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Abstract

The size of computer networks, along with their bandwidths, is growing exponentially. To support these large,
high-speed networks, it is necessary to be able to forward packets in a few microseconds. One part of the
forwarding operation consists of searching through a large address database. This problem is encountered in the
design of adapters, bridges, routers, gateways, and name servers.

Caching can reduce the lookup time if there is a locality in the address reference pattern. Using a destination
reference trace measured on an extended local area network, we attempt to see if the destination references do
have a significant locality.

We compared the performance of MIN, LRU, FIFO, and random cache replacement algorithms. We found that
the interactive (terminal) traffic in our sample had quite different locality behavior than that of the noninteractive
traffic. The interactive traffic did not follow the LRU stack model while the noninteractive traffic did. Examples
are shown of the environments in which caching can help as well as those in which caching can hurt, unless the

cache size is large.

1 INTRODUCTION

The fact that page references by computer pro-
grams exhibit locality behavior is now well estab-
lished and designing computer systems without vir-
tual memory and memory caches is practically in-
conceivable [20,27]. In the 1970s there were a large
number of studies of program behavior [16,26] that
helped design several good page replacement algo-
rithms and caching strategies. In the 1980s, with
the increasing trend towards distributed computing,
the caching of files (located remotely) and the study
of file reference behavior became an interesting topic
[5,6,13,14,17,21,23,28,29).

Recently, we discovered that the frames on computer
networks also exhibit locality behavior [9]. The un-
derstanding of this behavior will help us design the
large networks of the 1990s in an efficient manner.

The trend toward networks becoming larger and

faster, and addresses also increasing in size has im-
pelled a need to understand and exploit the locality,
if one exists. DECnet Phase IV currently allows up
to 64,000 nodes and DEC’s internal networki, called
EasyNet [18], has more than 30,000 nodes. Such
large networks obviously need more efficient address
lookups. The size of the addresses themselves is also
growing. HDLC, a commonly used datalink proto-
col standard, was designed with 8-bit addresses. All
IEEE 802 LAN protocols support 48-bit addresses
and the ISO/OSI network layer requires 160-bit (20
octets) addresses. This increased length of the key
has also necessitated a need to find efficient ways to
look up addresses. Finally, as networks are becom-
ing faster, network routers, which previously handled
a few hundred frames per second, are now expected
to handle 8000 to 16,000 frames per second. This
fast handling requires squeezing every cycle out of
the frame forwarding code.

The realization that the frame destinations exhibit lo-



cality behavior makes caching a possible alternative
for efficiently supporting large networks. By caching
the destinations recently seen, the intermediate nodes
can avoid looking through large tables of nodes with
a high probability. The address space need not be
hierarchical, the caching works with flat as well as hi-
erarchical address. Caching is transparent in that no
protocol changes are generally required to accommo-
date caching and noncaching implementations in the
same network.

The cost of memory chips has been falling rapidly,
however, their access times have not decreased as fast.
As a result, although the cost of the memory to hold
these large address databases may not be a signifi-
cant consideration (as was the case for development
of virtual memory)i, but the access time of the ad-
dress database is the major reason for our need to
find efficient ways to look up addresses. Caching al-
lows such decisions to be made correctly within the
specified time limit with a high probability. Since in-
correct decisions may result in frames being retrans-
mitted, the cache should be designed so that a very
low miss probability will result, typically less than
0.1%. This should be contrasted with page replace-
ment algorithms, where miss probability of 10% may
be considered acceptable.

In this paper, we are concerned with the problem
of address recognition in bridges. However, there
are a number of other applications in computer
networks where caching can help avoid searching
through a number of entries. For example, datalink
adapters can use caching to search through the list
of multicast addresses. The network adapter board
[11] uses caching to help decode the received frame
header. Routers and gateways can cache forward-
ing databases. Also, name servers and their clients
can use caching to improve the efficiency of name
lookup. Although, the conclusions of our reference
trace are not applicable to these other applications,
our methodology, when applied to traces of these ap-
plications, can be used to find the appropriate caching
strategy.

The organization of this paper is as follows. First, we
describe the environment in which the address trace
was measured. Second, we explain various locality
concepts and analyze the applicability of different lo-
cality models. We then compare the performance of
various cache replacement algorithms.

