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1 Introduction 

End-to-end congestion control schemes continue to  
be one of the main pillars for internet robustness, as  
shown by Floyd and Fall (1999). Nevertheless, congestion 
remains the main obstacle to QoS on the internet. Although 
a number of schemes have been proposed for network 
congestion control, the search for new schemes continues 
(Ramakrishnan and Floyd, 1999; Floyd and Jacobson, 1993; 
Clark and Fang, 1993; Feng et al., 1999; Kalyanaraman  
et al., 2000; Floyd and Fall, 1997, 1999; Mathis et al., 1996, 
1997, 1997; Chiu and Jain, 1989; Floyd and Henderson, 
1999; Ramakrishnan and Jain, 1990; Jain et al., 1994, 
1994b; Athuraliya et al., 2001; Hollot et al., 2001;  
Katabi et al., 2002; Wang et al., 2004; Wei et al., 2006; 
King et al., 2005; Low et al., 2005; Wu and Rao, 2005).  
A survey of various congestion control schemes proposed 
for use in routers can be found in Low et al. (2002) and 
Medina et al. (2005). 

The research in this area has been going on for at least 
two decades. There are two reasons for this. First, there are 
requirements for congestion control schemes that make it 
difficult to get a satisfactory solution. Second, there are 
several network policies that affect the design of a 
congestion scheme. Thus, a scheme developed for one 
network, traffic pattern, or service requirements may not 
work on another network, traffic pattern, or service 
requirements. 

The proposed solutions expand over a wide spectrum of 
improvements. At one end of this spectrum there are 
simpler, more incremental and more easily employable 
changes to the current TCP. Examples of such proposed 
solutions are RED (Floyd and Jacobson, 1993) and Explicit 
Congestion Notification (ECN) (Ramakrishnan and Floyd, 
1999). At the other end of the spectrum, there are solutions 
with more powerful changes that result in new transport 
protocols with higher performance but with less chance to 
be deployed in a large scale on the Internet at least in the 
immediate future. An example of such solution is XCP 
(Katabi et al., 2002). Other proposals, such as REM 
(Athuraliya et al., 2001), Proportional Integral Controller 
(Hollot et al., 2001), HighSpeed TCP (Floyd, 2003),  
Quick Start TCP (Floyd et al., 2006) reside along the 
simplicity-deployability spectrum. At the end the choice 
among all these solutions depends on the tradeoff between 
performance and practical use that will better fit the internet. 
Because of the size and multidimensional complexity of the 
internet, the robustness in heterogeneity is valued over 
efficiency of performance, which leads to favour evolution 
compared to revolution of changes. For this reason, in our 
solution we propose minimal changes to ECN and try to 
derive the maximum performance improvements out of 
them. 

Among the congestion control schemes, the ‘de facto’ 
standard and the most used are the RED/ECN class of 
algorithms. In ECN, a bit in the IP header is set when the 
routers are congested. It is shown in Ramakrishnan et al. 
(2001) that ECN performs better than RED and it was made 
standard by IETF in 2001. ECN is much more powerful 

than the simple packet drop indication used by existing 
routers and is more suitable for high distance-bandwidth 
networks. Hence it becomes imperative that we explore the 
possibilities of utilising the ECN framework to the fullest. 
We proposed in Durresi et al. (2001) a new scheme called 
the MECN, which works with the framework of ECN, but 
uses the two bits allocated for ECN, in the IP to indicate 
four different levels of congestion, to the source. But just 
like RED (Floyd and Jacobson, 1993), MECN’s average 
queue is also sensitive to parameter setting and the level of 
congestion. The average queuing delay is a very important 
parameter for QoS applications. Therefore, setting the 
parameters of MECN is very critical in maintaining a 
constant delay at the routers, which is a must to guarantee a 
given QoS to the end users. In this paper we propose an 
Adaptive version of MECN, which sets its parameters 
automatically and adapts its maximum marking probability 
to keep the average queuing delay constant. We compare the 
performance of Adaptive MECN (AMECN), to that of 
Adaptive Random Early Detection (ARED) and MECN and 
show that the first outperforms the other two schemes.  
In Section 2, we give a brief introduction to the MECN 
protocol. In Section 3, we introduce the Adaptive Multilevel 
ECN protocol and give some guidelines on setting the 
parameters. We prove using simulations using the ns 
Network Simulator (2007), that AMECN performs better 
than MECN and Adaptive RED in Section 4. In Section 5, 
we present the conclusions of our research. 

