243

Characteristics of Destination Address
Locality in Computer Networks:
A Comparison of Caching Schemes
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Abstract. The size of computer networks, along with their
bandwidths, is growing exponentially. To support these large,
high-speed networks, it 15 necessary to be able to forward
packets in a few microseconds. One part of the forwarding
operation conststs of searching through a large address data-
base. This problem is encountered in the design of adapters,
bridges, routers, gateways, and name servers.

Caching can reduce the lookup time if there is a locality in
the address reference pattern. Using a destination reference
trace measured on an extended local area network, we attempt
1o see if the destination references do have a significant local-
ity.

We compared the performance of MIN, LRU, FIFO, and
random cache replacement algorithms. We found that the
interactive (terminal) 1raffic in our sample had a quite difierent
locality behavior than that of the noninteractive traffic. The
interactive traffic did not follow the LRU stack model while
the noninteractive traffic did. Examples are shown of the
environments in which caching can help as well as those in
which caching can hurt, unless the cache size is large.

Keywords. Computer networks, locality, address resolution,
gateways, bridges, caching.
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1. Introduction

The fact that page references by computer pro-
grams exhibit locality behavior is now well estab-
lished and designing computer systems without
virtual memory and memory caches is practically
inconceivable [21,28]. In the 1970s there were a
large number of studies of program behavior
[16,27] that helped design several good page re-
placement algorithms and caching strategies. In
the 1980s, with the increasing trend towards dis-
tributed computing, the caching of files (located
remotely) and the study of file reference behavior
became an interesting topic [5,6,13,14,18,22,24,29,
30}

Recently, we discovered that the frames on
computer networks also exhibit locality behavior
[10]. The understanding of this behavior will help
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us design the large networks of the 1990s in an
efficient manner,

The trend toward networks becoming larger
and faster, and addresses also increasing in size
has impelled a need to understand and exploit the
locality, if one exists. DECnet Phase IV currently
allows up to 64000 nodes and DEC's internal
network, called EasyNet [19], has more than 30000
nodes. Such large networks obviously need more
efficient address lookups. The size of the addre-
sses themselves is also growing. HDLC, a com-
monly used datalink protocol standard, was desig-
ned with 8-bit addresses. All 1IEEE 802 LAN
protocols support 4B-bit addresses and the
ISO/0SI network layer requires 160-bit (20 oc-
tets) addresses. This increased length of the key
has also necessitated a need to find efficient ways
to look up addresses. Finally, as networks are
becoming faster, network routers, which previ-
ously handled a few hundred frames per second,
are now expected Lo handle 8000 to 16 000 frames
per second. This fast handling requires squeezing
every cycle out of the frame forwarding code.

The realization that the frame destinations ex-
hibit locality behavior makes caching a possible
alternative for efficiently supporiing large net-
works. By caching the destinations recently seen,
the intermediate nodes can avoid looking through
large tables of nodes with a high probability. The
address space need not be hierarchical; caching
works with flat as well as hierarchical addresses.
Caching is transparent in that no protocol changes
are generally required to accommodate caching
and noncaching implementations in the same net-
work.

The cost of memory chips has been falling
rapidly, however, their access times have not de-
creased as fast. As a result, although the cost of
the memory to hold these large address databases
may not be a significant consideration (as was the
case for development of virtual memory), the
access time of the address database is the major
reason for our need to find efficient ways to look
up addresses. Caching allows such decisions to be
made correctly within the specified time limit with
a high probability. In token rings, there is an
“address recognized" flag at the end of the frame.
If a router or gateway is not able 10 lookup the
address before the end of the frame is reached, it
may not set the flag resulting in the frame being
retransmitted. The cache for such applications

should be designed so that a very low miss prob-
ability will result, typically less than 0.1%. This
should be contrasted with page replacement al-
gorithms, where miss probability of 10% may be
considered acceptable.

In this paper, we are concerned with the prob-
lem of address recognition in bridges. However,
there are a number of other applications in com-
puter networks where caching can help avoid
searching through a number of entries. For exam-
ple, dawalink adapters can use caching to search
through the list of multicast addresses. The net-
work adapter board [11] uses caching to help
decode the received frame header. Routers and
gateways can cache forwarding databases. Also,
name servers and their clients can use caching to
improve the efficiency of name lockup. Although,
the conclusions of our reference trace are not
applicable to these other applications, our meth-
odology, when applied to traces of these applica-
tions, can be used to find the appropriate caching
strategy.

