
OpenADN: Mobile Apps on Global Clouds Using OpenFlow
and Software Defined Networking

Subharthi Paul
Washington University in Saint Louis

pauls@cse.wustl.edu

Raj Jain
Washington University in Saint Louis

jain@cse.wustl.edu

ABSTRACT
In recent years, there has been an explosive growth in mobile
applications (apps), most of which need to serve global audiences.
This increasing trend of service access from mobile computing
devices necessitates more dynamic application deployment strategies
based on the user context (user device type, mobility, link conditions,
location, energy constraints, etc.) and the variations in the user access
demographics. Cloud computing provides unique new opportunities
for application service providers (ASPs) to implement such
deployment strategies by making it possible to dynamically allocate
geographically distributed computing resources to the application.
However, managing such a dynamic and distributed Internet-scale
application deployment environment is hard; requiring ASPs to be
able to intelligently route application traffic based on high-level
application deployment policies over a dynamically changing
deployment environment. To this end, we propose the design of an
open and standard data plane abstraction called Open Application
Delivery Networking (OpenADN) that will allow ASPs to express
and enforce application traffic management policies and application
delivery constraints at the required level of granularity. The key
motivation to designing the OpenADN abstraction is to be able to
extract and standardize a set of common application delivery
requirements across a wide class of applications deployed over the
Internet. OpenADN is designed within the Software Defined
Networking (SDN) framework allowing each ASP to implement a
separate control plane application to manage the data plane entities
over OpenADN to suit the specific requirements of the application.
The data plane entities may belong to the ASP itself or may be
delegated to third party providers such as Internet Service Providers
(ISPs) or Cloud Service Providers (CSPs). We also make a case for
augmenting the flow abstraction layer of SDN (OpenFlow) to add
adequate support for OpenADN. OpenADN uses IP for forwarding
packets to endpoint locators, making it easy to deploy over the
current Internet with only a few OpenADN aware entities.

Keywords
Network Architecture, Software Defined Networks, Application
Delivery, Application traffic Flows, Application Flow-label, Label
Stacking, Label Switching, ID/Locator Split, Cross-layer
communication.

1. INTRODUCTION
Cloud computing allows globally distributed services and
enterprises, e.g., Facebook, YouTube, and Bank of America, to
quickly deploy, manage and optimize their computing
infrastructure dynamically. Partitioning or replicating a service
across multiple globally distributed instances allow these
services to move closer to the users thus providing richer user
experiences, avoid infrastructure bottlenecks, and implement
fault tolerance. With cloud computing, application service
providers (ASPs) can provide better services to mobile end

users by dynamically changing their deployment topologies
based on user access patterns, user mobility, infrastructure load
characteristics, infrastructure failures and many such situations
that may cause service degradation, disruption or churn.
Another key trend is the explosion of mobile applications
(apps). Every business, every newspaper, every bank, and
every game has its own app. The world has become flat and
most of these apps service a world-wide audience and therefore
may use cloud computing services to replicate their services
and optimize user experience.

Fig. 1 Distributed service over private and public clouds

Fig.1 presents an example of a typical deployment scenario of
an application service provider (ASP). This ASP owns and
operates multiple data centers across the US. However, in
Europe or Asia it may need to use third party cloud computing
facilities provided by RackSpace or Amazon EC2. Also, as
some particular application becomes popular among users it
would need to instantiate more globally distributed resources to
this application and release these resources as the popularity
dies out.
Similarly, replicated service instances might need to be
moved/instantiated/released to mask infrastructure failures,
load conditions, or optimize the deployment based on access
patterns and social interaction graphs. Such dynamic service
deployment scenarios need intelligent infrastructure support.
Google also has this problem and has installed a WAN-like
infrastructure [1, 2] that intercepts most of the traffic for
Google-owned services at edge-network POPs and sends them
over its private WAN infrastructure. At these POPs, Google
(probably) operates application layer (layer 4-7) proxies to
intelligently route a service request to one of its geographically
distributed data centers. While it is possible for large ASPs to
operate such infrastructures, it is prohibitively expensive for
smaller ASPs.
Middleboxes are an essential component of modern application
delivery [3]. Within private datacenters or within enterprise
network environments, ASPs generally operate a middle layer
of variety of network appliances to implement load balancing,
fault tolerance and other intelligent infrastructure support.

This work was supported in part by an award from Cisco University Research Program and NSF CISE grant #1019119.