2 Brief introduction to MECN 

2.1 Marking bits at the router 

The current proposal for ECN (Ramakrishnan et al., 2001) 
uses two bits in the IP header (bits 6 and 7 in the TOS octet 
in IPv4, or the Traffic class octet in IPv6) to indicate 
congestion. The first bit is called ECT (ECN-Capable 
Transport) bit. This bit is set to 1 in the packet by the traffic 
source if the source and receiver are ECN capable.  
The second bit is called the CE (congestion Experienced) 
bit. If the ECT bit is set in a packet, the router can set the 
CE bit in order to indicate congestion. The two bits 
specified for the purpose of ECN can be used more 
efficiently to indicate congestion, since using two bits we 
can indicate four different levels. If non ECN-capable 
packets are identified by the bit combination of ‘00’,  
we have three other combinations to indicate three  
levels of congestion. In our scheme the bit combination  
‘01’ – indicates no congestion, ‘10’ – indicates incipient 
congestion and ‘11’ – indicates moderate congestion. Packet 
drop occurs only if there is severe congestion in the router 
and when the buffer over flows. So with packet-drop we 
have four different levels of congestion indication and 
appropriate action could be taken by the source TCP 
depending on the level of congestion. The four levels of 
congestion are summarised in Table 1. The marking of CE, 
ECT bits is done using a multilevel RED scheme. The RED 
scheme has been modified to include another threshold 
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called the midth, in addition to the minth and maxth.  
If the size of the average queue is in between minth and 
minth, there is incipient congestion and the CE, ECT bits are 
marked as 10 with a maximum probability of P1max. If the 
average queue is in between midth and maxth, there is 
moderate congestion and the CE, ECT bits are marked as 11 
with a maximum probability P2max. If the average queue  
is above the maxth all packets are dropped. The packet 
dropping policy of RED is shown in Figure 1. The modified 
packet marking/dropping policy of MECN (Durresi et al., 
2001) is shown in Figure 2. We would like to stress that the 
major advantage of MECN compared to other congestion 
management schemes is that it conveys more accurate 
feedback information about the network congestion status 
than the current ECN. We have designed, as shown in 
Section 2.3, a TCP source reaction that takes advantage of 
the extra information provided about congestion. This is the 
reason why MECN responds better to congestion by 
allowing the system to reach faster the stability point, which 
results in better network performance as shown in later in 
our results in this paper. 

Table 1 Router response to congestion: probabilistic marking 
of CE and ECT bits and packet dropping 

Congestion state CEbit ECTbit 

No congestion 0 1 
Incipient congestion 1 0 
Moderate congestion 1 1 
Severe congestion Packet Drop 

Figure 1 Probabilities of marking packets in RED 

 

Figure 2 Probabilities of marking packets for MECN 

 

2.2 Feedback from receiver to sender 

The receiver reflects the bit marking in the IP header, to the 
TCP ACK. Since we have three levels of marking instead of 
two-level marking in the traditional ECN, we make use of 

three combination of the 2 bits 8, 9 (CWR, ECE) in the 
reserved field of the TCP header, which are specified for 
ECN. Right now the bit combination ‘00’ indicates no 
congestion and ‘01’ indicates congestion. And in 
piggybacked acknowledgements, ‘10’ and ‘11’ indicated 
non-congestion and congestion, with the receiver source 
indicating that the congestion window has been reduced.  
In our scheme, if the source has to indicate that the 
congestion window has been reduced then, the congestion 
information has to wait for the next packet. In this case the 
congestion information is ignored. But this will not cause 
any major problems to the scheme because, if the 
congestion is persistent then a lot of packets are going to get 
marked and the received source will eventually get the 
congestion information. So in the new scheme, ‘00’ will 
indicate congestion window reduced, ‘01’ will indicate no 
congestion, ‘10’ will indicate mild congestion and ‘11’ will 
indicate heavy congestion. The packet drop is recognised 
using traditional ways, by timeouts or duplicate ACKs.  
The marking in the ACKs CWR, ECE bits is shown in 
Table 2. 