The organization of this paper is as follows.
First, we describe the environment in which the
address trace was measured. Second, we explain
various locality concepts and analyze the applica-
bility of dilferent locality models. We then com-
pare the performance of various cache replace-
ment algorithms.

2, Measured environment

In order to compare various caching strategies,
we used a trace of destination addresses observed
on an extended local area network in use at Dig-
ital’s King Street, Littleton facility. The network
consists of several Ethernet LANs interconnected
via bridges. The network is a part of Digital’s
company-wide network called EasyNet [19], which
has more than 30000 nodes. The building itself
has approximately 1200 nodes on several Ethernet
LANs interconnected via bridges. There are 30
Level-1 routers, six Level-2 routers, and ap-
proximately 80 bridges in the building. A prom-
iscuous monitor attached to one of the Ethernet
LANs produced a time-stamped reference string
of approximately 2 million frames. For some
analyses, we subdivided the trace into 11 subtraces
of approximately 200000 frames each. The char-
acteristics of these subtraces along with that of the
complete trace are listed in Table 1.



R. Jain / Destination address locality in computer networks 245

Table 1

Trace characteristics

Subtrace Frames Addresses Hours

Total Destination

1 200000 460 244 012
2 200000 450 208 0.12
3 200000 449 210 0.11
4 200000 437 210 0.11
5 200000 435 203 011
6 200000 436 204 0.10
7 200000 444 201 .11
8 200000 433 205 0.10
9 200000 424 210 0.09

10 200000 431 207 0,10

11 46000 379 186 0.02

Total 2046 000 495 296 1.09

The total column includes addresses in destina-
tion as well as source fields of the frame. This
number is approximately equal to the number of
stations on the extended LAN since all stations
periodically broadcast a *“hello” message to indi-
cate their presence on the network. Not all addre-
sses appear in the destination address field since
only a fraction of individuvally addressed (unicast)
frames pass through the monitored LAN. For
example, in subtrace 1, there were 460 distinct
addresses; of these, only 244 appeared in the
destination address fields. Due to bridge filtering,
only those frames whose destinations have a short
path through the monitored segment are seen on
the segment. The hour column gives the duration
of the subtrace in hours. As shown in the table,
the complete trace was a result of approximately
one hour of monitoring.

There are several advantages and disadvantages
of using a trace. A trace is more credible than
references generated randomly using a distribu-
tion. On the other hand, traces taken on one
system may not be representative of the workload
on another system. We hope that others will find
the methodology presented here useful and will
apply it to traces taken in environments relevant
to their applications.

3. Locality: Concepts

In this section we review some of the well-
known concepts about locality. These concepts

were developed during studies of page reference
patterns, but apply equally well to file reference or
destination reference patterns. In the following
discussion, the term address refers to page, file, or
the destination node encountered.

The locality of a reference pattern may be
temporal or spatial. Temporal locality implies a
high probability of reuse. For example, the refer-
ence string (3, 3, 3, 3, 3,...) has a high temporal
locality, since the address 3 is used repeatedly
once it is referenced. Spatial locality implies a
high probability of reference to neighboring addre-
sses. For example, the string {1, 2, 3,4, 5,...} has
a high spatial locality since after a reference to
address k, the probability of reference to k+ 1 is
very high. While the definition of neighboring ad-
dresses is somewhat clear for page and file addre-
sses, it is not so clear for networks. Spatial local-
ity, if present, is useful in designing prefetching
algorithms since the information likely to be used
in the near future is fetched before its first refer-
ence, thereby, avoiding a cache miss. Page refer-
ence patterns exhibit both temporal as well as
spatial locality.

The terms persistence and conceniration have
also been used to characterize locality behavior
[2]. Persistence refers to the tendency to repeat the
use of a single address. This is, therefore, similar
to temporal locality. Concentration, on the other
hand, refers to the tendency of the references to be
limited (concentrated) to a small subset of the
whole address space. For example, in a reference
string with high persistence, the probability of the
same address being referenced consecutively may
be high, say, 60%. Similarly, in a string with high
concentration, 99% of the references may be to 1%
of the address space. Bunt and Murphy [2] have
done extensive studies of persistence and con-
centration in memory and file reference strings.

