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ABSTRACT 
In recent years, there has been an explosive growth in mobile 
applications (apps), most of which need to serve global audiences. 
This increasing trend of service access from mobile computing 
devices necessitates more dynamic application deployment strategies 
based on the user context (user device type, mobility, link conditions, 
location, energy constraints, etc.) and the variations in the user access 
demographics. Cloud computing provides unique new opportunities 
for application service providers (ASPs) to implement such 
deployment strategies by making it possible to dynamically allocate 
geographically distributed computing resources to the application. 
However, managing such a dynamic and distributed Internet-scale 
application deployment environment is hard; requiring ASPs to be 
able to intelligently route application traffic based on high-level 
application deployment policies over a dynamically changing 
deployment environment. To this end, we propose the design of an 
open and standard data plane abstraction called Open Application 
Delivery Networking (OpenADN) that will allow ASPs to express 
and enforce application traffic management policies and application 
delivery constraints at the required level of granularity. The key 
motivation to designing the OpenADN abstraction is to be able to 
extract and standardize a set of common application delivery 
requirements across a wide class of applications deployed over the 
Internet. OpenADN is designed within the Software Defined 
Networking (SDN) framework allowing each ASP to implement a 
separate control plane application to manage the data plane entities 
over OpenADN to suit the specific requirements of the application. 
The data plane entities may belong to the ASP itself or may be 
delegated to third party providers such as Internet Service Providers 
(ISPs) or Cloud Service Providers (CSPs). We also make a case for 
augmenting the flow abstraction layer of SDN (OpenFlow) to add 
adequate support for OpenADN. OpenADN uses IP for forwarding 
packets to endpoint locators, making it easy to deploy over the 
current Internet with only a few OpenADN aware entities. 
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1. INTRODUCTION 
Cloud computing allows globally distributed services and 
enterprises, e.g., Facebook, YouTube, and Bank of America, to 
quickly deploy, manage and optimize their computing 
infrastructure dynamically. Partitioning or replicating a service 
across multiple globally distributed instances allow these 
services to move closer to the users thus providing richer user 
experiences, avoid infrastructure bottlenecks, and implement 
fault tolerance. With cloud computing, application service 
providers (ASPs) can provide better services to mobile end 

users by dynamically changing their deployment topologies 
based on user access patterns, user mobility, infrastructure load 
characteristics, infrastructure failures and many such situations 
that may cause service degradation, disruption or churn.  
Another key trend is the explosion of mobile applications 
(apps). Every business, every newspaper, every bank, and 
every game has its own app. The world has become flat and 
most of these apps service a world-wide audience and therefore 
may use cloud computing services to replicate their services 
and optimize user experience. 

 
Fig. 1 Distributed service over private and public clouds 

Fig.1 presents an example of a typical deployment scenario of 
an application service provider (ASP). This ASP owns and 
operates multiple data centers across the US. However, in 
Europe or Asia it may need to use third party cloud computing 
facilities provided by RackSpace or Amazon EC2. Also, as 
some particular application becomes popular among users it 
would need to instantiate more globally distributed resources to 
this application and release these resources as the popularity 
dies out.  
Similarly, replicated service instances might need to be 
moved/instantiated/released to mask infrastructure failures, 
load conditions, or optimize the deployment based on access 
patterns and social interaction graphs. Such dynamic service 
deployment scenarios need intelligent infrastructure support.  
Google also has this problem and has installed a WAN-like 
infrastructure [1, 2] that intercepts most of the traffic for 
Google-owned services at edge-network POPs and sends them 
over its private WAN infrastructure. At these POPs, Google 
(probably) operates application layer (layer 4-7) proxies to 
intelligently route a service request to one of its geographically 
distributed data centers. While it is possible for large ASPs to 
operate such infrastructures, it is prohibitively expensive for 
smaller ASPs. 
Middleboxes are an essential component of modern application 
delivery [3]. Within private datacenters or within enterprise 
network environments, ASPs generally operate a middle layer 
of variety of network appliances to implement load balancing, 
fault tolerance and other intelligent infrastructure support. 
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However, such solutions are not available for wide area 
dynamic multi-cloud environments that can be shared by 
multiple ASPs to implement their specific distributed service 
delivery contexts.  