2 Measured Environment

In order to compare various caching strategies, we
used a trace of destination addresses observed on
an extended local area network in use at Digital’s
King Street, Littleton facility. The network consists
of several Ethernet LANs interconnected via bridges.
The network is a part of Digital’s company-wide net-
work called EasyNet [18], which has more than 30,000
nodes. The building itself has approximately 1200
nodes on several Ethernet LANs interconnected via
bridges. There are 30 Level-1 routers, six Level-2
routers, and approximately 80 bridges in the build-
ing. A promiscuous monitor attached to one of the
Ethernet LANs produced a time-stamped reference
string of approximately 2 million frames. For some
analyses, we subdivided the trace into 11 subtraces
of approximately 200, 000 frames each. The char-
acteristics of these subtraces along with that of the
complete trace are listed in Table 1.

Table 1: Trace Characteristics

Subtrace Addresses
#  Frames Total Dest. Hours
1 200000 460 244 0.12
2 200000 450 208 0.12
3 200000 449 210 0.11
4 200000 437 210 0.11
5 200000 435 203 0.11
6 200000 436 204 0.10
7 200000 444 201 0.11
8 200000 433 205 0.10
9 200000 424 210 0.09
10 200000 431 207 0.10
11 46000 379 186 0.02

Total 2046000 495 296 1.09

The total column includes addresses in destination as
well as source fields of the frame. This number is ap-
proximately equal to the number of stations on the
extended LAN since all stations periodically broad-
cast a ‘hello’ message to indicate their presence on
the network. Not all addresses appear in the destina-
tion address field since only a fraction of individually
addressed (unicast) frames pass through the moni-
tored LAN. For example, in subtrace 1, there were
460 distinct addresses; of these, only 244 appeared in
the destination address fields. Due to bridge filter-
ing, only those frames whose desinations have a short
path through the monitored segment are seen on the



segment. The hour column gives the duration of the
subtrace in hours. As shown in the table, the com-
plete trace was a result of approximately one hour of
monitoring.

There are several advantages and disadvantages of
using a trace. A trace is more credible than refer-
ences generated randomly using a distribution. On
the other hand, traces taken on one system may not
be representative of the workload on another system.
We hope that others will find the methodology pre-
sented here useful and will apply it to traces taken in
environments relevant to their applications.

3 Locality: Concepts

In this section we review some of the well-known con-
cepts about locality. These concepts were developed
during studies of page reference patterns, but apply
equally well to file reference or destination reference
patterns. In the following discussion, the term ad-
dress refers to page, file, or the destination node en-
countered.

The locality of a reference pattern may be temporal
or spatial. Temporal locality implies a high proba-
bility of reuse. For example, the reference string {3,
3, 3, 3, 3, ...} has a high temporal locality, since
the address 3 is used repeatedly once it is referenced.
Spatial locality implies a high probability of reference
to neighboring addresses. For example, the string {1,
2, 3, 4, 5, ...} has a high spatial locality since after
a reference to address k, the probability of reference
to k + 1 is very high. While the definition of nezgh-
boring addresses is somewhat clear for page and file
addresses, it is not so clear for networks. Spatial lo-
cality, if present, is useful in designing prefetching
algorithms since the information likely to be used in
the near future is fetched before its first reference,
thereby, avoiding a cache miss. Page reference pat-
terns exhibit both temporal as well as spatial locality.

The terms persistence and concentration have also
been used to characterize locality behavior [2]. Per-
sistence refers to the tendency to repeat the use of a
single address. This is, therefore, similar to temporal
locality. Concentration, on the other hand, refers to
the tendency of the references to be limited (concen-
trated) to a small subset of the whole address space.
A reference string with high concentration is good in
that a small cache would produce large performance
gains. Persistence can be measured by counting con-
secutive references to the same address, while concen-

tration can be measured by computing the fraction of
address space used for a large fraction of the reference
string. For example, in a reference string with high
persistence, the probability of the same address being
referenced consecutively may be 60%, for instance.
Similarly, in a string with high concentration, 99%
of the references may be to 1% of the address space.
Bunt and Murphy [2] have done extensive studies of
persistence and concentration in memory and file ref-
erence strings.