Another popular locality concept is that of
phases [17]. References to memory have been ob-
served to go through a series of phases such that
the locality of reference is highly stable in each
phase. The transition periods between phases are
characterized by rapid page faulting. We have,
however, not noticed any similar behavior on net-
works and so we do not discuss this any further in
this paper.

Virtual memory is one of the first applications
of locality concepts in computer systems design.
The pages actively being used are kept in the
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Table 2
Locality in Page vs File vs Node References

Page File Node
Year 1970 1980 1990
needed
Why Large Remote Large
needed programs  files networks

Why not in-  Memory
finite cache  cost

Memory cost &  Access
comm,. overhead  time

Cost of Page Network Packet lost or
2 miss fault access delnyed
Effect of Thrashing High comm. Instability

a high overbead

miss rate

Good 10% 1% 01% o0

miss rate 10%

physical (cache) memory. The key differences be-
tween virtual memory, file caching, and destina-
tion address cache are summarized in Table 2. In
virtual memory systems, a very large cache (physi-
cal memory) gives better performance, but is too
expensive. In remote file systems, large local cach-
ing not only requires large local memory, but also
results in a large amount of information being
transported over the network. Thus, in this case,
there is an optimal cache size over which the
caching does not pay. This is true for destination
address caching too. If the cache is too big, the
search time is large and caching is not useful. Too
small caches may result in too many page faults in
virtual memory systems or too many network
accesses in remote file systems. In either case, the
system has to wait while the information is being
fetched, causing increased response time. This is
also true for destination address caching. A long
delay in address look up may result in the source
retransmitting the frame. The cache miss rate has
to be kept low. Acceptable miss rates range from
0.1% to 10% depending upon the ratio of lookup
time with and without the cache. A larger ratio
would increase the probability of retransmissions
and would need a smaller miss rate.

4. Models of Reference Behavior

A number of models have been developed for
page reference behavior. Three well-known models

are the independent reference model (IRM), the
least recently used (LRU) stack model, and the
working set (WS) model. In the following seclions,
we describe these models and see their applicabil-
ity to our address reference trace.

4.1. Independent Reference Model

The independent reference model assumes, as
the name implies, that the references are indepen-
dent [20]. Knowing that the last reference was to
address k& does not give any information about the
next address to be referenced. In other words, this
model assumes that the reference strings do not
have any temporal or spatial locality. The prob-
ability of reference to address / is p;, and all p,’s
need not be equal. In a more restricted IRM,
called Uniform-IRM, the probability p;'s are as-
sumed to be all equal. This is equivalent to assum-
ing that there is no concentration of references.

Figure 1 shows the cumulative frequency of
reference as a function of fraciion of distinct
addresses seen in the trace and each of the eleven
subtraces. Notice that the destination reference
probability is nonuniform. For uniform probabil-
ity, the curves would have been straight lines
between (0%, 0%), and (100%, 100%). The median
and 90-percentile points on the curves are listed in
Table 3.

Notice that 50% of the frames are destined to
4% of the destinations and that 90% of the frames
are destined to 17% of the destinations. Thus,
destination references exhibit a strong concentra-
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Fig. 1. Percentage of frames vs percentage of destinations.
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Table 3

Cumulative percentage of references

Subtrace Median 90-Perc
1 4.1 15.7
2 4.2 15.6
3 4.7 16.9
4 48 16.9
5 5.1 17.7
6 5.0 17.0
7 4.5 15.5
8 44 16.4
9 4.0 16.0

10 46 17.2

1 47 17.2

Total 44 17.8

tion, This is a good news since it implies that if we
cache highly probable destinations, we may get
high hit rates with small caches.

Another distinct feature of Fig. 1 is that all
subtraces have almost identical behavior. Since
these traces consist of traffic during different time
intervals on the same network, the observed be-
havior does not seem to be a reflection of a
short-term activity.

5. Working Set Model

The working set model [3] assumes that the
addresses referenced in the last W references are
highly likely to be rereferenced. The interval W is
called the working set window size, and the num-
ber of distinct references in the interval is called
the working set size.

Figure 2 shows the average working set sizes for
several different window sizes. The data shows
that the destination reference pattern has a high
concentration. For example, 65 distinct destina-
tions were referenced on the average in successive
working set windows of 500 references. In the
absence of concentration, this number should have
been close to 500.