 
Fig. 2 Google's Application Delivery Network 

Our vision is to design an open and standard data plane 
abstraction called Open Application Delivery Networking 
(OpenADN) that will allow ASPs to express and enforce 
application traffic management policies and application 
delivery constraints at the required level of granularity. As 
shown in Fig. 3, using OpenADN aware data plane entities, 
ISPs can offer services similar to Google WAN to smaller 
ASPs. Any new ASP can quickly setup its service by using 
ADN services provided by OpenADN carriers. The ASP’s 
control plane may program the ISP provided OpenADN data 
plane entities such as OpenADN-aware switches and 
middelboxes to manage its application deployment distributed 
across several cloud-infrastructure sites.  

 
Fig. 3 Open Application Delivery Network (OpenADN) 

To achieve this we combine the following six innovations: 
1. OpenFlow 
2. Software Defined Networking 
3. ID/Locator Split 
4. Layer 4-7 Middleboxes 
5. Cross-Layer Communication 
6. MPLS-like application flow labels 

The organization of the rest of the paper is as follows. Section 
2 briefly explains the features of OpenFlow and SDN that are 
helpful in our goal. Section 3 discusses the extensions of the six 
concepts that make OpenADN possible. Related works are 
presented in Section 4 followed by a summary in Section 5. 

2. SDN and OpenFlow 
Software Defined Networks (SDN) is an approach towards 
taming the configuration and management complexities of 
large-scale network infrastructures through the design of proper 
abstractions. This complexity is inherent to the design of 
distributed control algorithms and ensuring the consistency of 
distributed state.  
On the computing side, cloud computing brings new 
opportunities for ASPs to considerably reduce their capital and 
operational expenditures in terms of provisioning computing 

infrastructures for peak loads. Also, ASPs can leverage 
geographically distributed computing infrastructure provided 
by multiple cloud providers (multi-cloud environments) for 
dynamically distributing their services through replication and 
partitioning. Managing such a distributed and dynamic 
deployment environment can be extremely challenging. More 
so, without support from the underlying network infrastructure. 
ISPs implementing an SDN domain can provide support to 
such environments as shown later in this paper.  
Most critical to the design of the proper abstractions for a 
system is the design of the primitive abstraction layer. The 
primitive abstraction layer is the layer that interposes between 
the aspects of flexibility and expressability requirements of the 
higher layer policy expressions and the performance 
requirements of the lower layer system components. The key 
design issue of this layer is to be able to arrive at the right 
granularity that properly addresses the flexibility-performance 
tradeoff. The generic concept of a packet flow seems to be the 
right granularity for the design of this layer for SDN. We refer 
to it as the flow abstraction layer.  
The flow abstraction layer will be responsible for mapping 
flow-level policies specified by control applications to packet-
level enforcement of these policies by the data plane 
components. The SDN may build additional layers of 
abstraction between the flow abstraction layer and control 
applications to address two general goals. The first goal is to 
provide a logically centralized platform for implementing 
control plane applications, abstracting away the details of state 
distribution and distributed state management from these 
applications. The second goal is to support the deployment of 
multiple control applications over the SDN platform by 
providing resource and policy isolation. 
In order to specify flow-level policies, a control application 
needs to provide two types of rules: 1) flow classification rules 
to identify packets as belonging to a flow of interest to the 
control application, and 2) flow-level enforcement rules to 
specify the set of actions over each packet belonging to the 
flow.  
The current effort to standardize the flow abstraction layer is 
based on the evolving OpenFlow [4] standard. OpenFlow 
allows flows to be specified over a combination of layer 2 
(including layer 2.5), layer 3 and layer 4 header fields. Thus, 
OpenFlow provides enough context for designing control 
applications for the network-level flow processing functions 
including destination-based routing and forwarding and various 
traffic engineering applications optimizing different parameters 
such as energy efficiency, congestion, latency, etc.  

3. OpenADN Vision 
As mentioned earlier, OpenADN extends OpenFlow and SDN 
concepts and combines them with several recent networking 
paradigms to provide application delivery. These extensions are 
discussed in this section. 