Virtual memory is one of the first applications of
locality concepts in computer systems design. The
pages actively being used are kept in the physical
(cache) memory. The key differences between virtual
memory, file caching, and destination address caching
are summarized in Table 2. In virtual memory sys-
tems, a very large cache (physical memory) gives bet-
ter performance, but is too expensive. In remote file
systems, large local caching not only requires large
local memory, but also results in a large amount of in-
formation being transported over the network. Thus,
in this case, there is an optimal cache size over which
the caching does not pay. This is true for destination
address caching too. If the cache is too big, the search
time is large and caching is not useful. Too small
caches may result in too many page faults in virtual
memory systems or too many network accesses in re-
mote file systems. In either case, the system has to
wait while the information is being fetched, causing
increased response time. This is also true for desti-
nation address caching. A long delay in address look
up may result in the source retransmitting the frame.
The cache miss rate has to be kept low. Acceptable
miss rates range from 0.1% to 10% depending upon
the ratio of lookup time with and without the cache.
A larger ratio would increase the probability of re-
transmissions and would need a smaller miss ratio.

4 Models of Reference Behavior

A number of models have been developed for page ref-
erence behavior. These well known models are the in-
dependent reference model (IRM), the least recently
used (LRU) stack model, and the working set (WS)
model. In the following subsections, we describe these
models and see their applicability to our address ref-
erence trace.



Table 2: Locality in Page vs File vs Node References

Page File Node
Year 1970 1980 1990
needed
Why Large Remote Large net-
needed pro- files works

grams
Why not | Memory | Memory | Access
infinite cost cost time
cache & comm.

overhead

Cost of a | Page Network | Packet lost
miss fault access or delayed
Effect Thrashing Instability
of a high
miss rate
Good 10% 1% 0.1% to
miss rate 10%

4.1 Independent Reference Model

The independent reference model assumes, as the
name implies, that the references are independent
[19]. Knowing that the last reference was to address k
does not give any information about the next address
to be referenced. In other words, this model assumes
that the reference strings do not have any temporal
or spatial locality. The probability of reference to ad-
dress ¢ is p;, and all p;’s need not be equal. In a more
restricted IRM, called Uniform-IRM, the probability
p;’s are assumed to be all equal. This is equivalent to
assuming that there is no concentration of references.

Figure 1 show the cumulative frequency of reference
as a function of fraction of distinct addresses seen
in the trace. Notice that the destination reference
probability is nonuniform. For uniform probability,
the curve would have been a straight line between
(0%, 0%), and (100%, 100%). The median and 90-

percentile points on the curves are listed in Table 3.

Notice that 50% of the frames are destined to 4%
of the destinations and that 90% of the frames are
destined to 17% of the destinations. Thus, destina-
tion references exhibit a strong concentration. This
is a good news since it implies that if we cache highly
probable destinations, we may get high hit rates with
small caches.
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Figure 1: Percentage of frames vs percentage of des-

tinations.

Table 3: Cumulative Percentage of References

Subtrace Median 90-Perc
1 4.1 15.7

2 4.2 15.6

3 4.7 16.9

4 4.8 16.9

5 5.1 17.7

6 5.0 17.0

7 4.5 15.5

8 4.4 16.4

9 4.0 16.0

10 4.6 17.2

11 4.7 17.2
Total 4.4 17.8
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Figure 2: Working set size.

Another distinct feature of Figure 1 is that all sub-
traces have almost identical behavior. Since these
traces consist of traffic during different time intervals
on the same network, the observed behavior does not
seem to be a reflection of a short-term activity.

5 Working Set Model

The working set model [3] assumes that the addresses
referenced in the last W references are highly likely to
be rereferenced. The interval W is called the work-
ing set window size, and the number of distinct
references in the interval is called the working set
size. High temporal locality is reflected by a small
working set size.

Figure 2 shows the average working set sizes for sev-
eral different window sizes. The data shows that the
destination reference pattern has a high temporal lo-
cality. For example, 65 distinct destinations were ref-
erenced on the average in successive working set win-
dows of 500 references. In the absence of temporal
locality, this number should have been close to 500.

Also, notice that the temporal locality does not exist
for small working set window sizes (of up to 50). For
example, the average working set size for a window
of 10 references is 9.
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Figure 3: Stack distance cumulative probability dis-
tribution function.

6 LRU Stack Model

The LRU stack model assumes that the probability
of reference to an address is a decreasing function of
time since it was last referenced. If the addresses are
arranged in a stack so that the address referenced is
always taken out of its current position in the stack
and pushed to the top of the stack, the probability p;
of ¢*" stack position (counting from the top toward
the bottom of the stack) being referenced is a decreas-
ing function of :. For a reference string with a high
temporal locality, the probability p; of the stack top
being referenced again would be high. This model
has been analyzed extensively in literature beginning
with [22].

