











# **Router Response to Congestion: Marking CE and ECT Bits**

| CE bit      | ECT bit | Congestion State     |
|-------------|---------|----------------------|
| 0           | 1       | No Congestion        |
| 1           | 0       | Incipient congestion |
| 1           | 1       | Moderate congestion  |
| Packet drop |         | Severe congestion    |

# **Receiver Marking of CWR and ECE Bits**

| CWR bit | ECE bit | Congestion                          |
|---------|---------|-------------------------------------|
| 0       | 0       | No Congestion<br>or non-ECN capable |
| 0       | 1       | Incipient congestion                |
| 1       | 1       | Moderate congestion                 |

## **TCP Source Response**

| Congestion State     | cwnd change                            |
|----------------------|----------------------------------------|
| No congestion        | Increase 'cwnd' additively             |
| Incipient congestion | Decrease multiplicatively by $\beta_1$ |
| Moderate congestion  | Decrease multiplicatively by $\beta_2$ |
| Severe congestion    | Decrease multiplicatively by $\beta_3$ |

## **Adaptive MECN**

- The objective is to control the delay in each router by maintaining the queue near a target value: *target\_queue*
- □ *P*\_max is adapted to keep the average queue size with a target range half way between min\_th and max\_th.
- P\_max is adapted slowly, over time scales greater than a typical round-trip time and in small steps. The time scale is generally 5-10 times the typical round-trip time of the network.
- $\square$  *P*\_max is constrained to remain with the range of [0.01, 0.5]
- Instead of multiplicatively increasing and decreasing *P*\_max, we use an additive-increase multiplicative-decrease (AIMD) policy.

## **The AMECN Algorithm**

Every interval (0.5) seconds : if  $(avg > target \text{ and } P_{max} <= 0.5)$ increase  $P_{max}$ :  $\alpha = 0.25 * \frac{avg-target}{target} * P_{max};$  $P_{max} = P_{max} + \alpha;$ elseif (avg < target and  $P_{max} >= 0.01$ ) decrease  $P_{max}$ :  $\begin{aligned} X &= 0.17 * \frac{target}{target - min}; \\ \beta &= 1 - X * \frac{target - ave}{target}; \end{aligned}$  $P_{max} = P_{max} * \beta;$ Variables: avq: average queue size Fixed parameters: interval: time: 0.5 seconds *target*: target for avq;  $[min_th + 0.4 * (max_th - min_th), min_th + 0.6 *$  $(max_th - min_th)$ ]  $\alpha$ : increment;  $0.25 * \frac{avg-target}{target} * P_{max}$  $\beta$ : decrease factor;  $1 - X * \frac{target-ave}{target}$ X: scaling factor;  $0.17 * \frac{target}{target-min}$ 













#### **Summary**

- ECN allows better network efficiency by avoiding packet drops
- Multi-level ECN enhances ECN by allowing multiple queue thresholds
- Adaptive Multilevel ECN enhances MECN by dynamically adopting the maximum probability of marking
- AMECN has better performance than Adaptive RED
  For same delay more throughput