Table 2 End host reflecting congestion information: marking 
of CWR and ECE bits 

Congestion state CWRbit ECEbit 

Congestion window reduced 0 0 
No congestion 0 1 
Incipient congestion 1 0 
Moderate congestion 1 1 

2.3 Response of TCP source 

We believe that the marking of ECN should not be treated 
as the same way as a packet drop, since ECN indicates just 
the starting of congestion and not actual congestion and the 
buffers still have space. And now with multiple levels of 
congestion feedback, the TCP’s response needs to be 
refined. We have implemented the following scheme: When 
there is a packet-drop the cwnd is reduced by β3 = 50%. 
This done for two reasons: First, a packet-drop means 
severe congestion and buffer overflow and some severe 
actions need to be taken. Second, to maintain backward 
compatibility with routers which do not implement ECN.  
For other levels of congestion, such a drastic step as 
reducing the cwnd as half is not necessary and might make 
the flow less vigorous. When there is no congestion, the 
cwnd is allowed to grow additively as usual. When  
the marking is ‘10’ (incipient congestion), cwnd is 
decreased by β1%. When the marking is 11 (moderate 
congestion) the cwnd is decreased multiplicatively not  
by a factor of 50% (as for a packet drop), but by a factor 
β2% less than 50% but more than β1%. In Table 3 are  
shown the TCP source responses and the value of  
βs we have implemented. Another method could be to 
decrease additively the window, when the marking  
is ‘10’ (incipient congestion), instead of maintaining the  
window. 
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Table 3 TCP source response 

Congestion state CWND change 

No congestion Increase ‘cwnd’ additively 
Incipient congestion Decrease by β1 = 20% 
Moderate congestion Decrease by β2 = 40% 
Severe congestion Decrease by β3 = 50% 

If the average queue length is less than midth, then the 
modified-TCP congestion windows corresponding to the 
marks ‘10’ keep increasing by 1 every round-trip time in 
congestion avoidance mode, thus linearly increasing the 
sending rates of these flows. Consequently, the average 
queue length will keep increasing unless some marks ‘11’ 
are received by the sources, which correspond to operating 
in the region where the average queue length is larger than 
midth. We can thus conclude that the steady-state average 
queue length is larger than midth. 

3 Adaptive MECN 

3.1 Motivation 

In Adaptive MECN, the objective is to maintian the queue 
near the targetqueue. If the average queue does not vary and 
remains constant at targetqueue, then the probability of 
packet drop/mark will remain fixed. Let this probability be 
Ptarget. We set the targetqueue to be in between minth and 
midth. Hence only the first probability curve will be active, 
in this region. Hence the probability Ptarget, is given by 
equation (1): 

max
target (Averagequeue min ).

max min th
th th

P
P = ¥ -

-
 (1) 

Since in the above equation, Ptarget, minth, maxth are all 
constant, we can say that, 

max

1 .Averagequeue
P

a  (2) 

In any network, we do not have the control over the traffic 
and the average queue increases or decreases with the load 
(as shown in Section 4.2). But the aim is to have the 
Averagequeue, always equal to the targetqueue. Hence if 
the Avgqueue, is greater than targetqueue, at any instant, we 
need to increase Pmax which would decrease the Avgqueue 
so that it becomes equal to targetqueue and if the Avgqueue, 
is less than targetqueue, at any instant, we need to decrease 
Pmax, to allow the queue, to grow, which would give a better 
throughput. Thus to keep a constant queue we need to adapt 
the Pmax. 

Also we need to set the other parameters like wq, maxth, 
midth and minth automatically. 

The above discussion, leads us to the conclusion on the 
requirement of AMECN algorithm; Adapt Pmax in response 
to measured queue lengths and set wq, maxth, midth and minth 
automatically, based on the link speed and target queue. 

