a unit overload. When the
network reaches steady state theVCShareterm converges to
ExcessFairshare(i), achieving the generalized fairness
criterion. The complexity of the computations done at the
switching interval is O(number of VCs). The update opera-
tion when the BRM cell arrives is an O(1) operation. Proof
of convergence of Algorithm A is given in Appendix A.

7. Simulation configurations

We use different configurations to test the performance of
the modified algorithm. We assume, unless specified
otherwise, that the sources are greedy, i.e. they have infinite
amount of data to send, and always send data at ACR. In all
configurations, the data traffic is unidirectional, from source
to destination. If bidirectional traffic is used, similar
results will be achieved, except that the convergence
time will be longer since the RM cells in the backward
direction will travel along with the data traffic from destina-
tion to source. All the link bandwidths are 149.76 (155.52
less than the SONET overhead), expect in the GFC-2
configuration.

7.1. Three sources

This is a simple configuration in which three sources send
data to three destinations over two switches and a bottleneck
link (Fig. 3). This configuration is used to demonstrate that
the modified switch algorithm can achieve the general fair-
ness for different set of weight functions.

7.2. Source bottleneck

In this configuration (Fig. 4), the source S1, is bottle-
necked at 10 Mbps, which is below its fairshare

B. Vandalore et al. / Computer Communications 23 (2000) 149–161 153

Fig. 2. The dynamic queue control function used in ERICA1 . Fmin thresh-
olds the amount of capacity used for queue draining.Q0 is the target queue
length, its value is dependent on the “Target delay” parameter and the link
capacity. A value ofa� 1:15 andb� 1 is used in our simulations.

Fig. 4. Three sources–bottleneck configuration. S1 is bottlenecked at
10 Mbps.

Fig. 3.N sources–N destinations configuration.

(50 Mbps). This configuration tests whether the GW fair-
ness can be achieved in the presence of source bottleneck.

7.3. Generic fairness configuration-2 (GFC-2)

This configuration (explained in detail in Ref. [20]) is a
combination of upstream and parking lot configuration
(Fig. 5). In this configuration, all the links are bottlenecked
links, round trip times are different for different type of VCs.

7.4. TCP sources with VBR background

This configuration is used to test the robustness and
scalability of the algorithm (Fig. 6). In this configuration
100 infinite TCP sources (large file transfers) transmit data
continuously through a bottleneck link to 100 destinations.
One VBR connection carrying multiplexed MPEG traffic,
which is long-range dependent, is used as background traffic
[21]. The mean bandwidth of VBR traffic is 45 Mbps. The
VBR traffic is generated with hurst parameter (H) value of
0.9, hence it has high degree of self-similarity.

7.5. Simulation parameters

The simulations were done on an extensively modified
version of NIST simulator [22]. The following parameter
values were used in all our simulations: link distance
1000 km; averaging interval 5 ms; target delay 1.5 ms;
exponential decay factor 0.1 (when using dynamic queue
control function).

The “Averaging Interval” is the period for which the

switch monitors various parameters. Feedback is given
based on these monitored values. The ERICA1 algorithm
uses dynamic queue control to vary the available ABR capa-
city dependent on queue size. At steady state the queue
length of constant value can be obtained. The “Target
Delay” parameter specifies the desired delay due to this
constant queue length at steady state. When using dynamic
queue control function we exponentially averageExcess-
Fairshare term. This is done so that effectively only one
feedback is given in each feedback interval and to absorb
the variation in “Target ABR Cap” value due to the queue
control function. For convergence, the feedback delay, aver-
aging interval and exponential averaging decay factor
should obey the following equation:

Averaging interval
Exponential decay factor

$ Feedback delay

8. Simulation results

In this section, we give the simulation results for the
different configurations. The simulation results using both
constant queue control function (shown in graphs as config-
uration name and CQF) and dynamic queue control function
(shown in graphs as configuration and DQF) are given. For
the CQF the value ofFactor used is 0.9. The tabular results
are those obtained from simulations using the dynamic
queue control function.

B. Vandalore et al. / Computer Communications 23 (2000) 149–161154

Fig. 5. Generic fairness configuration-2. X(n) indicates that theren number of VCs of type X.