The working set sizes at small window values
reflect persistence of reference [30]. We notice that
for working set window values of up to 50, the
working set sizes are close to window values. For
example, the average working set size for a window

l
80—

Avg Working Set Size

| i 1 | ] ! i
1] 125 250 375 500
Window Size

Fig, 2. Working set size.

of 10 references is 9. Thus, there is very little
persistence.

6. LRU Stack Model

The LRU stack model assumes that the prob-
ability of reference to an address is a decreasing
function of time since it was last referenced. If the
addresses are arranged in a stack so that the
address referenced is always taken out of its cur-
rent position in the stack and pushed to the top of
the stack, the probability p, of ith stack position
(counting from the top toward the bottom of the
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o
=
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Fig. 3. Stack distance cumulative probability distribution func -
tion.
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Table 4

Frequency of consecutive references

Sub- Number of consecutive relerences
trace 1 2 3 a

Longest
0,946 0.024 0.001 0.000 10

1

2 0.948 0.023 0.001 0.000 8

3 0.955 0.021 0.001 0.000 8

4 0.940 0.026 0.002 0.001 9

5 0.947 0.023 0.001 0.000 14

6 0.955 0.021 0.001 0.000 10

7 0.948 0.023 0.001 0.000 9

8 0.947 0.022 0.002 0.000

9 0.936 0.025 0.003 0.000 9
10 0.946 0.024 0.002 0.000 9
11 0957 0.020 0.001 0.000 5

Total 0947 0.023 0.001 0.000 14

stack) being referenced is a decreasing function of
i. For a reference string with a high temporal
locality, the probability p, of the stack top being
referenced again would be high. This model has
been analyzed extensively in literature beginning
with [23).

The cumulative frequency of reference up to
several different stack levels is shown in Fig. 3.
Notice that

(1) The stack top (level 1) reference frequency
is only 2% to 3%. This is different from the data
measured at M.IT, [4,10] where 30% of the refer-
ences were found at the stack top and the top two
levels had a cumulative reference frequency of
60%.

(2) We see that the top 100 stack positions
(20% of the total possible stack positions) account
for 98% of the frames. This is higher concentration
than corresponding [igures seen for page reference
and file reference strings [30].

The first observation above is further substanti-
ated by a study of consecutive references. Table 4
shows the observed frequency of a destination
being referenced in n successive frames for vari-
ous values of n. Notice that the frequencies are
rather small.

7. Cache Replacement Algorithms

More important than the theoretical question
of which locality model applies best 1o the de-
stination references is the practical question of
which replacement algorithm is best for caching

such addresses. To answer this latter question, we
compared different cache replacement algorithms.
The traditional metric for performance of a cache
is the number of faults or misses. A fault or miss
is said to occur when an address is not found in
the cache. On a cache miss, one of the entries in
the cache must be replaced to bring in the missed
entry. Several replacement algorithms can be found
in the literature on processor design and virtual
memory. We chose four popular algorithms for
comparison: least recently used (LRU), first in
first out (FIFQ), random (RAND), and a theoreti-
cally optimal algorithm called MIN [1]. Given a
reference trace and a fixed-size cache, it has been
proven that the MIN algorithm would cause less
faults than any other algorithm. MIN chooses the
address that will be referenced farthest in future,
It, therefore, requires looking ahead in the refer-
ence string, Obviously, it cannot be implemented
in a real system. Nonetheless, it provides a mea-
sure of how far a particular algorithm is {rom the
theoretical optimal,

We used the following three metrics to compare
the replacement algorithms:

(1) miss probability,

(2) interfault distance,

(3) normalized search time.

We have delined these metrics and the results
are presented in the following subsections.

7.1, Miss Probability

The miss probability is defined as the probabil-
ity of not finding an address in the cache. For a

1.00
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=== FIFO
0.75 --- RAND
e
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2
g 050
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025
" | ) ]
0.000 75 150 225 300
Cache Size
Fig. 4. Cache miss probability for various cache replacement

algorithms.
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given trace, it is simply the ratio of the number of
faults to the total number of references in the
trace. The lower the miss probability, the better
the replacement algorithm.

The miss probabilities for various cache sizes
for the four replacement algorithms are presented
in Fig. 4. From the figure we see that for small
caches, LRU, FIFO, and RAND are not very
different for this trace. The miss probability for
MIN is better by approximately a factor of two.
Thus, there is sufficient room for improvement by
designing another replacement algorithm.,

For large cache sizes, the miss probability curves
of Fig. 4 are too close to make any inferences. The
interfault distance curves discussed next provide
better discrimination at such sizes.