3.2 Algorithm 

The overall Adaptive MECN, which was implemented has 
the following features: 

• Pmax is adapted to keep the average queue size with a 
target range half way between minth and maxth. 

• Pmax is adapted slowly, over time scales greater than a 
typical round-trip time and in small steps. The time 
scale is generally 5–10 times the typical round- trip 
time of the network. 

• Pmax is constrained to remain with the range of 
[0.01, 0.5]. 

• Instead of multiplicately increasing and decreasing 
Pmax, we use Additive-Increase Multiplicative-Decrease 
(AIMD) policy. 

The algorithm for Adaptive MECN is given in Figure 3. 

Figure 3 The Adaptive MECN algorithm 

 

The guideline of adapting Pmax slowly and infrequently 
allows the dynamics of MECN – of adapting the  
packet-dropping probability in response to changes in the 
average queue size – to dominate on smaller time scales. 
The ad-pation of Pmax is invoked only as needed over  
longer time scales. This time period is set as 0.5 seconds, 
which in comparable to RTT (around five times the RTT, 
since average RTT of terrestrial networks is approximately 
100 ms). 

The robustness of Adaptive MECN comes from its slow 
and infrequent adjustment of Pmax. The price of this slow 
modification is that after a sharp change in the level of 
congestion, it could take sometime, before Pmax adapts to its 
value. But also adapting α and β makes this process  
faster and decreases the response time of the system.  
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Hence AMECN has better sensitivity than its RED 
counterpart ‘Adaptive RED’. 

3.3 Setting the parameters 

3.3.1 The range for Pmax 

The upper bound of 0.5 on Pmax can be justified because, 
when operating under the gentle mode, this would mean that 
the packet drop rate varies from 0 to Pmax, when average 
queue varies from minth to maxth (or midth to) and varies 
from Pmax to 1.0, if queue changes from to 2 × maxth. 

For scenarios with very small drop rates, MECN will 
perform fairly robustly with Pmax set to the lower bound 
0.01, and no one is likely to object to an average queue size 
less than the target range. 

3.3.2 Parameters α and β 

It takes 0.49/α intervals for Pmax to increas form 0.01 to 0.5; 
this is 24.5 seconds, if α is set as 0.01 (as recommended in 
Floyd et al. (2001)). Similarly, it takes at least log 0.02/β 
intervals for Pmax to decrease form 0.5 to 0.01; with the 
default values, which is 20.1 seconds. Therefore if there is a 
sharp change in the router load, then it may take as long as 
24.5 seconds for the average queue to reach the target range. 
This time is really a long time in network. Hence we believe 
that α and β should also be adapted, according to the 
position of the average queue, with respect to the target 
queue. So the value of α and β are also recalculated every 
0.5 seconds when the Pmax calculation is done. Taking the 
recommendation form (Floyd et al., 2001), that (3 > 0.83, 
we scale the value of β from 0.83–1.0 when average queue, 
varies from 0 to target queue Thus use the formula given 
below to adapt β. 

1 (0.17 (target avg) /(target min)).b = - ¥ - -  (3) 

Setting α again the recommendation form Floyd et al. 
(2001) are incorporated which says α < 0.25 × Pmax. So we 
scale α such that it varies from 0 to 0.25 × Pmax, when 
average queue varies form target to 0. 

Thus formula we use to adapt α is 

max0.25 (0.17 (avg target) / target) .Pa = ¥ ¥ - ¥  (4) 

3.3.3 Setting midth, maxth 

To reduce the need for other parameter-tuning, we also  
give some guidelines for setting the midth, maxth and wq.  
The maxth is set to three times the minth as recommended in 
Floyd (1997). In this case the target average queue size is 
centred around 2 × minth. We believe that, the target queue 
should be kept in the low congestion region (i.e., between 
minth and midth), to maximise the throughput, but at the 
same time the midth should not be too far from  
the targetqueue, so that when the average queue rises above 
target, a quick response to congestion is achived, when the 
second probability curve, comes into action. This belief, led  
 

us to setting the midth slightly above the targetqueue.  
Thus midth was set at 2.25 × minth (targetqueue = 2 × minth). 

