
COLAP: A Predictive Framework for Service
Function Chain Placement in a Multi-cloud

Environment

Lav Gupta*

Department of
Computer Science

& Engineering
Washington Univ.
in St. Louis, USA

Mohammad
Samaka

Dept. of
Computer Science
Qatar University

Qatar

Raj Jain

Department of
Computer Science

& Engineering
Washington Univ.
in St. Louis, USA

Aiman Erbad

Department of
Computer Science
Qatar University

Qatar

Deval Bhamare

Department of
Computer Science
Qatar University

Qatar

Chris Metz

Cisco Systems
San Jose

* Corresponding author
Abstract—Network function virtualization (NFV) over multi-

cloud promises network service providers amazing flexibility in

service deployment and optimizing cost. Telecommunications

applications are, however, sensitive to performance indicators,

especially latency, which tend to get degraded by both the

virtualization and the multiple cloud requirement for widely

distributed coverage. In this work we propose an efficient

framework that uses the novel concept of random cloud selection

combined with a support vector regression based predictive

model for cost optimized latency aware placement (COLAP) of

service function chains. Extensive empirical analysis has been

carried out with training datasets generated using a queuing-

theoretic model. The results show good generalization

performance of the predictive algorithm. The proposed

framework can place thousands of virtual network functions in

less than a minute and has high acceptance ratio.

Keywords—multi-cloud computing; network function

virtualization; service function chain; virtual network function;

placement; latency; machine learning; support vector regression

I. INTRODUCTION

Network Function Virtualization (NFV) can potentially
provide the benefits of flexible scaling, redundancy and lower
total cost of operations. Substantial ground has been covered
by European Telecommunications Standards Institute (ETSI)
in terms of exposition and group specifications since the
release of their first NFV whitepaper in 2012 [1]. Since then
there has been increasing interest in the research community on
various aspects of NFV. Most carrier networks have wide area
and need to use multiple clouds. However, as mentioned in [2],
the proposed solutions do not offer real support for some of the
core requirements. When it comes to extracting carrier grade
performance from NFV, especially in multi-cloud
environments, much is still to be done [3], [4]. Two main areas
where NFV falls short compared to traditional networks are
capacity and performance. In this work we focus on
performance, a major issue in telecommunications networks
that require control over parameters like latency, jitter and
packet loss and uptime of the order of five nines (downtime of
just 26 seconds downtime in 30 days). Performance takes a hit
when the dynamic telecommunications environment meets the

ease of creation, destruction, migration and scaling of NFV as
the possibility of uncontrolled virtualization increases. This has
led the authors in [5] to comment that virtualization may lead
to abnormal latency variations and significant throughput
instability irrespective of utilization.

Cloud computing and NFV have a natural synergy and it is
expected that industry standard IT cloud technologies, will
evolve to support the requirements of telecommunications
networks [6]. With multi-cloud infrastructure, the
telecommunications service providers (TSPs) can take the
advantage of competitive pricing, better points of presence,
flexibility of scaling and avoiding single point of failure (In
this paper, reference to the term TSP also includes the ISPs, the
Internet service providers). In their infrastructure overview
ETSI has indicated latency and throughput requirements as the
discouraging factors for use of public clouds. Several ITU
recommendations, viz., G.107, G.109, G.113, G.114, define
standards of various aspects of latency for carrier-grade mobile
and fixed telephony.

The Cloud Service Providers (CSPs) have to reconcile the
conflicting requirements of high utilization of physical
infrastructure with the desired network performance and
optimize the cost of eventual placement. The proposed cost
optimized latency aware placement (COLAP) framework
implements two major concepts: 1) A fast algorithm
implementing randomized selection of clouds for optimum
cost, and 2) heuristics for placement using predictive
containment of latency based on the machine learning
technique of support vector regression (SVR).

The rest of the paper is organized as follows. Section II
presents a summary of the related work. In Section III, we
discuss service chains and their placement in multi-cloud
infrastructures. The problem description and solution are in
Section IV. In Section V, we present the evaluation results.
Finally, Section VI gives summary and ongoing work.

II. RELATED WORK

Much of the work done on virtual machine placement falls
into the category of static, reactive and on request from service
providers [7]. A lot of work in this category involves setting up

This work has been supported under the grant ID NPRP 6 - 901 - 2 - 370
for the project entitled "Middleware Architecture for Cloud Based Services
Using Software Defined Networking (SDN)", which is funded by the Qatar
National Research Fund (QNRF) and by Cisco Systems. The statements made
herein are solely the responsibility of the authors. eprint

The 7th IEEE Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, Jan 9-11, 2017

the problem as an integer linear program (ILP), mixed integer
linear program (MILP), mixed integer quadratic constrained
program (MIQCP) or a similar problem with one or more
objective optimizing resource level parameters like compute
resource usage, storage usage, power consumption along with
constraints like capacity and affinity. Since solving the
placement problem is NP-hard [8], algorithms like greedy
placement and heuristics like first fit decreasing (FFD), have
been proposed to limit the time a linear or a quadratic
programming solution takes to give a reasonable solution. As
far as the VNF placement over NFV Infrastructure (NFVI) is
concerned, MILP based solution in [9] takes into account both
network level parameters (minimization of link utilization,
latency and traffic flow) and NFVI level metric (minimization
of computing resources). The authors in [10] have set up the
problem as MIQCP to obtain a placement scheme for the
network functions and chaining them together considering the
limited network resources and functional requirements.
Optimization of network operation costs and utilization to
determine required number and placement of VNFs has been
discussed in [11]. The authors provide dynamic programming
based heuristic to solve larger instances with 1.3 times the
optimal solution.