7.2. Interfault Distance

The interfault distance is defined as the number
of references between successive cache misses. For
a given trace, the average interfault distance can
be computed by dividing the total number of
references by the number of faults. Thus, average
interfault distance is the reciprocal of the miss
probability.

Average interfault distances for our trace using
the four replacement algorithms are shown in Fig.
5!

From the figure we see that for large caches,
LRU is close to optimal. FIFO and RAND are
equally bad for this trace. Thus, unless one dis-

8000'—

Inter-Fauli Dist.
g
|

0 75 150 225 300
Cache Size

Fig. 5. Interfault distances for various cache replacement al-
gorithms.

covers a better replacement algorithm, we can use
large caches with the LRU replacement algorithm.
This leads us to wonder what is the optimal
cache size. If a cache is too small, we have a high
miss rate. If the cache is too large, we do not gain
much even if the miss rate is small since we have
to search through a large table. The question of
optimal cache size is answered by our third metric,
normalized search time, discussed below.

7.3. Normalized Search Time

Caches are useful for several reasons. First,
they may have a faster access time than the main
database. This is particularly true if the main
database is remotely located and the cache is
local. Second, they may have a faster access
method. For example, caches may be implemented
using associated memories (CAMSs). Third, the
references have a locality property so that entries
in the cache are more likely to be referenced than
other entries.

We need to separate the effect of locality and
find out if there is sufficient locality in the address
reference patterns to warrant the use of caches. If
there is enough locality, one would want to use a
cache even il the access time to cache was same as
that of the main database, and if the cache used
the same access method (for instance, binary
search) that would be used for the main database.

Assuming that the access time and the access
method for the cache are the same, we can com-
pute the average access time with and without
cache and use the ratio of the two as the metric of
contribution to performance due to locality alone.

Assuming that a full database of nr entries
would generally require a search time proportional
to 1 + log,(#), we have

Time to search without cache = 1 + log,(n).
With a cache, if p is the miss probability, we need
to search through both the cache and the full table

with probability p, and the normalized search
time is defined as the ratio

Normalized Search Time
_ Search time with cache
~ Search time without cache

= ((1 = p)(1 + log,(c))
+p(1 +log,(c) +1 +log,(n)))
><(l+logz(n))_1.
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The normalized search time for the four replace-
ment algorithms considered is shown in Fig. 6.
From the figure, we see that with a cache using the
MIN replacement algorithm, we could achieve up
to 33% less search time than that without caching,
The payoff with other replacement algorithms is
much less, It is more important 1o observe, how-
ever, that with LRU, FIFO, and RAND, the total
search time may be more with a small cache than
that without a cache. For example, with a cache
size of 8, these three algorithms would require 20%
more search time than without a cache. This trace,
therefore, shows a reference pattern in which cach-
ing can be harmful.

With a very large cache, the cache does reduce
the search time, but the gain decreases as the
cache size increases. The oplimal cache size for
this trace is approximately 64, which produces 20
to 25% reduction in search time.

Earlier measurements at the Massachusetts In-
stitute of Technology [4,10] on a token ring had
shown that even a small cache size would provide
a big payoff. Therefore, we need to understand
what behavior in our environment leads to this
different conclusion. We suspect several possibili-
ties. First, the traffic level at M.LT, is only one
tenth of that in our environment. At M.LT., the
traffic level was two million [rames per day while
in our environment we have that much traffic in
one hour. The M.LT. ring uses an 8-bil address
field leading to a maximum of 256 possible addre-
sses on the ring. Actually, there are less than 40

stations on the ring. Our environment uses a 48-bit
address field and there are 1200 stations on the
extended LAN, M.LT. frames are much shorter
too. The maximum frame size seen on the ring is
576 octets (although the ring allows 2048-octet
frames), while the maximum frame size on Ether-
net is 1518 octets. A user message is broken into
more successive frames resulting in higher per-
sistence in the M.LT. data. Increased traffic level,
more stations, and larger packets could certainly
make small caches less effective. However, looking
at the stack distance probability density function
provided another clue, which we discuss next.