The guidelines for setting wq given in Floyd and  
Jacobson (1993), are used. From Floyd and Jacobson 
(1993), if the queue size changes from one value to another 
it takes –1/ln(1 – wq) packet arrivals for the average queue 
to reach 63% of the way to the new value. Thus we refer to 
–1/ln(1 –wq) as the time constant of the estimator for the 
average queue size. Following the approaches in Jacobson 
et al. (1999) and Ziegler et al. (2001), in automatic mode we 
set wq as a function of the link bandwidth. For MECN in 
automatic mode, we set wq to give a time constant for the 
average queue size estimator of one second. Thus we set 

11 exp
rq C

w -Ê ˆ= - Á ˜Ë ¯
 (5) 

where C is the link capacity in packets/second, computed 
for packets of the specified default size. 

4 Simulations and results 

4.1 NS simulation configuration 

This section illustrates the general simulation configuration 
we used for our simulations. Figure 4, shows the dumpbell 
configuration. A Number of sources S1, S2, S3, …, Sn are 
connected to a router R1 through 10 Mbps, d ms delay links. 
Router R1 is connected to R2 through a 1.5 Mbps, 40 ms 
delay link and a number of destinations D1, D2, D3, …, Dn 
are connected to the router R2 via 10 Mbps 4 ms delay links. 
The link speeds are chosen so that congestion will happen 
only between routers R1 and R2 where our scheme is tested. 
An FTP application runs on each source. Reno-TCP is used 
as the transport agent. (The modifications were made to the 
Reno-TCP.) The packet size is 1000 bytes and the 
acknowledgement size is 40 bytes. The number of sources is 
varied to alter the congestion level. The RTT of the flows 
can be varied by varying the delay d between the source and 
router R1. 

Figure 4 Dumb-bell network configuration for ns simulations 

 

4.2 Illustrating MECN’s varying queue size  
and AMECN’s stability 

Here we investigate how MECN and Adaptive MECN 
respond to a rapid change in the congestion level.  
The simulations presented here illustrate MECN’s dynamic  
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of the average queue size varying with the congestion level, 
resulting from MECN’s fidex mapping from the average 
queue size to the packet dropping probability. For Adaptive 
MECN, these simulations focus on the transition period 
from one level of congestion to another. 

These simulations use a simple dumbbell topology  
with a congested link of 1.5 Mbps. The buffer accomdates  
40 packets. In all simulations wq is set to 0.0027, minth is set 
to 5 packets, midth is set to 10 packets and maxth is set to  
15 packets. 

For the simulation in Figure 5, the forward traffic 
consists of two long-lived TCP flows, and the reverse traffic 
consists of one long-lived TCP flow. At time 25, 20 new 
flows start, one every 0.1 seconds, each with a maximum 
window of 25 packets. This illustrate the effect of a sharp 
change in the congestion level. The graph in Figure 5 
illustrates non-adaptive MECN, with the average queue size 
changing as a function of the packet drop rate. The dark line 
shows the average queue size as estimated by MECN, and 
the dotted line shows the instantaneous queue. 

Figure 5 MECN with increase in congestion 

 

The graph in Figure 6 shows the same simulation using 
Adaptive MECN. Adaptive MECN shows a similar sharp 
change in the average queue size at time 25. However, after 
roughly 15 seconds, Adaptive MECN has brought the 
average queue size back to the target range, between 9 and 
12 packets. The simulation with Adaptive MECN shown in 
Figure 6, have a slightly higher throughput than the one 
with MECN shown in Figure 5 (96.3% instead of 94.5%), a 
slightly lower overall average queue size and a smaller 
packet drop rate. The simulations with Adaptive MECN 
illustrate that it is possible, but adapting Pmax, to control the 
relationship between the average queue size and the packet 
dropping probability and thus maintain a steady average 
queue size in the presence of traffic dynamics. 