More recently dynamic and proactive techniques have been
studied. The authors in [12] have proposed an ILP based
solution for optimization of the response time. The authors in
[13] use machine learning based workload prediction to take
care of delays in place and scaling virtual functions. Of the
three techniques studied, Support Vector Regression (SVR),
Neural Networks (NN) and Linear Programming (LP), SVR
displays superior prediction accuracy in a 9-12 minute window.
Multi-agent based reinforcement learning approach has been
presented in [14]. In [15], the authors apply genetic algorithm
to the placement problem to get an algorithm that is faster
compared to MILP based solutions and yet provides a good
solution. Authors in [16] describe an architecture based on an
orchestrator that ensures the automatic placement of the virtual
nodes and the allocation of network services on them.

III. SERVICE CHAIN PLACEMENT ON MULTIPLE CLOUDS

This section aims at discussing the terminolgy involved in
and the need for dynamic placement of service function chains
across mutiple clouds.

A. Virtual Network Functions and Service Function Chains

Each network service (NS) is implemented through one or
more service function chain (SFC). Each SFC consists of basic
services like routing and middle boxes like firewall
implemented as virtual network functions (VNF) which are
chained to process the traffic in a particular way [17]. A VNF
is software based and can be instantiated on virtual machines
(VMs) created on commodity servers. Examples are LTE sub-
systems like Internet Multimedia Subsystem (IMS) and Packet
Gateway (PGW) and network middleware like firewall, load
balancers and WAN accelerators. A VNF forwarding graph or
an SFC is a set of VNFs or services with a well-defined
sequence for the packets to travel.

vnf1

vnf2

vnf3 BRAS

Aggr Switch
Core Router Access

Network

SFC for Broadband Service

Users

Internet

Fig. 1. Broadband service function chain

 A Policy is a set of rules that define actions to be taken
under different conditions. Each policy is implemented as one
or more service chains [18]. A simple policy could be to
aggregate the subscriber traffic coming through the access
network and then route it through the Broadband Remote
Access Server (BRAS) for billing and accounting before being
sent through the core router to the Internet. In Figure 1, The
BRAS is shown to have multiple instances to cater to the
amount of traffic requiring processing through this function.

B. Placing Service Chains Across Multiple Clouds

Upon request from a Telecommunications Service Provider
(TSP), the Cloud Service Provider (CSP) or a cloud broker
dimensions the SFC and places the required number of
instances of VNFs on available clouds. Some services are
dynamic where the type and number of VNFs would change
frequently while others may be static where VNFs types may
remain the same but capacity requirement may change. In
either case the CSP would have to deal with changes in the
capacity requirement of VNFs and links between them. If at
any time the service level agreement (SLA) conditions are
breached, the CSP has to pay the stipulated penalty. Thus, end-
to-end latency and processing delays need to be continually
monitored and managed whether the placement is static or
dynamic.

Placing service chains as a unit rather than individual
functions separately yield better results [19]. It gives an
opportunity to achieve global minima for the parameter being
optimized when placing a full chain. At the infrastructure level
inter-VNF communication overheads can be reduced. If
sufficient resources are not available to implement full service
chains, then the request is rejected or, if the policy permits,
degraded service (for instance without a firewall) is provided
[17], [20].

A tenant’s profile is specified as <cN, v1, v2 …vm, p> for
each request. Here v1…vm gives the types of VNFs and order
of traffic traversal (assuming a linear chain), cN is the native
cloud through which the traffic enters and p is the desired
packet rate (packet/second). Other stipulations like cost
optimization and latency threshold (Lth) are part of the SLA.
All the requests of the tenant service providers are
consolidated to calculate the required number of instances of
each VNF and the inter-VNF links of appropriate capacities.
The CSPs cloud graph is represented as G=(C, T) where C is
the set of available clouds c1,c2…ck and T is the set of inter-
cloud links tij, where i≠j, i,j≤k. The cloud broker/cloud service
provider carries out the task of mapping this chain onto the

available clouds to achieve optimal results for the tenant
service provider. In our case, optimality refers to the least cost
solution that meets the end-to-end latency threshold
requirement. Other QoS parameters like jitter and packet loss
can be taken care of in a similar manner. In Fig. 2 we have an
example of mapping service chains to multiple clouds with
traffic flowing from different areas through different VNFs.
The end-to-end latency of the service function chain would
depend on the placement of the constituent functions.

Fig. 2. Mapping service function chain to multi-cloud

IV. THE NFV PLACEMENT PROBLEM AND THE PROPOSED

SOLUTION

Placing network functions and programming network
flows, in a cost-effective manner, while ensuring acceptable
end-to-end delays represents an essential step toward enabling
the use of NFV in production environments [21]. From the
tenant’s point of view the placement problem boils down to
placing network functions to meet criteria like cost, jitter,
packet loss, latency, throughput in services like voice and
video calls, content delivery, broadband services, carrier
backbone or a combination of these. The cloud service
provider would like to minimize the use of resources while
meeting the tenant’s requirements. A strategy that reconciles
these requirements is the optimal placement strategy. In this
work, we discuss a strategy that would primarily optimize cost
and at the same time keep end-to-end latency below the
threshold prescribed by the carrier. From the discussion, it will
become clear that the method would work for other quality of
service parameters.