The cumulative frequency of reference up to several
different stack levels is shown in Figure 3. Notice
that:

1. The stack top (level 1) reference frequency is
only 2% to 3%. This is different from the data
measured at M.I.T. [4,9] where 30% of the ref-
erences were found at the stack top and the top
two levels had a cumulative reference frequency
of 60%.

2. We see that the top 100 stack positions (20% of
the total possible stack positions) account for



98% of the frames. This is much lower than cor-
responding figures seen for page reference and
file reference strings [2].

The first observation above is further substantiated
by a study of consecutive references. Table 4 shows
the observed frequency of a destination being refer-
enced in n successive frames for various values of n.
Notice that the frequencies are rather small.

Table 4: Frequency of Consecutive References

Sub- Number of Consecutive References
trace 1 2 3 4 Longest
1 0.946 0.024 0.001 0.000 10
2 0.948 0.023 0.001 0.000 8
3 0.955 0.021 0.001 0.000 8
4 0.940 0.026 0.002 0.001 9
5 0.947 0.023 0.001 0.000 14
6 0.955 0.021 0.001 0.000 10
7 0.948 0.023 0.001 0.000 9
8 0.947 0.022 0.002 0.000 8
9 0.936 0.025 0.003 0.000 9
10 0.946 0.024 0.002 0.000 9
11 0.957 0.020 0.001 0.000 5
Total 0.947 0.023 0.001 0.000 14

7 Cache Replacement Algorithms

More important than the theoretical question of
which locality model applies best to the destination
references is the practical question of which replace-
ment algorithm is best for caching such addresses.
To answer this latter question, we compared different
cache replacement algorithms. The traditional met-
ric for performance of a cache is the number of faults
or musses. A fault or miss is said to occur when an
address is not found in the cache. On a cache miss,
one of the entries in the cache must be replaced to
bring in the missed entry. Several replacement al-
gorithms can be found in the literature on processor
design and virtual memory. We chose four popular al-
gorithms for comparison: least recently used (LRU),
first in first out (FIFO), random (RAND), and a the-
oretically optimal algorithm called MIN [1]. Given
a reference trace and a fixed-size cache, it has been
proven that the MIN algorithm would cause less faults
than any other algorithm. MIN chooses the address
that will be referenced farthest in future. It, there-
fore, requires looking ahead in the reference string.
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Figure 4: Cache miss probability for various cache
replacement algorithms.

Obviously, it cannot be implemented in a real sys-
tem. Nonetheless, it provides a measure of how far a
particular algorithm is from the theoretical optimal.

We used the following three metrics to compare the
replacement algorithms:

1. Miss probability
2. Interfault distance

3. Normalized search time

We have defined these metrics and the results are
presented in the following subsections.

7.1 Miss Probability

The miss probability is defined as the probability of
not finding an address in the cache. For a given trace,
it is simply the ratio of the number of faults to the
total number of references in the trace. The lower
the miss probability, the better the replacement algo-
rithm.

The miss probabilities for various cache sizes for the
four replacement algorithms are presented in Figure
4. From the figure we see that for small caches, LRU,
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Figure 5: Interfault distances for various cache re-
placement algorithms.

FIFO, and RAND are not very different for this trace.
The miss probability for MIN is better by approxi-
mately a factor of two. Thus, there is sufficient room
for improvement by designing another replacement
algorithm.

For large cache sizes, the miss probability curves are
too close to make any inferences. The interfault dis-
tance curves provide better discrimination for such
sizes.

7.2 Interfault Distance

The interfault distance is defined as the number of
references between successive cache misses. For a
given trace, the average interfault distance can be
computed by dividing the total number of references
by the number of faults. Thus, average interfault dis-
tance is the reciprocal of the miss probability.

Average interfault distances for our trace using the
four replacement algorithms are shown in Figure 5.

From the figure we see that for large caches, LRU is
close to optimal. FIFO and RAND are equally bad
for this trace. Thus, unless one discovers a better
replacement algorithm, we can use large caches with
the LRU replacement algorithm.

This leads us to wonder what is the optimal cache
size. If a cache is too small, we have a high miss rate.
If the cache is too large, we do not gain much even if
the miss rate is small since we have to search through
a large table. The question of optimal cache size is
answered by our third metric, normalized search time,
discussed below.