A. Application Level Policies 
Application level policies are features that ASPs need to 
manage their distributed and dynamic application deployment 
environemnts. For example, ASPs may want network to help in 
the following: 



1. Replication and Partitioning: Route the traffic to the right 
application instance from a partitioned application space 
where each partition may be replicated across a group of 
geographically distributed instances.  
2. Load Balancing: Load balance among a group of 
geographically replicated application instances. 
3. Fault Tolerance: Divert traffic to a live application instance 
within the failover group of the failed application instance. 
4. User Context: Route traffic to an application instance based 
on the user context. 
5. Service Mobility: Allow application instances to move 
among cloud data centers through virtual machine migration. 
6. Client Mobility: Allow clients to move. 
7. Service Composition: Compose a service from multiple 
individual service components. 
The ASPs may provide policies that when implemented will 
provide optimal user experience. These are all examples of 
application level policies. Application level policies must be 
contrasted with network level policies that are the features that 
ISPs need and enforce. These include routing, traffic 
engineering, congestion control, etc. These policies are applied 
to all packets that belong to a network flow class. For example, 
all packets that have the same destination may belong to one 
network flow class and may be routed to the same port or on 
the same path. Alternately, a network flow class may consist of 
all packets that have the same MPLS tag and therefore will be 
routed on a particular label switched path (LSP).  

B. Application Flow Class 
Application level policies described above require classifying 
packets into application flow classes. For example, an ASP 
may want all its voice and video messages to be sent to Server 
group 1 (any one of the servers in the group), while all 
accounting messages to be sent to Server 2 (not replicated). 
Such policies are currently enforced in private data centers 
using middleboxes (network appliances). Several vendors 
specialize in such appliances that provide load balancing, 
intrusion detection, firewalls, etc. Most of these middleboxes 
operate at the application layer and need to reassemble 
application messages from network packets. 
Since OpenFlow works at the packet level, it has a very limited 
context for expressing application-level policies through the 
transport layer port number and transport protocol ID header 
fields. This is inadequate for designing control applications for 
managing application-traffic flows. We solve this problem by 
using a cross-layer communication technique described next. 

C. Cross-Layer Communication 
OpenADN uses a cross-layer design that allows application-
traffic flow information to be placed in the form of a label 
between the network layer (layer 3) and transport layer (layer 
4) packet headers (See Fig. 4). In other words, a “APplication 
Label Switching (APLS)” layer forms layer 3.5 in the protocol 
stack. Legacy routers forward packets based on layer 3 
(destination prefix match) or layer 2.5 (MPLS labels). Layer 
3.5 is handled only by OpenADN aware devices, such as 
clients, servers, OpenADN switches and middleboxes. The 
protocol type field in the layer 3 header indicates the presence 
of APLS header. Another protocol type field in APLS header 
indicates the layer 4 protocol, e.g., TCP, UDP, SCTP, etc. 

Thus, OpenADN works with all L4 protocols and both IP and 
MPLS routing.  
The APLS header augments the flow abstraction layer 
allowing us to design control applications for application-
traffic flow processing in OpenADN aware OpenFlow 
switches. This way, OpenADN provides a constrained and 
standardized interface for delegating application-traffic flow 
processing to the ISP. 

 
Fig. 4 APLS header provides sufficient information for enhanced 

OpenFlow switches to enforce application level policies. 
In particular, APLS header allows OpenADN aware OpenFlow 
switches to offer the following services: 
1. Message Affinity: All packets that are part of an application-
layer message need to be classified into the same application 
flow class. The semantics of a message is application specific. 
2. Session Affinity: All packets of a particular application 
session are bound to the same session endpoint during the 
session. The definition of a session is application specific.  
3. Receiver Policies: Load balancing among multiple servers 
is an example of a receiver policy. APLS header enables 
OpenFlow switches to implement such policies. In OpenADN, 
we don’t distinguish servers and clients. Either one can be a 
receiver or a sender and, therefore, may have its policies. In 
this sense, the application of OpenADN is not limited to 
mobile hosts, even the traffic between two datacenters can use 
these features. 
4. Sender Policies: Application-level flows are subject to both, 
sender and receiver policies. Thus, a single end-to-end 
application-level flow may be processed by two separate 
control applications. These control applications may reside 
over the same or different SDN domains. The OpenADN 
design provides mechanisms to ensure that only one control 
application processes the flow at any given time. After the 
sender policies have been enforced on the flow, it needs to be 
handed-off to the receiver control application for receiver 
specific policy enforcement. 
5. Network Policies: APLS header enables the packets to 
receive the QoS (e.g., drop policy, priority) for application 
flows as specified by the ASP from the network service 
provider (e.g. ISP).  
6. Middle-box services: The packets will be forwarded through 
a chain of middle boxes as specified by the ASP. APLS layer 
results in a forwarding plane abstraction that allows the 
control application to steer an application traffic flow through 
multiple intermediaries (called waypoints) between two end-
points. A middle-box is an example of a waypoint. Also, it 
allows the control application to dynamically steer flows to 
accommodate application-level churn as a result of server/user 
mobility or server failures.  
In summary, OpenADN-aware OpenFlow (Fig.6) switches 
enable application traffic handling at the packet layer. 