A. Problem Description

The cost of placing an SFC is a function of the choice of
clouds and the amount of compute, storage and networking
resources consumed. Latency depends on a number of factors
like the state of compute, networking and storage resources,
installed and used capacities of the servers and the links,
traffic patterns on the link, the types of functions sharing the
servers and distance between clouds. All these factors
constitute the state St of the multi-cloud at time t. The factors
governing the state may change during the course of the
system’s operation [16]. The amount of latency introduced in
a placement by the state of the clouds would, therefore,
change over time. Given the state St, latency can be calculated
using assumptions about the type of traffic, e.g., Poisson and

service times and the queuing discipline. Herein lies our first

problem. The process of creation of virtual resources to host
network functions and booting them up takes 15-20 minutes
[22]. Loading the network function software for various VNFs
and chaining needs additional time. Placement plan based on
calculations at time t based on the state St is actually carried
out at a time t+1. This applies to initial placement as well as
reconfigurations during operation. Fig. 3 shows a placement
request for a 5-VNF service chain over four clouds. At the
time of planning, the calculated end-to-end latency is 20 ms.
When the actual placement takes place and the VNFs are
booted up and chained, the actual latency turns out to be
50ms. This would cause SLA violation right at the inception
and trigger reconfiguration of the chain. Reconfiguration may
require migration of virtual network functions and re-chaining
causing disruption of service. Summing over several service
chain instantiations, this can lead to a heavy penalty to be paid
by the cloud service providers and a loss of customers and
revenue to the communication service provider. This provides
the motivation for prediction of the state at t+1 so that
placement remains consistent with the requirements.

24M/155M

64M/2.5G

10/2x8M

A

C

B

8/40

30/54

4/10

State at the me of planning deployment

128/155M

1.2G/2.5G

2/2x8M

A

C

B

34/40

30/54

8/10

State at the me of provisioning

20ms

50ms

VNF1

VNF2

VNF3

VNF4 VNF5

40/60

40/60

VF1

VF2

VF3

VF4 VF5

Capaci es shown: used/installed

M: Mega-, G: Giga- bps

D
D

Fig. 3. Demonstrating need for predictive placement

The second problem arises from the need to continuously
keep latency below the specified threshold during operation.
This may require reconfiguration and change of placement
(migration). The algorithm should be fast in giving optimum
SFC placement decisions for carrying out scaling or migration
decisions to dynamically manage the network. This
necessitates solving the placement problem fast but the
problem is NP hard and ILP based solutions may take hours to
converge to the optimum solution [15]. Hence, in many
situations they may not be suitable for dynamic placement.

We need fast methods, for example one producing a
placement for a 100-function network in the sub-minute
region, to make dynamic scaling a reality. Machine learning
based predictive methods would fare well in dynamic situation
as they work fast and unlike other methods they can capture
all the known and unknown interacting parameters. The work
that we report in this paper proves this hypothesis.

B. Solution to the Placement Problem; the COLAP

framework

The proposed COLAP framework has two main
components: the first component is a random selection
algorithm for fast selection of the least-cost cloud set and the
second, an efficient heuristic for lowest cost first (LCF)
placement within the selected least-cost cloud set taking into
account the predicted latency values at the expected time of
placement. The framework provides interfaces for the
CSP/Cloud-broker and the tenant TSP. It holds in its databases
the cloud configuration data, tenant’s SLA (including latency
threshold and cost budgets and tariffs. It takes tenant’s initial
requests and online requests during operation.

1) Optimization by random search: Minimization by

random search has been mathematically studied in [23] and

has been found to be competitive in many situations. Its

application in the random cloud selection algorithm has

proved to be quite efficient in our situation. There are two

constraints that we are trying to meet simultaneously – cost

and latency. We are optimizing cost across all clouds and

trying to keep the latency within threshold (Lth). The usual

method would be to search for m out of total n clouds (m≤n)

which give the least total cost and the total latency .

Searching for m least-cost clouds, with constrained latencies,

in an unsorted vector would have worst case time complexity

of O((mn
2
-m

2
n). For a case of selecting 5 clouds out of 100 we

end up with about 47,500 iterations. The random selection

algorithm (Algorithm 1) converges fast and gives the least

cost with a high accuracy.

Algorithm 1: RANDOM_SELECTION (C, cv_model, r_clouds)

//C: set of available clouds, cv_model: trained model
init small //contains the smallest latency cost sum
init lat // latency
init iter //set iterations large enough for convergence
while (iter)
 init r_clouds //holds final min cost set of clouds
 //find a set of m unique clouds
 while (m_clouds not unique)

 m_clouds � random set of m clouds from set C
end while
//test set r_clouds still has lowest cost and lat≤threshold
call PREDICT_LATENCY //uses trained SVR model

 for k=1,m
 lat= lat+latk //initial assessment of total latency
 cost=cost+costk
 end for
 if cost<small
 small = cost
 r_clouds�m_clouds
 end if
end while