Fig. 6. 100 TCP sources1 VBR background. TCP sources are infinite
sources. VBR connection carries multiplexed MPEG traffic which exhibits
long range dependency.

Table 1
Three sources configuration simulation results

Case Src MCR a Wt func Expected fair share Actual share

1 1 0 ∞ 1 49.92 49.92
2 0 ∞ 1 49.92 49.92
3 0 ∞ 1 49.92 49.92

2 1 10 ∞ 1 29.92 29.92
2 30 ∞ 1 49.92 49.92
3 50 ∞ 1 69.92 69.92

3 1 10 5 15 18.54 18.53
2 30 5 35 49.92 49.92
3 50 5 55 81.31 81.30

8.1. Three sources

Simulations using a number of weight functions were
done using the simple three sources configuration to demon-
strate that GW fairness is achieved in all these cases. The
ICRs (Initial Cell Rates) of the sources were set to
(50,40,55) Mbps in all the simulations.

The allocations of these cases using DQF are given in
Table 1. The following can be observed from Table 1.

• Case 1:a� ∞; MCRs� 0: All weights are equal so the
allocation�149:76=3� � 49:92 Mbps for each connection.
This allocation is the same as max–min fair allocation.

• Case 2: a� ∞; MCRs± 0: The left over capa-
city 149:762 �101 301 50� � 59:76 Mbps is divided
equally among the three sources. So the allocation
is �101 19:92;301 19:92; 501 19:92� � �29:92;49:92;
69:92�Mbps:

• Case 3:a� 5; MCRs± 1: Hence, the weight function is
5 1 MCR: The leftover capacity, 59.76 Mbps, is divided
proportional to (15,35,55). Hence the allocation is
(10 1 15/105× 59.76,301 35/105× 59.76,501 55/
105× 59.76)� (18.54,49.92,81.31) Mbps.

Fig. 7 shows the ACRs, queue and utilization graphs of
the three sources for case 3 using constant queue control
function. Fig. 8 shows the corresponding graphs using
dynamic queue control function. From the figures, one can
observe that the sources achieve the GW fairness rate and
queues are controlled in steady state. When using DQF,
queue length values oscillate before reaching steady state

values. The utilization achieved at steady state is 100%
when using DQF and 90% (same asFactor value) when
using CQF.

8.2. Three sources: transient

In these simulations, the same simple three source config-
uration is used. Source-1 and source-3 transmit data
throughout the simulation period. Source-2 is a transient
source, which starts transmitting at 400 ms and stops at
800 ms. The total simulation time is 1200 ms. Same para-
meter values from the cases 1–3 of Section 8.1 were used in
these simulations. The results of these simulations are given
in Table 2. The non-transient (ntr) columns give the alloca-
tion when transient source-2 is not present, i.e. between 0
and 400 ms and between 800 and 1200 ms. The transient (tr)
column give allocation when the transient source-2 is
present, i.e. between 400 and 800 ms.

The ACR values of the sources and the utilization of the
bottleneck link for case 2 are shown in Fig. 9. It can be seen
both from Table 2 and the graphs that the switch algorithm
does converge to the general fairness allocation even in the
presence of transient sources. The algorithm has a good
response time, since there is only a small dip in the utiliza-
tion graph when the transient source stops sending traffic (at
800 ms).

8.3. Source bottleneck

Cases 1–3 of Section 8.1 were simulated using the three
sources bottleneck configuration. The total simulation time

B. Vandalore et al. / Computer Communications 23 (2000) 149–161 155

Fig. 7. Three sources: case 31 CQF simulation results: (a) ACRs; (b) queue length; (c) utilization.

Fig. 8. Three sources: case 31 DQF simulation results: (a) ACRs; (b) queue length; (c) utilization.

was 800 ms. In these simulations the source S1 is bottle-
necked at 10 Mbps for first 400 ms, i.e. it always transmits
data at the rate of at most 10 Mbps, irrespective of its ACR
(and ICR). After 400 ms, source S1 behaves like an infinite
source and sends data at ACR.