Raj Jain
Typewritten Text

Raj Jain
Typewritten Text
First International workshop on Management and Security technologies for Cloud Computing (ManSec-CC) 2012, Decenber 7, 2012, in conjunction with IEEE Global Communications Conference (Globecom) 2012, Anaheim, CA, December 3-7, 2012

Raj Jain
Typewritten Text

However, such solutions are not available for wide area
dynamic multi-cloud environments that can be shared by
multiple ASPs to implement their specific distributed service
delivery contexts.

Fig. 2 Google's Application Delivery Network

Our vision is to design an open and standard data plane
abstraction called Open Application Delivery Networking
(OpenADN) that will allow ASPs to express and enforce
application traffic management policies and application
delivery constraints at the required level of granularity. As
shown in Fig. 3, using OpenADN aware data plane entities,
ISPs can offer services similar to Google WAN to smaller
ASPs. Any new ASP can quickly setup its service by using
ADN services provided by OpenADN carriers. The ASP’s
control plane may program the ISP provided OpenADN data
plane entities such as OpenADN-aware switches and
middelboxes to manage its application deployment distributed
across several cloud-infrastructure sites.

Fig. 3 Open Application Delivery Network (OpenADN)

To achieve this we combine the following six innovations:
1. OpenFlow
2. Software Defined Networking
3. ID/Locator Split
4. Layer 4-7 Middleboxes
5. Cross-Layer Communication
6. MPLS-like application flow labels

The organization of the rest of the paper is as follows. Section
2 briefly explains the features of OpenFlow and SDN that are
helpful in our goal. Section 3 discusses the extensions of the six
concepts that make OpenADN possible. Related works are
presented in Section 4 followed by a summary in Section 5.

2. SDN and OpenFlow
Software Defined Networks (SDN) is an approach towards
taming the configuration and management complexities of
large-scale network infrastructures through the design of proper
abstractions. This complexity is inherent to the design of
distributed control algorithms and ensuring the consistency of
distributed state.
On the computing side, cloud computing brings new
opportunities for ASPs to considerably reduce their capital and
operational expenditures in terms of provisioning computing

infrastructures for peak loads. Also, ASPs can leverage
geographically distributed computing infrastructure provided
by multiple cloud providers (multi-cloud environments) for
dynamically distributing their services through replication and
partitioning. Managing such a distributed and dynamic
deployment environment can be extremely challenging. More
so, without support from the underlying network infrastructure.
ISPs implementing an SDN domain can provide support to
such environments as shown later in this paper.
Most critical to the design of the proper abstractions for a
system is the design of the primitive abstraction layer. The
primitive abstraction layer is the layer that interposes between
the aspects of flexibility and expressability requirements of the
higher layer policy expressions and the performance
requirements of the lower layer system components. The key
design issue of this layer is to be able to arrive at the right
granularity that properly addresses the flexibility-performance
tradeoff. The generic concept of a packet flow seems to be the
right granularity for the design of this layer for SDN. We refer
to it as the flow abstraction layer.
The flow abstraction layer will be responsible for mapping
flow-level policies specified by control applications to packet-
level enforcement of these policies by the data plane
components. The SDN may build additional layers of
abstraction between the flow abstraction layer and control
applications to address two general goals. The first goal is to
provide a logically centralized platform for implementing
control plane applications, abstracting away the details of state
distribution and distributed state management from these
applications. The second goal is to support the deployment of
multiple control applications over the SDN platform by
providing resource and policy isolation.
In order to specify flow-level policies, a control application
needs to provide two types of rules: 1) flow classification rules
to identify packets as belonging to a flow of interest to the
control application, and 2) flow-level enforcement rules to
specify the set of actions over each packet belonging to the
flow.
The current effort to standardize the flow abstraction layer is
based on the evolving OpenFlow [4] standard. OpenFlow
allows flows to be specified over a combination of layer 2
(including layer 2.5), layer 3 and layer 4 header fields. Thus,
OpenFlow provides enough context for designing control
applications for the network-level flow processing functions
including destination-based routing and forwarding and various
traffic engineering applications optimizing different parameters
such as energy efficiency, congestion, latency, etc.

3. OpenADN Vision
As mentioned earlier, OpenADN extends OpenFlow and SDN
concepts and combines them with several recent networking
paradigms to provide application delivery. These extensions are
discussed in this section.