7.3 Normalized Search Time

Caches are useful for several reasons. First, they may
have a faster access time then the main database.
This is particularly true if the main database is re-
motely located and the cache is local. Second, they
may have a faster access method. For example,
caches may be implemented using associated mem-
ories (CAMs). Third, the references have a locality
property so that entries in the cache are more likely
to be referenced than other entries.

We need to separate the effect of locality and find out
if there is sufficient locality in the address reference
patterns to warrant the use of caches. If there is
enough locality, one would want to use a cache even
if the access time to cache was same as that of the
main database, and if the cache used the same access
method (say binary search) that would be used for
the main database.

Assuming that the access time and the access method
for the cache are the same, we can compute the av-
erage access time with and without cache and use
the ratio of the two as the metric of contribution to
performance due to locality alone.

Assuming that a full database of n entries would
generally require a search time proportional to 1 +
log,(n), we have:

Time to search without cache = 1+ log,(n)

With a cache, if p is the miss probability, we need to
search through both the cache and and the full table
with probability p, and the normalized search time is
defined as the ratio:

Search time with cache

Normalized Search Time =
Search time without cache

(1 —p)[1 +logy(c)] + p[1 + logy(c) + 1 + logy(n)]

1+ logy(n)

The normalized search time for the four replacement
algorithms considered is shown in Figure 6. From
the figure, we see that with a cache using the MIN
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replacement algorithms.

replacement algorithm, we could achieve up to 33%
less search time than that without caching. The pay-
off with other replacement algorithms is much less.
It is more important to observe, however, that with
LRU, FIFO, and RAND, the total search time may be
more with a small caches than that without a cache.
For example, with a cache size of 8, these three al-
gorithms would require 20% more search time than
without a cache. This trace, therefore, shows a refer-
ence pattern in which caching can be harmful.

With a very large cache, the cache does reduce the
search time, but the gain decreases as the cache size
increases. The optimal cache size for this trace is ap-
proximately 64, which produces 20 to 25% reduction
in search time.

Earlier measurements at the Massachusetts Institute
of Technology [4,9] on a token ring had shown that
even a small cache sizewould provide a big payoff.
Therefore, we need to understand what behavior in
our environment leads to this different conclusion.
We suspect several possibilities. First, the traffic
level at M.L.T. is only one tenth of that in our en-
vironment. At M.L.T., the traffic level was two mil-
lion frames per day while in our environment we have
that much traffic in one hour. The M.L.T. ring uses
an 8-bit address field leading to a maximum of 256
possible addresses on the ring. Actually, there are
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Figure 7: Stack reference frequency.

less than 40 stations on the ring. Our environment
uses a 48-bit address field and there are 1200 sta-
tions on the extended LAN. M.I.T. frames are much
shorter too. The maximum frame size seen on the
ring is 576 octets (although the ring allows 2048-octet
frames), while the maximum frame size on Ethernet is
1518 octets. A user message is broken into more suc-
cessive frames resulting in higher persistence in the
M.I.T. data. Increased traffic level, more stations,
and larger packets could certainly make small caches
less effective. However, looking at the stack distance
probability density function provided another clue,
which we discuss next.

8 Stack Reference Frequency

Earlier in Section 6, we showed the cumulative prob-
ability distribution function using a stack model. If,
instead of adding the probability for successive stack
positions, we plot the probability for individual stack
positions, we get the probability density function
(pdf) curve as shown in Figure 7. In this figure, we
have plotted the stack pdf for the complete trace as
well as for the 11 subtraces. In all cases, we see that
the pdf is not a continuously decreasing function. In-
stead, there is a hump around stack position 30. For
this environment, the most likely stack position to be
referenced 1s the 30th position and not the stack top.
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Figure 8: A round-robin reference pattern results in
a hump in the stack reference frequency.

LRU is not the best replacement strategy for such a
reference string. In general, it is better to replace the
address least likely to be referenced again, i.e., the
address with minimum probability. For the stack ref-
erence probabilities shown in Figure 7, the minimum
probability does not always occur at the highest pos-
sible stack distance. For example, if the cache size is
30, the address at stack position 15 has a lower prob-
ability of reference than that at position 30 and is,
therefore, a better candidate for replacement.