D. ID/Locator Split 
There are two types of application-level entities in OpenADN, 
endpoint entities and waypoint entities. Each entity is assigned 
a fixed identifier (ID), which is separate from its locator. The 
ID/locator split [8] is necessary to uniquely identify and 
address an application level entity. This is required for 1) 
enforcing sender/receiver policies on a flow, 2) specifying 
session affinity of a flow over a set of intermediaries and end-
points, and 3) correctly routing a flow to mobile servers/users. 

E. SDN Control Application 
OpenADN leverages the flow-level abstraction provided by an 
SDN-like platform for application-traffic flow processing. SDN 
allows ASPs to write their own control applications. 
Leveraging the power of abstraction, network infrastructure 
domains implementing SDN can now easily accommodate 
such third party provided control applications without 
relinquishing control of their infrastructure. 

 
Fig. 5 OpenADN control applications and SDN 

As shown in Fig. 5, SDN consists of 3 abstraction layers 
consisting of virtualization, network operating systems, and 
network control applications. ASPs can implement OpenADN 
based control applications to specify application-level flow 
identification and policy enforcement rules. Note, now ASPs 
can also invoke network level services provided by the ISPs (as 
proposed by the Application-Layer Traffic Optimization 
(ALTO) [7] framework). 

F. OpenADN Aware OpenFlow Switches 
As indicated in Fig. 6 (OpenADN aware OpenFlow switches), 
in the augmented flow abstraction layer with support for 
application-traffic flow processing, OpenADN specific 
processing precedes OpenFlow specific processing. This 
follows naturally from the layered abstraction in the control 
plane. Application-traffic flows processed by the OpenADN 
control applications need to be mapped to network flows 
processed by the SDN control modules for accessing network 
level services. Hence, it is required that the OpenADN flow 
abstraction can directly interface with OpenFlow in the data 
plane.  

 
Fig. 6 OpenADN and OpenFlow 

As shown in Fig. 7, explicitly chained virtual tables specified in 
the OpenFlow data plane specification 1.1 [12] can be used for 
this. Incoming packets are first passed through a generic flow-
identification table, which then redirects the packet through a 
virtual table pipeline for more flow-context specific processing. 
Using this virtual table support, the OpenADN data plane may 
interpose application-traffic flow processing before handing off 
the flow for network-level flow processing. We propose a three 
level naming hierarchy for virtual tables. The first level 
identifies whether it is performing application-level or 
network-level flow processing. The second level identifies the 
SDN control module that configures the virtual table (e.g. ASP 
IDs for OpenADN, infrastructure service IDs for OpenFlow). 
The third level identifies the specific flow-processing context 
within an SDN control module. In Fig. 7, we only show a 
packet being explicitly handed-off at level 1 in the hierarchy, 
from application-traffic flow processing to network level flow 
processing. However, it is also possible to allow packet 
handoffs at level 2 and level 3 in the hierarchy, to 
accommodate layered abstraction in the control plane.  

 
Fig. 7 Data Plane design providing access to both OpenADN and 

Infrastructure Services 

G. OpenADN Label Mechanisms 
The requirements of application-traffic flow processing are 
supported through two key mechanisms. 
The APLS header carries application-traffic flow context in a 
meta tag. It is placed into the flow label by the communicating 
end-points. The meta tag may be interpreted as the result of an 
application-traffic flow classification. Unlike network level 
flow classification, application level flow classification needs 
to be done at the end-hosts. There are several reasons for this: 
1. Semantic Gap: Application-traffic flow classification rules 
may be specified over application content, application headers, 
application session information, etc. Most of this information is 
not available to a network node at the packet level granularity. 
Moreover, even the whole application level header may not be 
part of an IP datagram as a result of TCP segmentation. Thus, 
the semantic gap between the scope of the classification rules 
and the context available to network nodes to interpret those 
rules makes it more viable to do the classification at end hosts. 
2. Diversity: The diversity of application-level protocols makes 
it difficult to standardize a node that could classify all 
application level headers. 
3. Performance: Application layer classification is a compute 
intensive task mostly because of their lack of standardization 
and the machine unfriendly encoding.  
4. Security: Allowing an intermediate network node to do 
application traffic flow classification would require access to 
application level data, thus interfering with end-to-end security. 