The algorithm selects the desired number of unique clouds by
repeated random selection always remembering the lowest
cost cloud-set so far that has total latency below the given
threshold. When the random selection no longer changes
(alternatively, a fixed number of iterations can be used based
on empirical studies), the process terminates and the resulting
least-cost cloud-set is used for placement of the SFC. The cost
includes that of cloud resources and inter-cloud links. The link

costs are usually larger and ensure locality of clouds. This
total cost and latency are upper bound as not all clouds may be
required for placement. Our empirical study validates fast
convergence to the global minimum. In one trial a total of fifty
experiments were conducted to select the least cost set of five
clouds out of ten. Each experiment was performed with 1500
and 1700 iterations. The minimum possible cost was 51 units
and latency threshold was set at 150 ms. In the former case,
98% of times the minimum cost of 51 units was reached with
latency of 137 ms. In the 1700 iteration case, 100% times the
minimum cost clouds were selected with the latency below the
threshold. For another trial of 5000 experiments, 50 each with

the number of clouds increasing from 10 to 100 and iterations
from 500 to 2000, the convergence rate is shown in Fig. 4.
Somewhere between 1500 and 2000 iterations the algorithm
converges to the minimum cost in 100% cases.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

T
im
e
s
co
n
v
e
rg
e
d
 t
o

 l
e
a
st

 c
o
st

No of Clouds

Convergence Rate

Iter=500 Iter=1000 Iter=1500 Iter=2000

Fig. 4. Number of convergences in 50 experiments

2) Predictive placement: At the heart of our framework is

an intelligent latency prediction module that provides inputs

for both the initial placement and the scaling functions. The

main idea is to use a machine learning based predictive

technique to predict latency at the time when the service chain

would actually be activated. In the literature, we find use of

many supervised machine-learning techniques in cloud

computing settings such as: Artificial Neural Networks

(ANNs), Bayesian networks, Ensemble classifiers and Support

Vector Machines (SVMs). The authors in [24] have observed

in their review that SVM is the best technique for

classification. Our situation of multi-cloud resources is

different from the ones studied.

We worked with a number of methods and find interesting
results using Support Vector Regression (SVR), which we will
share in this paper. SVR offers the advantage of unique global
minimum, shows good generalization properties on real-life
test data, and handles non-linear functions. Additionally, we
apply cross-validation (both k-fold and holdout) to make the
method quite useful [25]. As we shall see shortly, appropriate
choice of parameters results in predictions with low errors.
Examination of literature shows that SVR technique has
proved its superiority in problems like resource prediction,

performance modeling, cost-effective storage allocation, and
anomaly detection. Some important aspects of SVR are given
below for better understanding of its use in COLAP. For a
more thorough exposure, readers are referred to [26].

Let (xi,yi), i=1…n, be sets of data consisting of the
predictor vectors xi and corresponding labels yi. Each predictor
vector xi consists of values of ‘d’ selected features that

together produce a particular label yi. Thus, xi ∈ ℝd
and yi ∈ ℝ.

In general, vectors in the training set are assumed to be
independently and identically distributed from the universal
dataset. The goal is to find a function f(x) that represents the

labels yi with a precision of ϵ and is as flat as possible. Since
data may be noisy, so finding an exact fit makes
approximation too complex and sensitive to errors. It might
lead to overfitting. Hence, the use of precision ϵ or the error-
insensitive tube within which errors are ignored. In the linear
case f(x) can be written as:

 f(x)=<ω,x>+b where ω ∈ ℝd, b ∈ ℝd
 (1)

Here, ωωωω is the learned weight vector in which all the
learning is concentrated and b is the bias. <.,.> represents the
dot product. Flatness of the function requires that Euclidean
norm ||ω||2 be minimized. Minimization of ||ω||2 is equivalent to
maximization of the margin between the classes in the
classification case. In the dual form the convex optimization
problem can be written as:

Minimize ½ ||ω||2
Subject to yi-<ω,xi>-b ≤ ϵ and <ω,xi>+b-yi≤ ϵ (2)

The ½ in the minimization function comes from the width
of margin being 2/||ω||. The value of ϵ can affect the number of
support vectors used to construct the regression function. The
bigger the ϵ, the fewer support vectors are selected. On the
other hand, bigger ϵ values result in more ‘flat’ estimates. Such
a function may, however, not exist, i.e., the convex
optimization problem may not be feasible. To make the
constraints feasible slack variables ξ and ξ* are introduced,
which allows some points to be on the wrong side of the
dividing plane. The optimization problem now becomes:

Minimize ½||ω||2 + C Σi
n

=1 (ξ+ξi)
Subject to yi-<ω,xi>-b ≤ ϵ +ξ and <ω,xi>+b-yi≤ ϵ +ξ*; ξ,

ξ
*
≥0 (3)

The constant C determines the tradeoff between the flatness
of f and the amount of error allowed above ϵ. A low C makes
the decision surface smooth; a high C aims at classifying all
training examples correctly by giving the model freedom to
select more samples as support vectors. We choose how
significantly the misclassifications should be treated and how
large the insensitive loss region should be, by selecting suitable
values for the parameters C and ϵ.

ω can be found by writing the Langrangian function and
differentiating it with respect to ω. New predictions y’ can be
found using Langrangian multipliers αi. We need to minimize
the Langrangian functions with respect to ω, b and ξ and
maximize with respect to α. This will give values of ω and b.
y

’=∑(αi++αi-)xi.x
’+b. A set S of Support Vectors xs can be

created by finding the indices i where 0 < α < C and ξ+ or ξ- = 0
as the case may be.