A. Application Level Policies
Application level policies are features that ASPs need to
manage their distributed and dynamic application deployment
environemnts. For example, ASPs may want network to help in
the following:

1. Replication and Partitioning: Route the traffic to the right
application instance from a partitioned application space
where each partition may be replicated across a group of
geographically distributed instances.
2. Load Balancing: Load balance among a group of
geographically replicated application instances.
3. Fault Tolerance: Divert traffic to a live application instance
within the failover group of the failed application instance.
4. User Context: Route traffic to an application instance based
on the user context.
5. Service Mobility: Allow application instances to move
among cloud data centers through virtual machine migration.
6. Client Mobility: Allow clients to move.
7. Service Composition: Compose a service from multiple
individual service components.
The ASPs may provide policies that when implemented will
provide optimal user experience. These are all examples of
application level policies. Application level policies must be
contrasted with network level policies that are the features that
ISPs need and enforce. These include routing, traffic
engineering, congestion control, etc. These policies are applied
to all packets that belong to a network flow class. For example,
all packets that have the same destination may belong to one
network flow class and may be routed to the same port or on
the same path. Alternately, a network flow class may consist of
all packets that have the same MPLS tag and therefore will be
routed on a particular label switched path (LSP).

B. Application Flow Class
Application level policies described above require classifying
packets into application flow classes. For example, an ASP
may want all its voice and video messages to be sent to Server
group 1 (any one of the servers in the group), while all
accounting messages to be sent to Server 2 (not replicated).
Such policies are currently enforced in private data centers
using middleboxes (network appliances). Several vendors
specialize in such appliances that provide load balancing,
intrusion detection, firewalls, etc. Most of these middleboxes
operate at the application layer and need to reassemble
application messages from network packets.
Since OpenFlow works at the packet level, it has a very limited
context for expressing application-level policies through the
transport layer port number and transport protocol ID header
fields. This is inadequate for designing control applications for
managing application-traffic flows. We solve this problem by
using a cross-layer communication technique described next.

C. Cross-Layer Communication
OpenADN uses a cross-layer design that allows application-
traffic flow information to be placed in the form of a label
between the network layer (layer 3) and transport layer (layer
4) packet headers (See Fig. 4). In other words, a “APplication
Label Switching (APLS)” layer forms layer 3.5 in the protocol
stack. Legacy routers forward packets based on layer 3
(destination prefix match) or layer 2.5 (MPLS labels). Layer
3.5 is handled only by OpenADN aware devices, such as
clients, servers, OpenADN switches and middleboxes. The
protocol type field in the layer 3 header indicates the presence
of APLS header. Another protocol type field in APLS header
indicates the layer 4 protocol, e.g., TCP, UDP, SCTP, etc.

Thus, OpenADN works with all L4 protocols and both IP and
MPLS routing.
The APLS header augments the flow abstraction layer
allowing us to design control applications for application-
traffic flow processing in OpenADN aware OpenFlow
switches. This way, OpenADN provides a constrained and
standardized interface for delegating application-traffic flow
processing to the ISP.

Fig. 4 APLS header provides sufficient information for enhanced

OpenFlow switches to enforce application level policies.
In particular, APLS header allows OpenADN aware OpenFlow
switches to offer the following services:
1. Message Affinity: All packets that are part of an application-
layer message need to be classified into the same application
flow class. The semantics of a message is application specific.
2. Session Affinity: All packets of a particular application
session are bound to the same session endpoint during the
session. The definition of a session is application specific.
3. Receiver Policies: Load balancing among multiple servers
is an example of a receiver policy. APLS header enables
OpenFlow switches to implement such policies. In OpenADN,
we don’t distinguish servers and clients. Either one can be a
receiver or a sender and, therefore, may have its policies. In
this sense, the application of OpenADN is not limited to
mobile hosts, even the traffic between two datacenters can use
these features.
4. Sender Policies: Application-level flows are subject to both,
sender and receiver policies. Thus, a single end-to-end
application-level flow may be processed by two separate
control applications. These control applications may reside
over the same or different SDN domains. The OpenADN
design provides mechanisms to ensure that only one control
application processes the flow at any given time. After the
sender policies have been enforced on the flow, it needs to be
handed-off to the receiver control application for receiver
specific policy enforcement.
5. Network Policies: APLS header enables the packets to
receive the QoS (e.g., drop policy, priority) for application
flows as specified by the ASP from the network service
provider (e.g. ISP).
6. Middle-box services: The packets will be forwarded through
a chain of middle boxes as specified by the ASP. APLS layer
results in a forwarding plane abstraction that allows the
control application to steer an application traffic flow through
multiple intermediaries (called waypoints) between two end-
points. A middle-box is an example of a waypoint. Also, it
allows the control application to dynamically steer flows to
accommodate application-level churn as a result of server/user
mobility or server failures.
In summary, OpenADN-aware OpenFlow (Fig.6) switches
enable application traffic handling at the packet layer.