One possible cause of the hump could be a round-
robin behavior in our reference pattern. To under-
stand this consider two hypothetical reference pat-
terns shown in Figure 8. The first pattern shows a
high persistence. Once an address is referenced, it
is referenced again several times. Such a reference
string would result in a continuously decreasing stack
pdf of the type shown in Figure 8a. The second pat-
tern shows a round-robin reference string consisting
of k addresses, for instance, repeated over and over
again {1,2,3,...,k,1,2,3, ..., k, 1, ...}. The stack pdf
for this string would be an impulse (or Dirac delta)
function at k, that is, all references would be to stack
position k.

A mixture of round-robin and persistent traffic would
result in a curve with a hump similar to the one ob-
served in Figure 7. This round-robin behavior could
be caused by the periodic nature of some of the pro-
tocols used on our network. In particular, the inter-
active terminal traffic, which constitutes 77% of the
frames in our trace, uses a protocol called the Lo-
cal Area Terminals (LAT) [15]. Each LAT server is
connected to a number of terminals and provides a
virtual connection to several hosts on the extended
LAN. To avoid sending several small frames, the ter-
minal input is accumulated for 80 milliseconds and
all traffic going to one host is sent as a single frame.
This considerably reduces the number of frames and
improves the performance of the terminal communi-
cation. A large number of LAT servers transmitting
at regular intervals of 80 milliseconds could very well
be responsible for the round-robin behavior observed
in the reference pattern.

To verify the above hypothesis, we divided our trace
into two subtraces: one consisting entirely of interac-
tive (LAT) frames, and the other remaining noninter-
active traffic. The stack pdf for these two subtraces
are shown in Figures 9 and 10. Notice that the inter-
active traffic exhibits a hump, while the noninterac-
tive traffic does not. Thus, the interactive traffic does
seem to be responsible for the hump leading to the
conclusion that, for environments dominated by LAT
and similar protocols, one would need either a cache
size equal to the number of LAT servers or to develop
a cache prefetch policy that would bring the right ad-
dress into the cache just before it is referenced.

The observation that the noninteractive traffic has
a continuously decreasing stack pdf is an interesting
one. Since the LAT traffic is limited to a single ex-
tended LAN, it does not go through routers, which
are used to connect several extended LANs to wide
area networks. The reference pattern seen at routers
is expected to be similar to that of the noninteractive
traffic, though we have not yet verified this observa-
tion. If this is so, it would be interesting to see if
caching would pay off for noninteractive traffic alone.
We, therefore, analyzed the noninteractive traffic in
the next section.

9 Analysis of the Noninteractive

Traffic

In this section, we present the graphs for miss proba-
bility, interfault distance, and normalized search time
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for noninteractive traffic alone. There are two reasons
for repeating the analysis for noninteractive traffic
alone. First, as we said earlier, it may give us some
indication of behavior of references in routers. Sec-
ond, it helps us illustrate how some of the conclusions
reached earlier would be different in a different envi-

ronment.

Figure 11 shows the miss probability for the four re-
placement algorithms. Notice that even for small
caches, LRU is significantly better than FIFO and
RAND. This is not surprizing considering the fact
that for any reference trace with nondecreasing stack
pdf, LRU is the optimal cache replacement algorithm
[26]. LRU is optimal in the sense that no other prac-
tical algorithm can give a lower number of faults for
any given cache size. MIN does give a lower number
of faults and, hence, a lower miss probability, but that
is due to its knowledge of future references. For refer-
ence patterns similar to noninteractive traffic, there-
fore, we do not need to look for other replacement
algorithms. Of course, if LRU is too complex to im-
plement, which is often the case, one would go for
simpler algorithms, but that would always come at a
cost of increased faults.

Figure 12 shows the interfault distances for the four
replacement algorithms. We see that for large cache

sizes also, LRU is far superior to FIFO and RAND
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Figure 12: Interfault distances for noninteractive
frames.

for this subtrace.

The normalized search time for noninteractive traffic
is shown in Figure 13. Notice that for small caches,
we now have a valley where we had a peak in Figure
6. Thus, not only are the small caches helpful they
are also optimal. The optimal cache size with LRU
is about 8 entries. This reduces the search time by
about 40%.

10 Other Cache Design Issues

There are many cache design issues that remain to be
addressed before caching of network addresses can be-
come a reality. The issues can be classified as cache
management, cache structuring, and multicache is-
sues.