In practice, the data points may not be linearly separable.
The data x is projected to a higher dimension using function
ϕ(x). Then we find a linear discriminant function for
transformed data ϕ(x). The nonlinear discriminant function is
of the form g(x)=wϕ(x)+w0. Poor generalization and
computational complexity that may result from projecting data
to higher dimensionality involves can be avoided through the
use of a kernel function that maps the input feature space of
dimension d to a higher dimensional space in which the
relation becomes linear. xi is implicitly replaced by Φ(xi) by
carrying out dot product with k<xi,x> = Φ<xi,x>. In our
studies, we have found that performance of RBF is better than
the others. This choice is based on the cross validation error in
our setting. The RBF kernel has the form given below. Here xi
and xj are two sample feature vectors and ϒ is the parameter
that sets the spread of the kernel.

 K(xi,xj)=exp(-ϒ||xi-xj||) (4)

Where ϒ is the parameter that sets the spread of the kernel

a) Tuning of parameters: One of the advantages of
SVR is that it has a very few parameter to train. The three
hyper-parameters that we have focused on are ϵ, C, ϒ. Tuning
these hyper parameters is one of the main challenges in
improving the predictive accuracy. The ϒ parameter can be
seen as the inverse of the radius of influence of samples
selected by the model as support vectors. When ϒ is very
small, the model is too constrained and cannot capture the
complexity or “shape” of the data. If gamma is too large, the
radius of the area of influence of the support vectors only
includes the support vector itself and no amount of
regularization with C will be able to prevent overfitting. The
constant C determines the tradeoff between the flatness of ‘f’
and the amount of error allowed above ϵ. A low C makes the
decision surface smooth; a high C aims at classifying all
training examples correctly by giving the model freedom to
select more samples as support vectors. Most researchers have
followed a standard procedure in using a grid search [27] to
determine the appropriate values. We used grid search with
cross-validation error as the guiding parameter. Both k-fold
and 20% holdout methods were used to find the best
combination of hyperparameters.

The heuristic for placement works as in Algorithm 2.

Algorithm 2: PLACE_SERVICE_CHAIN (vnf types, demands, traffic)

Set up cloud data // all ck ∈ C and tk,j ∈ T

Set up client data // all vi ∈ V
Call TRAIN_MODEL (predictors, labels,cv_model)
Latency threshold�Lth

Cost budget � CB

NCloud�cN

vi
c
� demands

n�length of the service function chain (number of VNFs)
native � true
if (native==1)

for vi, i=1,n //place as many VNFs as possible in the native cloud
if cc

N –cu
N > vi

c // native cloud has unused capacity
pop vi

cu
N� cu

N+vi
c // update capacity

 else
break

 end if
end for

end if

if vnf!=0 // for remaining vnfs
call RANDOM_SELECTION //get a set of lowest cost clouds
sort ascending r_clouds on cost //r_cloud: set of smallest latency clouds
while vnf!=0

 place vnfs //on sorted clouds
 update capacity
 update bandwidth
 update vnfs_placed status

end while
end if
if all_vnf_placed & latency of chain<Lth & cost of chain<CB

output placement details
else

report failure to place
end if

TABLE I. SYMBOL TABLE

Sym

-bol

Description Sym-

bol

Description

ck Cloud k cN Native cloud

C Set of all clouds
available

vi
c Capacity demand for VNF i

tkj Link from cloud k to j n Types of VNFs

T Set of all inter-cloud
links

cc
N Equipped cap of native

cloud

vi
VNF i cu

N Used cap of native cloud

V Set of VNFs

Lth Latency threshold m No of clouds selected

CB
Cost budget vi

c Compute capacity required
for VNF i

 The placement algorithm uses cloud and tenant data as
input. It is also presumed that a separate module for predicting
latencies has produced a trained model. The placement
normally begins with the native cloud (can be overridden by
setting native = 0). The algorithm accommodates as many
VNFs/services as possible in the native cloud. For the
remaining VNFs the SVR module predicts latency of various
clouds. This algorithm uses Algorithm 1 to select the set of m
least cost clouds. The number m can be decided to start with
enough capacity to place all the VNFs. For the least cost set,
the algorithm calculates the assignment of VNFs in the
sequence in which they appear in the SFC. The final cost and
latency is reported. If the clouds are exhausted and placement
is not completed then failure to place is reported. If this case
happens frequently then the number m needs to be increased.

V. EVALUATION OF THE FRAMEWORK

We have evaluated our framework in two ways: simulation
using queuing-theoretic model and actual implementation on
Cloudlab. In both the cases, we generate data that is used for
training of models using SVR. In this work, we have reported
results of the models trained with datasets obtained via
simulation.

A. The experimental set-up

The experimental set-up consists of the network
configuration as shown in Fig. 5. As we shall see in Section V
(D), the method scales well for larger number of virtual
functions. The traffic entering the aggregation switch (VNF1)
splits into two streams, one each going to PE-router1 (VNF2)
and PE-router2 (VNF3) based on some policy. Traffic may
originate in one of many user clusters. The end-to-end latency
of the chain would be greater of the latency given by the two
routes VNF1-VNF2-VNF4-VNF5 and VNF1-VNF3-VNF4-
VNF5.