The initial ICRs were set to 50, 30, 110 Mbps. The load
on the bottleneck link is near unity. If the switch algorithm
uses the CCR (Current Cell Rate) value indicated in the RM
cell as the source rate, the switch cannot estimate the correct
value of source rate of the bottleneck source. However, if
the switch uses measured source rate then it can correctly
estimate the bottlenecked source’s rate. Table 3 shows the
results both when the switch uses the CCR field and when it
measures the source rate during the presence of source
bottleneck (i.e. before 400 ms). The correct fairness is
achieved only when the measured source rates are used.
When the source bottleneck disappears after 400 ms, the
sources achieve the GW fairness (fairshare value same as
in the simple configuration), both when CCR is used as
source rate and when source rates are measured.

Fig. 10(a) shows the ACR graph for the simulation of case
1 using source rate from the CCR field of RM cell. Fig.
10(b) shows the same case using measures source rates.
When the CCR value from the RM cells is used as source
rate, the algorithm is not able to estimate the actual rate at
which the source is sending data. So, it does not estimate the

correct GW fairshare values in the presence of source bottle-
necks. When measured source rate is used it calculates
correct fairshare even in the presence of source bottlenecks.

8.4. Link bottleneck: GFC-2

In this configuration, each link is a bottleneck link. An
MCR value of 5 was used for all A type VCs. All other VCs
have MCR of 0. The MCR plus equal share of excess band-
width was chosen as the fairness criteria. Dynamic queue
control function was used in this simulation. The expected
share for VCs of type A, B, C, D, E, F, G, H are 11.25, 5,
33.75, 33.75, 33.75, 6.25, 5 and 50.625 Mbps, respectively.
The actual allocation for these VCs in the simulation was
11.25, 5, 35.67, 35.75, 35.75, 6.25, 5 and 50.5 Mbps, respec-
tively, which agree well with the expected allocations. Fig.
11(a) shows the ACR graphs for each type of VCs. Fig.
11(b) shows the queue length graph at various bottleneck
links between the switches. From the figure and actual allo-
cations, it can be seen that the VCs converge to their
expected fairshare. The queue length graphs show that
initial queue buildup occurs before convergence and its
maximum queue length depends on ICR and round trip
time. This simulation demonstrates that the algorithm
works in the presence of multiple link bottlenecks and
different round trip times.

B. Vandalore et al. / Computer Communications 23 (2000) 149–161156

Table 2
Three sources transient configuration simulation results (ntr, non-transient period; tr, transient; NC, not converged)

No. Src Wt func Exp frshr (ntr) Actual (ntr) share Exp frshr (tr) Actual share

1 1 1 74.88 74.83 49.92 49.92
2 1 NC NC 49.92 49.92
3 1 74.88 74.83 49.92 49.92

2 1 1 54.88 54.88 29.92 29.83
2 1 NC NC 49.92 49.92
3 1 94.88 95.81 69.92 70.93

3 1 15 29.92 29.23 18.53 18.53
2 35 NC NC 49.92 49.92
3 55 119.84 120.71 81.30 81.94

Fig. 9. Three sources (transient): (a) ACR and (b) utilization graphs.

8.5. 100 TCP sources with VBR background

The VBR VC carrying multiplexed MPEG source traffic
has higher priority over TCP sources running over ABR.
The VBR traffic generated is highly variable as shown in
Fig. 12(a). The TCP sources are infinite TCP sources.
During initial period, the TCP traffic is bursty since its
congestion window is limited by ACR and slow start proto-
col. Once the congestion window reaches the maximum
value the TCP sources become equivalent to persistent
source. All TCP sources start sending data at the same
time, so the load phases (active and idle periods) of multiple
sources coincide. Source-25 has MCR value of 1 Mbps,
source-50 has MCR of 1.5 Mbps and source-100 has MCR
value of 2 Mbps. All other TCP sources have an MCR value
of 0.5 Mbps. A value of 10 was used for parametera of the
weight function�a 1 MCR�: Hence the GW fairness criteria
here is MCR plus proportional to MCR.