Cache management issues relate to algorithms for re-
placement, fetching, lookup, and deletion. Several re-
placement algorithms have been compared in this pa-
per. We assumed demand fetching where the address
is brought into the cache when it is actually refer-
enced. Prefetching, such as that of source addresses,
needs to be analyzed. Address matching strategies,
such as the most significant octet first or the least
significant octet first may produce different perfor-
mances. Finally, the issue of deleting addresses peri-
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Figure 13: Normalized search time for noninteractive
frames.

odically needs to be studied.

Processor caches are generally structured as sets [24].
Each set consists of several entries. A given address
is first mapping to a set and the replacement, lookup
etc is then confined to that set. Two extreme cache
structures are: direct mapped in which each set con-
sists of only one entry, and fully associative in which
all entries are part of the same set and there is no
mapping.

Another issue related to cache structuring is that of
organizing separate caches for different types of ad-
dresses. For example, in many computer systems,
instruction and data caches are organized separately
since their reference patterns are so different [25]. In
computer networks, one may want to study the effect
of organizing separate caches for group and individual
addresses, separate caches for interactive and nonin-
teractive traffic, or a separate cache for each protocol

type.

Multicache consistency [12] is also an interesting is-
sue, particularly in multiport intermediate systems in
which each port has a separate cache of addresses.

Finally, in many networks such as token ring systems,
it is important for an intermediate system to imme-
diately decide whether to set the ‘address recognized’
and ‘frame copied’ flags in the frame. In such a sys-



tem, cache lookup time is bounded. It remains to
be seen what impact this time bound has on cache

management and structuring strategies.

11 SUMMARY

As sizes of computer networks grow, we need to find
ways to efficiently and quickly recognize destination
addresses. Caching is one one such alternative that
helps if there is locality in the reference pattern. Con-
centration of references to a small fraction of ad-
dresses as well as the persistence of the references
to recently used addresses help achieve a low miss
probability even with small caches.

We reviewed the concepts of spatial and temporal lo-
cality along with well-known models such as IRM,
working set, and LRU and tried to apply them to
destination reference strings.

We compared four different cache replacement al-
gorithms: MIN, FIFO, LRU, and random and dis-
covered that although address traces do have both
concentration and persistence, the periodic nature of
certain protocols may make the use of small caches
ineffective. For those environments where a similar
round-robin reference pattern is observed, either we
need to develop new cache replacement and fetch al-
gorithms, or to use larger caches.

Some of the observations presented in this paper are
limited to our environment and application (bridge
caching). However, the methodology is general and
can be applied to other environments and problems as
well. In particular, it would be interesting to apply
it to the study of the reference pattern of the 20-
octet addresses used in ISO network layers and the
name reference patterns in various name servers and
distributed systems.
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13 Appendix: Numerical Results

In this paper, we have presented results graphically
wherever possible. To allow easy reading of the values

plotted, the same results are now presented in tabular
form in this appendix.

Table 5: Average Working Set Size
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Table 6:
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Table 7: Miss Probability

Cache

Size MIN LRU FIFO RAND
1 0.972 0.972 0.972 0.972

2 0.846 0.946 0.946 0.947

4 0.708 0.896 0.898 0.901

8 0.548 0.810 0.816 0.819
16 0.339 0.670 0.695 0.643
32 0.106 0.271 0.308 0.331
64 0.019 0.038 0.080 0.087
128 0.005 0.011 0.022 0.019
256 0.000 0.000 0.000 0.000
296 0.000 0.000 0.000 0.000

Table 8: Average Interfault Distance

Cache

Size MIN LRU FIFO RAND
1 1.0 1.0 1.0 1.0

2 1.2 1.1 1.1 1.1

4 1.4 1.1 1.1 1.1

8 1.8 1.2 1.2 1.2
16 3.0 1.5 1.4 1.6
32 9.5 3.7 3.2 3.0
64 52.8 26.4 12.5 11.5
128 205.3 92.8 45.4 51.6
256 6912.2 6642.9 4051.5 4067.6
206 6912.2 6912.2 6912.2 6912.2

Table 9: Normalized Search Time

Cache

Size MIN LRU FIFO RAND
1 0.968 0.968 0.968 0.968

2 0.962 1.076 1.076 1.077

4 0.943 1.157 1.159 1.162

8 0.899 1.195 1.202 1.205
16 0.798 1.172 1.200 1.141
32 0.673 0.857 0.898 0.924
64 0.714 0.735 0.781 0.788
128 0.837 0.843 0.855 0.852
256 0.971 0.971 0.971 0.971
296 1.000 1.000 1.000 1.000