Fig. 5. Experimental service chain configuration

 We have used a test configuration of 10 clouds that are
fully interconnected. As has been seen in Section IV (B),
randomized selection converges fast even for much larger
number of clouds. The compute capacities of the VMs hosting
VNFs are a single consolidated figure for processor, memory
and storage (as in Amazon EC2) and are given in the Table II.

TABLE II. COMPUTER RESOURCE CATEGORIZATION

Integrated capacity vCPUs Memory Storage

1 1 1GB Flexible

2 2 2GB Flexible

4 4 4GB Flexible

6 4 8GB Flexible

8 8 8GB Flexible

10 8 16GB Flexible

 The demanded capacities could be fractions of these sizes.
The link capacities are chosen from the set {0.016, 0.064,
0.100, 0.155, 0.622, 2.5} representing the capacities in Gbps.
The links are presumed to be bi-directional. However, the
traffic flow in the experiment is in the direction of ingress at
VNF1 to egress at VNF5.

Development of trained prediction models: Selection of the
predictor variables forms an important aspect of working with
SVR. Too many features make the model complex, increase
training time and the test error. Feature selection improves
accuracy and speed. We have used cross-validation error as
the guiding factor for inclusion of features in our models. The
set of variables used for this experiment are given in Table III.

TABLE III. PREDICTOR VARIABLES AND OUTPUT LABEL

 Predictor variables Label (output)

x1 Origin cloud compute capacity Installed y: Latency (ms)

x2 Destination cloud compute capacity installed

VNF1

VNF2

VNF4 VNF5

Aggr. Sw. BRAS P-Router

PE-Router1

VNF3

PE-Router2

x3 Link capacity installed (Gbps)

x4 Link capacity used (Gbps)

x5 Origin cloud compute capacity used

x6 Destination cloud compute capacity used

x7 No of user clusters

x8 Distance between origin and destination clouds

The training vector has the form x = [x1, x2, x3, x4, x6, x7, x8]
T

and y is the label. A brief justification for including these
features follows. The equipped computer capacities govern the
number of VMs created and VNFs instantiated on a server.
These VMs cause interference in each other’s operations
because of shared resources which may lead to delays. Each
additional Gbps of equipped capacity does not give the same
increase in traffic carrying capacity. The amount of traffic that
can actually be carried depends on grade of service required.
Traffic depends on the number of clusters and latency depends
on traffic requiring this feature to be included. Propagation
delay depends on length of the link which is approximated by
the distance between the clouds.

B. Training datasets

Data plays an important role in building up trained models.
The quality and quantity of the datasets will affect the learning
and prediction performance. To make the training process
credible, we obtained training datasets by two methods –
simulation involving node and link queuing delays and test bed
implementation on using CloudLab. In simulation, all
significant delays: processing delay in the clouds, queueing
delay in the virtual machines, propagation delay in the link,
queueing delay in the link and transmission delays [28] were
accounted for. The network would carry voice, data and video
traffic. Some of these appliations are real time and their

packets will go with higher priorioty. Queuing delay is the
variable part of the end-to-end delay and depends on the
network load and how the traffic behaves. The total time spent
in the network by voice and data packets can follow any
distribution. It may be presumed that we have a M/G/1
queueing system of infinite capacity with non-preemptive
priority [29]. Traffic mixing allows us to use Kleinrock
independence approximation to perform queue-wise
calculations.

 When the traffic exceeds the capacity of a node then there
is a node queuing delay before the packets can be processed.
The processing delay includes the time the node spends in
error correction and other functions of the node (say flow
volume calculation in BRAS) till the time the packet is
assigned to an outgoing link queue for transmission. The link
queuing delay is time between assignment of a packet to a
queue and beginning of its transmission. The transmission
delay is time between the transmission of the first and the last
bits of a packet. The propagation delay is time between
transmission of the last bit at the node and it being received at
the next node. Retransmission delays have not been included.

A C++ program was written to generate the dataset using
the parameters described above for a special case of M/D/1
queues. The link length feature has been normalized by 500 to
keep the numbers comparable with other feature value. The
model is trained with latencies depending on the anticipated
startup lag. A snapshot of part of one of the training sets is
given in Table IV:

TABLE IV. EXTRACT OF A TRAINING DATASET

x1 x2 x3 x4 x5 x6 x7 x8 y

1 1 0.3 0.15 0.5 0.5 10 0.1 1.71872

6 2 2.5 1.25 3 1 10 0.4 1.73968

6 2 2.5 1.75 4.2 1.4 10 0.4 1.79711

6 1 2.5 0.5 1.2 0.2 10 0.2 1.80429

2 1 0.064 0.0064 0.2 0.1 10 100.4 7.87455

6 1 0.622 0.311 3 0.5 10 0.6 7.89943

2 6 0.155 0.124 1.6 4.8 10 0.6 7.9167

4 1 0.016 0.0096 2.4 0.6 10 0.6 7.91769

4 6 0.1 0.03 1.2 1.8 10 0.4 4.64659

1 4 0.155 0.0155 0.1 0.4 10 0.2 4.67738

1 6 0.064 0.0256 0.4 2.4 10 0.2 4.70646

2 6 0.155 0.0775 1 3 10 0.4 4.76358

1 1 0.622 0.2488 0.4 0.4 10 0.4 2.2482

2 6 2.5 2 1.6 4.8 10 0.4 2.2689

6 2 0.1 0.04 2.4 0.8 10 0.4 2.34874

1 4 0.155 0.1085 0.7 2.8 10 0.2 2.35271

The features are as described in Section IV (A). The values
of x1, x2, x5, and x6 are integrated capacities as per Table II. The
link capacities x3 and x4 are in Gbps. The number of clusters x7
is taken as 10 in the data shown. The inter-cloud distance x8 is
the distance in miles scaled down by a factor of 500.