Fig. 12(b)–(d) shows ACRs, queue length and link utili-
zation, respectively, which are ATM level metrics. Fig.
12(e) and (f) shows congestion window and average
throughput, respectively, which are TCP level metrics.
Though the system does not have a steady state the queues
are controlled and utilization is high. The expected through-
put received by the TCP sources when congestion window is
maximum is 1.02 Mbps for source-1, 1.54 Mbps for source-
25, 2.07 Mbps for source-50 and 2.59 Mbps for source-100

according to the GW fairness criteria (MCR plus propor-
tional MCR in this case). The average throughput values as
shown in Fig. 12(f) is slightly different from the expected
throughputs. This is due to the varying VBR capacity and
since the average throughputs include measurement during
initial burstiness of TCP sources, where the congestion
windows have not yet reached the maximum value. This
simulation demonstrates that the algorithm is robust and
scalable.

9. Conclusion

In this paper, we have given a general definition of fair-
ness, which inherently provides MCR guarantee and divides
the excess bandwidth proportional to predetermined
weights. Different fairness criterion such as max–min fair-
ness, MCR plus equal share, proportional MCR can be
realized as special cases of this general fairness. We showed
how to realize a typical pricing policy by using appropriate
weight function. The GW fairness can be achieved by using
theExcessFairshareterm in switch algorithms. The weights
are multiplied by the activity level when calculating the
ExcessFairshareto reflect the actual usage of the source.

We have shown how ERICA1 switch algorithm can be
modified to achieve this general fairness. The proof of
convergence of Algorithm A is given in Appendix A. The

B. Vandalore et al. / Computer Communications 23 (2000) 149–161 157

Table 3
Three sources bottleneck configuration simulation

Case Src Wt Exp fishr func Using CCR in RM cell Using measured CCR

1 1 1 69.92 51.50 69.29
2 1 69.88 51.80 69.29
3 1 69.88 85.94 69.29

2 1 1 39.88 43.98 39.58
2 1 59.88 52.06 59.57
3 1 79.88 85.85 79.76

3 1 15 19.96 42.72 19.19
2 35 53.32 51.62 53.28
3 35 86.64 86.16 86.37

Fig. 10. Three sources bottleneck: ACR graphs: (a) case 31 DQF1 source rate from CCR field; (b) case 31 CCR1 measured source rate.

simulation results show that the modified algorithm
achieves the general fairness in all configurations. In addi-
tion, the results show that the algorithm converges in the
presence of both source and link bottleneck and is quick to
respond in the presence of transient sources. In source
bottlenecked configuration the value of the CCR (source
rate) from the RM cells may be incorrect. Hence, it is neces-
sary to use the measured source rate in the presence of
source bottlenecks. The algorithm is robust and scalable
as demonstrated by simulation results using the hundred
TCP sources plus VBR background configuration. Future
work includes, extending the GW fairness criterion to multi-
point ABR connections and designing a robust and scalable
switch algorithm for such connections.

Acknowledgements

This research was sponsored in part by Rome Laboratory/
C3NC Contract F30602-96-C-0156.

Appendix A. Proof of convergence of Algorithm A

We make the following assumptions:

• Synchronous update of source rates.
• Queue control function is a constant function.
• Infinite (greedy) sources, which always have data to send.

Though there might be source or link bottleneck present.
• If a source bottleneck is present, it does not change its

bottleneck rate during convergence.
• P

s[Sl
mi # Al ; i.e. sum of MCRs is less than available

ABR capacity (connection admission policy).
• Load factorz . 0 andER, Al , LinkRate:

Lemma A1. Algorithm A converges to the GW fair allo-
cation, for a session bottlenecked by a link.

Proof. The proof technique used here is similar to the one

used in Ref. [6]. Letlb be the link which is bottlenecked.
Without loss of generality assume that firstk sessions
through the linklb are bottlenecked (either link bottlenecked
or source bottlenecked) elsewhere. Letn� uSlb u 2 k: Let
rb1; rb2;…; rbk be the bottleneck rates andr1; r2;…; rn be
the rates of non-bottlenecked (under-loaded) sources. Let
Ab �

Pk
i�1 rbi be total capacity of bottlenecked links.