Figure 7 shows a similar simulation with 20 news flows 
starting at time 0 and stopping at time 25. The simulations 
with the MECN in Figure 7 shows the decrease in the 
average queue size as the level of congestion changes at 
time 25. Figure 8 shows the corresponding simulation for 
Adaptive MECN, which has a similar decrease in traffic at 
time 25, but with 15 seconds Adaptive MECN has brought 
the queue back to the target range. The simulation with 

Adaptive MECN shown in Figure 8, has a slightly  
higher throughput to that of MECN shown in Figure 7 
(94.5% instead of 93.4%). 

Figure 6 AMECN with increase in congestion 

 

Figure 7 MECN with decrease in congestion 

 

Figure 8 AMECN with decrease in congestion 

 

4.3 Comparison with adaptive RED 

4.3.1 Dumb-bell topology 
The Adaptive MECN algorithm, is closely modelled after 
the Adaptive RED Floyd et al. (2001) algorithm and hence 
it become imperative that we compare the performance of 
AMECN with ARED. Adaptive RED, is the adaptive 
version of RED, where the Pmax is adapted to keep the  
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average queue, with the target range. The difference 
between ARED and AMECN, is that in AMECN we use 
multiple level of congestion feedback and adapts also the 
parameters α and β, whereas in ARED we use binary 
congestion feedback and uses static α and β. 

Figures 9 and 10 shows a set of simulations with a 
single congested link in a dumbbell topology shown in 
Figure 4, with 100 long-lived TCP flows. The flows have  
a RTT which varies from 100 ms to 150 ms and the 
simulations include web traffic and reverse path traffic.  
The congested link has a capacity of 7 Mb. Each point 
shown in the results is from a single simulation, with the  
x-axis showing the average queuing delay in packets over 
the second half of the 100-second simulation and the y-axis 
showing the link utilisation over the second half of the 
simulation. The simulations were carried out for both 
AMECN and ARED, for different target delays. Figure 9 
shows the Link Efficiency vs. the Avergae Delay in the 
router, for both ARED and AMECN and Figure 10 shows 
the plot between the Target delays and the actual Measured 
Delay. We see that while both the schemes confirms very 
closely to the given target delay, AMECN gives better 
throughput for a given average delay. Hence AMECN gives 
higher throughput for a given targetdelay than ARED and a 
lesser delay for a given Link Efficiency. 

Figure 9 Throughput vs. average delay for dumb-bell 
configuration 

 

Figure 10 Measured delay vs. target delay for dumb-bell 
configuration 

 
 

4.3.2 Multiple congested gateways 

This simulation configuration is used to study the  
effect of the algorithm on Multiple Congested Gateways.  
The configuration is show in Figure 11. Its a typical  
parking lot configuration. Different flows in the network, 
travel for different lengths. There are four routers in the 
network, R0–R3. At routers R0 and R1 20 flows enter the 
network and leave at R3. In addition 20 flows exist between 
each of these pairs of nodes R0–R1, R1–R2 and R2–R3.  
We intend to show that a system which uses AMECN on all 
routers has a better overall throughput than a system which 
uses ARED. 

Figure 11 Simulation configuration for multiple congested 
gateways 

 

The throughput is measured by measuring the throughput  
of all the individual flows and the then adding them up.  
The queuing delay is got by measuring the average  
queuing delay of each link over the simulation  
period and then summing up the queuing delay of the three 
links. 

Figure 12 shows the results of a set of simulation, for 
target queues for both AMECN and ARED. The target 
queues were set same on all three links. The simulation  
was run for 100 secs and the results were averaged over the 
last 50 secs. As we can see the AMECN gives better  
overall throughput than ARED, even in the multiple 
congested case. 

Figure 12 Throughput vs. average delay for multiple congested 
links 
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5 Conclusions and future work 

In this paper, we presented the Adaptive MECN  
scheme, which adapts the MECN parameter Pmax and 
automatically sets the MECN parameters wq, midth and 
maxth. The AMECN, maintains a buffer queue, which is set 
according to the delay requirements of the users. The choice 
of the target queue size, is a trade-off between the link 
utilisation and delay. We show with our simulations that 
AMECN has better delay and throughput performances than 
Adaptive RED. We are currently working on developing a 
control theory model for AMECN. 
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