C. Simulation results

The training sets generated by the developed generator
program was used to create models in MATLAB R2016a and
WEKA. These were tested on a 64 bit machine with i7 Intel
quad core processor, L2 Cache (per Core): 256 KB, L3 Cache:
6 MB, and 8 GB RAM. Important outcomes are described
below:

1) Tuning of the models: We carried out extensive trials
with k-fold and 20% holdout cross-validation. It was seen that
20% holdout gives better results in terms of lower errors.
Therefore, for arriving at a workable combination of C, ϒ and
ϵ, we carried out further experiments with 20% holdout cross-

Fig. 6. Major communication delays

Node 1
P

ro
ce

sso
r

Traffic

Node

queuing

delay
Processing

delay

Link queuing

delay

Propagation

delay

 Node 2

validation. A number of such runs narrowed down the values to
C=1×10-2 and ϒ=1. In both Matlab and Weka, the cross-
validation loss with externally tuned parameters was less than
that from the system tuned values by as much as an order of
10.

2) SVR Quality of Generalization: The basic idea of using
latency prediction to improve placement of virtual functions at
the time the service chain will be functional would only work if
the predictive model produces good predictions of latency (or
any other quality of service parameter that we may choose to
work with). The results with the Weka tool show that SVR
works quite well on different datasets as can be seen from the
training and test root mean square errors (RMSE) (Fig. 7a and
7b). The training dataset had 280 examples and the test set had
56.

Fig. 7a. SVR training error

Fig. 7b. SVR test error

 In the Matlab implementation the mean prediction error, the
RMSE, and the RMSE test error were of the same order: -5.85,
2.16, and 2.59, respectively.

 Low test set RMSE for the used training set show good
generalization on unseen test points. For a larger training set
the test errors are expected to settle slightly above training
errors. This is confirmed with a training set with 2720
examples (Fig. 8a and 8b).

Fig. 8a. Training error with larger dataset

Fig. 8b. Test error with larger dataset

 A comparative plot of training and test errors obtained
through WEKA implementation is given in Fig. 9. The test
errors are lower than training errors showing that the predictive
model generalizes on unseen data.

D. Placement Speed and Efficiency

It is important for dynamic scaling that the algorithm and
heuristic used are able do a large number of placements in a
small time. If the algorithm takes a long time in placing the
chain or making changes in response to changes in quality of
service, or deteriorating performance parameters, then the
changes may not be suitable for the situation as it evolves. On
the other hand, if maintaining the required performance does
not need all the resources that have been contracted then not
de-scaling would use up higher amount of resources leading to
avoidable expenses. According to various assessments in the
literature the run time complexity of training an SVM model is
in the range O(n2) to O(n3). According to [30] and [31], the
complexity is O(max(n,d) min(n,d)2) where d is the size of the
feature set. If n is much larger than d then it is closer to O(nd2).
However, the time complexity of the search is linear. It took
about 1.19 s to train with 2721 examples in Weka and 0.76 s in
MATLAB. For speed of placement, we tested with 10 clusters
each requesting 10 to 100 SFCs of 5 VNFs each. Thus the
number of VNFs varied from 500 to 5000. We see that the
algorithm is able to place up to 3000 VNFs less than 1 minute
(Fig. 10a).

Fig. 10a. Placement time Vs. No. of
SFCs

Fig 10b. Acceptance rate Vs No. of
SFCs

-15

-10

-5

0

5

10

15

0.
42
2

0.
89
6

1.
39
2

1.
56
1 2

2.
23
5

2.
61
5

2.
68
7

3.
02

3.
35
2

4.
15
8

4.
56
6

5.
52
5

5.
70
4

5.
57
2

6.
30
6

6.
57
4

7.
45
2

7.
62
5

8.
57
6

9.
17
7

10
.0
69

10
.9
7

11
.0
43

12
.4
67

15
.8
03

T
ra
in
in
g
/T
e
st

 E
rr
o
r

Latency (ms)

Test error

Trg error

Fig. 9. Training and test errors for the predictive model

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

P
la
ce
m
e
n
t-

m
e
 (
se
c)

No of SFC

Placement- me vs Service Func on Chains for 10

clusters

P_ me Control

 Finally, any acceptable method should maximize successful
tenant request placements. Failure to place service chains
would affect tenants quality of service and CSPs revenues. For
a medium sized placement request, viz., 100 SFCs or 500
functions, the acceptance rate turns out to be 99-100% (Fig.
10b). As the number of service chains increase, the acceptance
rate may fall because of lack of capacity to place the complete
service chains. When corrected for capacity the acceptance rate
for our algorithm remains above 90% up to the tested
configuration of 500 SFC or 2500 VNFs.