These non-bottlenecked sources are bottlenecked at the
current link lb. According to the GW fairness definition,
fair allocation ratesgi is given by

gi � mi 1
wi�Al 2 Ab�Xn

J�1

wj

Assume that the bottlenecks elsewhere have been achieved,
therefore the ratesrb1; rb2;…; rbk are stable. For simplicity,
assume that the MCRs of these sources are zero. Proof for
the bottlenecks having non-zero MCRs is a simple exten-
sion.We show that rates allocated at this switch converges to
rb1; rb2;…; rbk andg1;g2;…;gn and load factor converges to
z� 1:

Case 1:load factorz , 1: Here the link is under-loaded,
hence due to theVCShareterm �SourceRate�i�2 mi�=z; all
the rates increase. Ifn� 0; i.e. all the sessions across this
link are bottlenecked elsewhere, there are no non-bottle-
necked sources, the GW fair allocation is trivially achieved.
Assume thatn $ 1; now because of theVCShareterm (in
step for calculatingER in Algorithm A), the rates of non-
bottlenecked sources increase. This continues until the load
factor reaches a value greater than or equal to 1. Hence we
have shown that if load factor is less than 1, the rates
increase till the load factor becomes greater than 1.

Case 2:load factorz . 1: In this case if the link is not
getting itsExcessFairsharethen, its rate increases, which
might further increasez. This continues till all the sessions
achieve at least theirExcessFairshare. At this point the
allocation rates are decreased proportional to 1/z due to
the first term. As in the previous casez decreases, until it
reaches a value of 1 or less.

B. Vandalore et al. / Computer Communications 23 (2000) 149–161158

Fig. 11. GFC-2 configuration: (a) ACR graph; (b) queue graphs at different links.

From the above two cases it can be seen that load factor
oscillates around 1 and converges to the value of 1. Assume
that load factor isz� 1 1 d; then the number round trip
times for it to converge to 1 is given by log11duSl u: Hence-
forth, in our analysis we assume that the network is near the

steady state that is load factor is near 1. This implies thatXk
i�1

rbi 1
Xn
i�1

ri � Al !
Xn
i�1

ri � Al 2 Ab

Let Am �
Pn

i�1 mi be the total allocation for MCRs of the

B. Vandalore et al. / Computer Communications 23 (2000) 149–161 159

Fig. 12. 100 TCP1 VBR background simulation graphs: (a) VBR capacity; (b) ACRs; (c) queue length; (d) link utilization; (e) TCP congestion window; (f)
average TCP throughput.

non-bottlenecked sources. Defineai � ri 2 mi ; then we
haveXn
i�1

ai � Al 2 Ab 2 Am � A

We have to show that

ai � wiAPn
j�1

wj

Case A: k� 0; i.e. there are no bottleneck sources. From
the step for calculatingER in Algorithm A, we have

ai � max�ExcessFairshare�i�;ai =z�
We observe that this equation behaves like a differential
equation in multiple variables [23]. The behavior is like
that of successive values of root acquired in the Newton–
Ralphson method for finding roots of an equation. Hence the
above equation converges, and the stable values ofa i is
given by

ai � ExcessFairshare�i� � wiAXn
j�1

wjEAL�i�

Since we have assumed greedy sources and no bottlenecks
in this case, the excess activity level is 1 for all sessions.
Hence

ai � ExcessFairshare�i� � wiAXn
j�1

wj

which is indeed the desired value fora i.
Case B: k± 0; i.e. there are some bottleneck sources. Let

b i be the allocated rate corresponding torbi. Let wbi be the
weight for sessionsbi. Let Wb �

Pk
i�1 wbiEAL�bi� andW �Pn

i�1 wi : We know that the equation for the rate allocation
behaves as a stabilizing differential equation. In the steady
state all the above terms such asW, Wb and rates stabilize.
For sources bottlenecked elsewhere the algorithm calculates
a rateb i which is greater thanrbi, otherwise the bottlenecked
session would be bottlenecked at the current link. For non-
bottlenecked source the rate at steady state is given by

ai � wi�Al 2 Am�
Wb 1 W

Since the link has an overload of one at steady state, we haveXn
i�1

ai � Al 2 Am 2 Ab

which implies that

�Al 2 Am�
Xn
i�1

wi

Wb 1 W
� Al 2 Am 2 Ab

SubstitutingW for
Pn

i�1 wi we get

Wb � WAb

Al 2 Am 2 Ab

Using the above value forWb we get

ai � wi�Al 2 Am�
WAb=�Al 2 Am 2 Ab�1 W

� wi�Al 2 Am 2 Ab�
W

which is the desired value for thea i. Hence, the sessions
bottlenecked at the linklb do indeed achieve the GW
fairness. A

Theorem A1. Starting at any arbitrary state of the
network, if only greedy sources and source bottlenecked
or link bottlenecked sources are present Algorithm A
converges to GW fair allocation.