8. Stack Reference Frequency

Earlier in Section 6, we showed the cumulative
probability distribution function using a stack
model. If, instead of adding the probability for
successive stack positions, we plot the probability
for individual stack positions, we get the probabil-
ity density function (pdf) curve as shown in Fig. 7.
In this figure, we have plotted the stack pdf for
the complete trace as well as for the 11 subtraces.
In all cases, we see that the pdf is not a continu-
ously decreasing function. Instead, there is a hump
around stack position 30. For this environment, the
most likely stack position to be referenced is the 30th
position and not the stack top.

LRU is not the best replacement strategy for
such a reference string. In general, it is better to
replace the address least likely to be referenced

004}~
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Fig. 7. Stack reference [requency.
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{a) Ildeal
{..,1,1,1,1,2,2,2,23,333,....}
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(b) Round-robin
{00 1,234,1,2,3.4,1,2,34,... }
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Fig. B. A round-robin reference pattern results in a hump in
the stack reference frequency.

again, i.e., the address with minimum probability.
For the stack reference probabilities shown in Fig.
7, the minimum probability does not always occur
at the highest possible stack distance. For exam-
ple, if the cache size is 30, the address at stack
position 15 has a lower probability of reference
than that at position 30 and is, therefore, a better
candidate for replacement.

One possible cause of the hump could be a
round-robin behavior in our reference pattern. To
understand this consider two hypothetical refer-
ence patterns shown in Fig, 8. The first pattern
shows a high persistence. Once an address is refer-
enced, it is referenced again several times. Such a
reference string would result in a continuously
decreasing stack pdf of the type shown in Fig. 8(a)
The second pattern shows a round-robin reference
string consisting of k% addresses, for instance, re-
peated over and over again {1, 2, 3,...,k, 1, 2,
3,..., k,1,...}. The stack pdf for this string would
be an impulse {or Dirac delta) function at %, that
is, all references would be to stack position k.

A mixture of round-robin and persistent traffic
would result in a curve with a hump similar to the
one observed in Fig. 7. This round-robin behavior

could be caused by the periodic nature of some of
the protocols used on our network. In particular,
the interactive terminal traffic, which constitutes
77% of the frames in our trace, uses a protocol
called the Local Area Terminals (LAT) [15]). Each
LAT server is connected to a number of terminals
and provides a virtual connection to several hosts
on the extended LAN. To avoid sending several
small frames, the terminal input is accumulated
for 80 milliseconds and all traffic going to one
host is sent as a single frame, This considerably
reduces the number of frames and improves the
performance of the terminal communication. A
large number of LAT servers transmitting at regu-
lar intervals of 80 milliseconds could very well be
responsible for the round-robin behavior observed
in the reference patiern.

To verify the above hypothesis we divided our
trace into two subtraces: one consisting entirely of
interactive (LAT) frames, and the other remaining
noninteractive traffic. The stack pdf for these two
subtraces are shown in Figs. 9 and 10. Notice that
the interactive traffic exhibits a hump, while the
noninteractive traffic does not. Thus, the interac-
tive traffic does seem to be responsible for the
hump leading to the conclusion that, for environ-
ments dominated by LAT and similar protocols,
one would need either a cache size equal to the
number of LAT servers or 1o develop a cache
prefetch policy that would bring the right address
into the cache just before it is referenced.

The observation that the noninteractive traffic
has a continuously decreasing stack pdf is an
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Fig. 9. Stack distance density function for LAT traffic.
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Fig. 10. Stack distnnce density function for nomnteractive
trafTic.

interesting one. Since the LAT traffic is limited to
a single extended LAN, it does not go through
routers, which are used to connect several ex-
tended LANs to wide area networks, The refer-
ence pattern seen at routers is expecled to be
similar to that of the noninteractive traffic, though
we have not yet verified this observation. If this is
s0, it would be interesting to see if caching would
pay off for noninteractive traffic alone. We, there-
fore, analyzed the noninteractive traffic in the
next section.

9. Analysis of the Noninteractive Traffic

In this section, we present the graphs for miss
probability, interfault distance, and normalized
search time for noninteractive traffic alone. There
are two reasons for repeating the analysis for
noninteractive traffic alone. First, as we said
earlier, it may give us some indication of behavior
of references in routers. Second, it helps us il-
lustrate how some of the conclusions reached
carlier would be different in a different environ-
ment.