VI. SUMMARY AND ONGING WORKS

NFV in multi-cloud environment makes a great business
sense both for telecommunication service providers as well as
cloud service providers. Meeting network performance
parameters is currently difficult in such deployments. Our
proposed framework consisting of random cloud selection with
SVR based predictive placement allows fast and accurate
placement of service function chains optimizing placement cost
and meeting the latency threshold.

We are working on enhancing the framework with time
adaptive real time-SVR (ART-SVR) for taking care of periodic
traffic variatons as well as real-time nature of
telecommunications network. The new models are being
currently tested both by simulation and on CloudLab.

REFERENCES

[1] NFV Activity Report 2015,
https://portal.etsi.org/TBSiteMap/NFV/ActivityReport.aspx

[2] R. Mijumbi, J. Serrat, J-L Gorricho, N. Bouten, F. D. Turck, and S.
Davy, “Design and evaluation of algorithms for mapping and scheduling
of virtual network functions,” IEEE Netsoft, 2015

[3] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and
F. Huici, “Clickos and the art of network function virtualization,” in
Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, 2014.

[4] F. Lopez-Pires and B. Baran, “Virtual machine placement literature
review,” Polytechnic School, National University of Asuncion, Tech.
Rep., 2015, Available: http://arxiv.org/abs/1506.01509

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,”
Communications Magazine, IEEE, vol. 53, no. 2, pp. 90–97, 2015

[6] “Network Functions Virtualisation (NFV); Infrastructure Overview,”
ETSI GS NFV-INF 001 V1.1.1, 2015

[7] A. Fischer, J. Botero, M. Till Beck, and H. de Meer, “Virtual network
embedding: A survey,” in IEEE Communication Surveys, 2013.

[8] K. Li, H. Zheng, and J. Wu, “Migration-based virtual machine
Placement in Cloud Systems,” IEEE Cloudnet, 2013

[9] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing Optimization,” IEEE 4th International
Conference on Cloud Networoing (CloudNet), 2015

[10] S. Mehraghdam , M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” IEEE 3rd International Conference
on Cloud Networking, CloudNet 2014

[11] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions in NFV,” 11th International
Conference on Network and Service Management (CNSM), 2015

[12] D. Bhamare, R. Jain, M. Samaka, G. Vaszkun, and A. Erbad, “Multi-
Cloud distribution of virtual functions and dynamic service deployment:
OpenADN perspective,” IEEE International Conference on Cloud
Engineering, 2015

[13] S.A. Ajila and A.A. Bankole, “Cloud client prediction models using
machine learning techniques,” IEEE 37th Annual Computer Software
and Applications Conference, 2013

[14] R Mijumbi et al, “Design and evaluation of learning algorithms for
dynamic resource management in virtual networks,” IEEE Conference
on Network Softwarization (NetSoft), 2014

[15] W.A. Rankothge, J. Me, F. Le, A. Russo, and J. Lobo, “Towards making
network function virtualization a cloud computing service,” IEEE
International Symposium on Integrated Network Management (IM),
2015

[16] S. Clayman, E. Maini, and A. Galis, A. Manzalini and N. Mazzocca,
“The dynamic placement of virtual networkfFunctions,” IEEE Network
Operations and Management Symposium (NOMS), 2014

[17] IETF RFC 7498 P. Quinn and T. Nadeau, “Problem statement for
service function chaining,” IETF, 2015

[18] M. Ghaznavi, N. Shahriar, R. Ahmed, and R. Boutab, “Service function
chaining simplified,” arXiv:1601.00751, 2016

[19] S. Lee, S. Pack, K. Shin, E. Paik, and R. Browne, “Resource
management in service chaining draft-irtf-nfvrg-resource-management-
service-chain-03,” IETF draft 2016 Lee, Shin

[20] R. Yu, G. Xue, V. T. Kilari, and X. Zhang, “Network function
virtualization in the multi-tenant cloud,” IEEE Network, 2015

[21] M. C. Luizelli, L. R. Bays, L. S. Buriol M. P. Barcellos, and L. P.
Gaspary, “Piecing together the NFV provisioning puzzle: efficient
placement and chaining of virtual network functions,” IFIP, 2015

[22] Amazon Opworks https://aws.amazon.com/opsworks/, 2016

[23] F. J. Solis and R. J-b. WETS, “Minimization by random search
techniques,” Mathematics of operations research, 1998

[24] T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Information Sciences 177 (2007) 3799–3821,
Elsevier, 2007

[25] T. Razzaghi, O. Roderick, I. Safro, N. Marko, “Multilevel Weighted
Support Vector Machine for Classification on Healthcare Data with
Missing Values,” PLoS ONE 11(5), 2016

[26] A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,”
Statistics and Computing, 2004

[27] E. Tuba, L. Mrkela, M. Tuba, “Support vector machine parameter tuning
using firefly algorithm,” 26th International Conference
Radioelektronika, 2016.

[28] D. P. Bertsekas and R. Gallager “Delay models in data networks,”
Pearson, 1992

[29] V. Gupta, S Dharmaraja, and V Arunachalam,”Stochastic modeling for
delay analysis of a VoIP network,” Ann Oper Res, Springer Science,
2015

[30] O. Chapelle, “Training a support vector machine in the primal,” Neural
Computation, 2007.

[31] A. Abdiansah, R. Wardoyo, “Time Complexity Analysis of Support
Vector Machines (SVM) in LibSVM,” International Journal of
Computer Applications, 2015.