Proof. The convergence of the distributed algorithm is
similar to the centralized algorithm. Assume that the centra-
lized algorithm converges inM iterations. At each iteration
there are set of linksLi which are bottlenecked at the
current iteration<M

i�1 Li �L:

Using Lemma A1, we know that each linkl [Li does
indeed converge to the general fair allocationGl. The
distributed algorithm converges in the above order of
links until the whole network is stable and allocation isG.
The number of round trips taken to converge is bounded by
M × O�log S� since each link takes O(logSl) round trips for
convergence. A

References

[1] S.S. Sathaye, ATM Forum Traffic Management Specification Version
4.0. ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.0000.pdf,
1996.

[2] N. Yin, M.G. Hluchyj, On closed-loop rate control for ATM cell
relay networks, Proceedings of the IEEE INFOCOM, 1994,
pp. 99–108.

[3] J. Mosley, Asynchronous distributed flow control algorithms, PhD
Thesis, Department of Electrical Engineering, MIT, Cambridge,
1984.

[4] A. Charny, An algorithm for rate allocation in a packet-switching
network with feedback, Master’s Thesis, MIT, Cambridge, 1994.

[5] D.H.K. Tsang, W.K.F. Wong, A new rate-based switch algorithm for
ABR traffic to achieve max–min fairness with analytical approxima-
tion and delay adjustment, Proceedings of IEEE Globecom’96, 1996.

[6] S. Kalyanaraman, R. Jain, R. Goyal, S. Fahmy, B. Vandalore, The
ERICA switch algorithm for ABR traffic management in ATM
networks, Transactions on Networking, October 1999 (in press).

[7] C. Fulton, S.-Q. Li, C.S. Lim, UT: ABR feedback control with track-
ing, Preprint, 1997.

[8] L. Kalampoukas, A. Varma, K.K. Ramakrishnan, An efficient rate
allocation algorithm for ATM networks providing max–min fairness,
Proceedings of the Sixth IFIP International Conference on High
Performance Networking, September, 1995.

[9] K. Siu, T. Tzeng, Intelligent congestion control for ABR service in
ATM networks, Computer Communication Review 24 (5) (1995)
81–106.

[10] Y. Afek, Y. Mansour, Z. Ostfeld, Phantom: a simple and effective

B. Vandalore et al. / Computer Communications 23 (2000) 149–161160

flow control scheme, Proceedings of the ACM SIGCOMM, August,
1996.

[11] L. Roberts, Enhanced PRCA (proportional rate control algorithm),
ATM Forum/AF-TM 94-0735R1, 1994.

[12] S.P. Abraham, A. Kumar, A stochastic approximation approach for a
max–min fair adaptive rate control of ABR sessions with MCRs,
Proceedings of INFOCOM, April, 1998.

[13] Y.T. Hou, H.H.-Y. Tzeng, S.S. Panwar, A generalized max–min rate
allocation policy and its distributed implementation using the ABR
flow control mechanism, Proceedings of INFOCOM, April, 1998.

[14] Y.T. Hou, H. Tzeng, S.S. Panwar, A simple ABR switch algorithm for
the weighted max–min fairness policy, Proceedings of IEEE ATM’97
Workshop, May, 1997, pp. 329–338.

[15] D. Hughes, Fair share in the context of MCR, ATM Forum/AF-TM
94-0977, 1994.

[16] N. Yin, Max–min fairness vs. MCR guarantee on bandwidth alloca-
tion for ABR, Proceedings of IEEE ATM’96 Workshop, August,
1996.