APLS label processing mechanisms uses techniques similar to 
MPLS label processing, with semantic differences. APLS uses 
a mechanism similar to label stacking (label pushing and 
popping) for enforcing sender and receiver policies on an 
application traffic flow. Also, APLS uses a mechanism similar 
to label switching for switching a packet through multiple 
application-level waypoints. Space constraints do not permit us 
to include all details of the label processing. 

4. RELATED WORK 
Application-specific packet processing has eluded network 
researchers for long. However, the full generality of in-network 
application-specific packet processing proposed by active 
networks research [9, 11] has failed to motivate real 
deployments. The active networks approach required 
applications to be allowed to run custom application processing 
code on network nodes creating policy and security concerns 
for the network infrastructure providers.  
Application delivery intelligence in modern application 
deployments is implemented through specific purpose 
middleboxes interposed in the application delivery path. 
However, due to the lack of support for middleboxes in the 
original Internet architecture, it poses considerable challenge 
for network administrators to configure policy-routing of 
application-traffic flows through a specific set of middleboxes. 
To alleviate this difficulty, delegation–oriented architecture 
(DOA) [10] was proposed. However, DOA was not designed 
for dynamic application delivery environments made available 
through cloud computing today. OpenADN borrows the 
principles of delegation from DOA and applies it to modern 
application delivery contexts. More recently a flexible 
forwarding plane design has been proposed by the Rule-based 
Forwarding architecture (RBF) [6]. RBF proposes that packets 
be forwarded to a “rule” instead of a destination address. The 
rule would encode the specific processing required by a packet 
at a network node. However, rules early bind a packet to a set 
of processing nodes. Also, rules only allow enforcing receiver-
centric policies. In OpenADN, packets carry application 
context and it is late bound to a rule in the network. Moreover, 
OpenADN provides a standardized data plane abstraction for 
application traffic flow processing and is thus more suitable for 
being deployed on high performance network switches as 
compared to the (more) general purpose rule processing 
required by RBF. 
Serval [5] is another recent approach for service centric 
networking. Serval treats all packets of a service identically 
and therefore cannot distinguish differing requirements for 
various application level messages from the same service. In 
addition to message level granularity, OpenADN allows ASPs 
to specify a sequence of middleboxes and end entities that 
specific messages will travel. In addition, OpenADN allows 
both senders and receivers policies. OpenADN is also more 
general in the sense that both packet level and message level 
middleboxes are allowed.  

5. CONCLUSION 
Recent explosion of mobile apps serving a global audience 
requires smart networking facilities that can help ASPs to 
replicate their servers on cloud computing facilities around the 
world on demand to dynamically optimize for user access 
patterns. OpenADN is an open networking platform that allows 
ISPs to offer such services. It uses the flow abstraction layer of 
SDN and adds ID/locator split and cross-layer communication 
in the form of an application label-switching (APLS) header in 
layer 3.5 that allows OpenFlow switches to be enhanced to 
offer application level services without the need to reassemble 
application level messages.  
A key feature of OpenADN is that it can be incrementally 
deployed with just a few OpenADN aware OpenFlow switches 
and is fully compatible with current Internet. Those ISPs that 
deploy these switches and those ASPs that connect to these 
switches will be able to benefit immediately from the 
technology. Also, ISPs keep complete control over their 
network resources while ASPs keep complete control over their 
application data that may be confidential and encrypted. ISPs 
can also deploy OpenADN aware middle-boxes and offer 
middle-box services to ASPs. Best of all, this can be done now 
while the SDN technology is still evolving. Cloud service 
providers like Amazon, Google, Microsoft, Rackspace, etc. can 
also add these features to their offerings. Some components of 
OpenADN, such as, APLS header can be used for virtualizing 
application classes and offering application specific services in 
other contexts. In this paper we have presented a work-in-
progress space-constrained report of a large project.  
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