Fig. 11 shows the miss probability for the four
replacement algorithms. Notice that even for small
caches, LRU is significantly better than FIFO and
RAND. This is not surprizing considering the fact
that for any reference trace with nondecreasing
stack pdf, LRU is the optimal cache replacement
algorithm [27]. LRU is optimal in the sense that
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Fig. 11. Cache miss probability for noninteractive frames.,

no other practical algorithm can give a lower
number of faults for any given cache size. MIN
does give a lower number of faults and, hence, a
lower miss probability, but that is due to knowl-
edge of future references. For reference patterns
similar to noninteractive traffic, therefore, we do
not need to look for other replacement algorithms.
Of course, if LRU is too complex to implement,
which is often the case, one would go for simpler
algorithms, but that would always come at a cost
of increased faults.

Figure 12 shows the interfault distances for the
four replacement algorithms. We see that for large
cache sizes also, LRU is far superior to FIFO and
RAND for this subtrace.

Inter-Fault Dist.

" !
0% 30 ) %0 120
Cache Size

Fig. 12, Interfault distances for noninteractive frames.
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Fig. 13. Normalized search time for noninteractive frames,

The normalized search time for noninteractive
traffic is shown in Fig. 13. Notice that for small
caches, we now have a valley where we had a peak
in Fig. 6. Thus, not only are the small caches
helpful they are also optimal. The optimal cache
size with LRU is about 8 entries. This reduces the
search time by about 40%.

10. Other Cache Design Issues

There are many cache design issues that remain
to be addressed before caching of network addre-
sses can become a reality. The issues can be clas-
sified as cache management, cache structuring,
and multicache issues.

Cache management issues relate to algorithms
for replacement, fetching, lookup, and deletion.
Several replacement algorithms have been com-
pared in this paper. We assumed demand fetching
where the address is brought into the cache when
it is actually referenced. Prefetching, such as that
of the address of the source of a frame seen on the
network, needs to be analyzed. It is also possible
to prefetch address of all nodes connected to the
node address being fetched. Address matching
strategies, such as the most significant octet first
or the least significant octet first may produce
different performances, Finally, the issue of delet-
ing addresses periodically needs to be studied.

Processor caches are generally structured as
sets [25]. Each sel consists of several entries. A
given address is first mapped to a set and the

replacement, lookup, etc. is then confined to that
set. Two extreme cache structures are: direct
mapped in which each set consists of only one
entry, and fully associative in which all entries are
part of the same set and there is no mapping.

Another issue related to cache structuring is
that of organizing separate caches for different
types of addresses. For example, in many com-
puter systems, instruction and data caches are
organized separately since their reference patterns
are so different [26). In computer networks, one
may want to study the effect of organizing sep-
arate caches for group and individual addresses,
separate caches for interactive and noninteractive
traffic, or a separate cache for each protocol type.

Multicache consistency [12] is also an interest-
ing issue, particularly in multiport intermediate
systems in which each port has a separate cache of
addresses.

Finally, in many networks such as token ring
systems, it is important for an intermediate system
to immediately decide whether to set the “address
recognized” and “frame copied” flags in the frame.
In such a system, cache lockup time is bounded. It
remains to be seen what impact this time bound
has on cache management and structuring strate-

gies.

11. Summary

As sizes of computer networks grow, we need
to find ways to efficiently and quickly recognize
destination addresses. Caching is one such alterna-
tive that helps if there is locality in the reference
pattern., Concentration of references to a small
fraction of addresses as well as the persistence of
the references to recently used addresses help
achieve a low miss probability even with small
caches.

We reviewed the concepts of spatial and tem-
poral locality along with well-known models such
as IRM, working set, and LRU and tried to apply
them to destination reference strings.

We compared lour different cache replacement
algorithms: MIN, FIFQ, LRU, and random and
discovered that although address traces do have
both concentration and persistence, the periodic
nature of certain protocols may make the use of
small caches ineffective. For those environments
where a similar round-robin reference pattern is
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observed, either we need to develop new cache
replacement and fetch algorithms, or to use larger
caches,

Some of the observations presented in this paper
are limited to our environment and application
{bridge caching). However, the methodology is
general and can be applied to other environments
and problems as well. In particular, it would be
interesting to apply it to the study of the reference
pattern of the 20-octel addresses used in ISO
network layers and the name reference patterns in
various name servers and distributed systems.
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