[17] S. Fahmy, R. Jain, S. Kalyanaraman, R. Goyal, B. Vandalore, On
determining the fair bandwidth share for ABR connections in ATM
networks, Proceedings of the IEEE International Conference on
Communications (ICC), June, 1998.

[18] A. Charny, D. Clark, R. Jain, Congestion control with explicit rate
indication, Proceedings of IEEE ICC’95, 1995, pp. 1954–1963.

[19] B. Vandalore, R. Jain, R. Goyal, S. Fahmy, Design and analysis of
queue control functions for explicit rate switch schemes, Proceedings
of the IC3N’98, October, 1998, pp. 780–786. All our papers and ATM
Forum contributions are available through http://www.cis.ohio-
state.edu,jain/.

[20] R.J. Simcoe, Test configurations for fairness and other tests, ATM
Forum/AF-TM 94-0557, 1994.

[21] S. Kalyanaraman, B. Vandalore, R. Jain, R. Goyal, S. Fahmy, S. Kota,
Performance of TCP over ABR with long-range dependent VBR
background traffic over terrestrial and satellite ATM networks,
Proceedings of LCN, October, 1998.

[22] N. Golmie, Netsim: network simulator, http://www.hsnt.nist.gov/
misc/hsnt/prd_atm-sim.html, 1998.

[23] H.J. Kushner, D.S. Clark, Stochastic Approximation Methods for
Constrained and Unconstrained Systems, Springer, Berlin, 1978.

B. Vandalore et al. / Computer Communications 23 (2000) 149–161 161

Bobby Vandalorereceived his BTech degree in 1993 from Indian Insti-
tute of Technology, Madras and MS degree in 1995 from The Ohio State
University, both in Computer Science. He is currently a PhD candidate
at The Ohio State University. His main research interests are in the
areas of multimedia communications, traffic management, and perfor-
mance analysis. He is the author of several papers and ATM Forum
contributions. He is a student member of the ACM, the IEEE, and the
IEEE Communications and Computer societies.

Sonia Fahmyis an assistant professor at the Department of Computer
Sciences, Purdue University, IN. She received her PhD degree in
Computer and Information Science in 1999 from The Ohio State
University. Her primary research interests are in the areas of network
architectures and protocols, multicasting, traffic management and
quality of service provision. She is the author of several journal and
conference papers and ATM Forum contributions. She is a member of
Phi Kappa Phi, Sigma Xi, Upsilon Pi Epsilon, the ACM, ACM
SIGCOMM, the IEEE, and the IEEE Communications and Computer
societies.

Raj Jain is very active in the areas of traffic management and quality of
service in data networks. His research has influenced the directions of
Traffic Management and Testing working groups of ATM Forum. He is
an active participant in several other industry forums including Internet
Engineering Task Force (IETF), Institute of Electrical and Electronic
Engineering (IEEE), American National Institute (ANSI), and Telecom-
munications Institute of America (TIA). He is a Fellow of IEEE, a fellow
of ACM, and serves on the editorial boards of Computer Networks,
Computer Communications (UK), and the Journal of High Speed
Networks. He is the author of two popular books: “FDDI Handbook:
High Speed Networking using Fiber and Other Media” published by
Addison-Wesley and “The Art of Computer Systems Performance
Analysis” published by Wiley. Dr Jain is on the Board of Directors of
MED-I-PRO Systems, LLC, Pamona, CA, and on the Board of Techni-
cal Advisors to Nexabit Networks Westboro, MA. He is also a consultant
to several networking companies. His publications can be found at
http://www.cis.ohio-state.edu/tjain/

Rohit Goyal is a senior software engineer at Nexabit Networks. He
received a PhD in Computer Science from The Ohio State University
in 1999. His primary research interests are traffic management, quality
of service, and performance analysis for high-speed networks. He is an
active participant in the ATM Forum, IETF, and TIA, and has published
several conference and journal papers. He received a BS in Computer
Science from Denison University, Granville, OH, and an MS in Compu-
ter and Information Science from The Ohio State University.

Mukul Goyal is currently a PhD student in CIS Department at The Ohio
State University. He received his MS from CIS Department at The Ohio
State University in March 1999. He worked as a software engineer in
Siemens Communication Software Ltd., Bangalore, India from 1995 to
1997.