D. ID/Locator Split
There are two types of application-level entities in OpenADN,
endpoint entities and waypoint entities. Each entity is assigned
a fixed identifier (ID), which is separate from its locator. The
ID/locator split [8] is necessary to uniquely identify and
address an application level entity. This is required for 1)
enforcing sender/receiver policies on a flow, 2) specifying
session affinity of a flow over a set of intermediaries and end-
points, and 3) correctly routing a flow to mobile servers/users.

E. SDN Control Application
OpenADN leverages the flow-level abstraction provided by an
SDN-like platform for application-traffic flow processing. SDN
allows ASPs to write their own control applications.
Leveraging the power of abstraction, network infrastructure
domains implementing SDN can now easily accommodate
such third party provided control applications without
relinquishing control of their infrastructure.

Fig. 5 OpenADN control applications and SDN

As shown in Fig. 5, SDN consists of 3 abstraction layers
consisting of virtualization, network operating systems, and
network control applications. ASPs can implement OpenADN
based control applications to specify application-level flow
identification and policy enforcement rules. Note, now ASPs
can also invoke network level services provided by the ISPs (as
proposed by the Application-Layer Traffic Optimization
(ALTO) [7] framework).

F. OpenADN Aware OpenFlow Switches
As indicated in Fig. 6 (OpenADN aware OpenFlow switches),
in the augmented flow abstraction layer with support for
application-traffic flow processing, OpenADN specific
processing precedes OpenFlow specific processing. This
follows naturally from the layered abstraction in the control
plane. Application-traffic flows processed by the OpenADN
control applications need to be mapped to network flows
processed by the SDN control modules for accessing network
level services. Hence, it is required that the OpenADN flow
abstraction can directly interface with OpenFlow in the data
plane.

Fig. 6 OpenADN and OpenFlow

As shown in Fig. 7, explicitly chained virtual tables specified in
the OpenFlow data plane specification 1.1 [12] can be used for
this. Incoming packets are first passed through a generic flow-
identification table, which then redirects the packet through a
virtual table pipeline for more flow-context specific processing.
Using this virtual table support, the OpenADN data plane may
interpose application-traffic flow processing before handing off
the flow for network-level flow processing. We propose a three
level naming hierarchy for virtual tables. The first level
identifies whether it is performing application-level or
network-level flow processing. The second level identifies the
SDN control module that configures the virtual table (e.g. ASP
IDs for OpenADN, infrastructure service IDs for OpenFlow).
The third level identifies the specific flow-processing context
within an SDN control module. In Fig. 7, we only show a
packet being explicitly handed-off at level 1 in the hierarchy,
from application-traffic flow processing to network level flow
processing. However, it is also possible to allow packet
handoffs at level 2 and level 3 in the hierarchy, to
accommodate layered abstraction in the control plane.

Fig. 7 Data Plane design providing access to both OpenADN and

Infrastructure Services

G. OpenADN Label Mechanisms
The requirements of application-traffic flow processing are
supported through two key mechanisms.
The APLS header carries application-traffic flow context in a
meta tag. It is placed into the flow label by the communicating
end-points. The meta tag may be interpreted as the result of an
application-traffic flow classification. Unlike network level
flow classification, application level flow classification needs
to be done at the end-hosts. There are several reasons for this:
1. Semantic Gap: Application-traffic flow classification rules
may be specified over application content, application headers,
application session information, etc. Most of this information is
not available to a network node at the packet level granularity.
Moreover, even the whole application level header may not be
part of an IP datagram as a result of TCP segmentation. Thus,
the semantic gap between the scope of the classification rules
and the context available to network nodes to interpret those
rules makes it more viable to do the classification at end hosts.
2. Diversity: The diversity of application-level protocols makes
it difficult to standardize a node that could classify all
application level headers.
3. Performance: Application layer classification is a compute
intensive task mostly because of their lack of standardization
and the machine unfriendly encoding.
4. Security: Allowing an intermediate network node to do
application traffic flow classification would require access to
application level data, thus interfering with end-to-end security.

APLS label processing mechanisms uses techniques similar to
MPLS label processing, with semantic differences. APLS uses
a mechanism similar to label stacking (label pushing and
popping) for enforcing sender and receiver policies on an
application traffic flow. Also, APLS uses a mechanism similar
to label switching for switching a packet through multiple
application-level waypoints. Space constraints do not permit us
to include all details of the label processing.

4. RELATED WORK
Application-specific packet processing has eluded network
researchers for long. However, the full generality of in-network
application-specific packet processing proposed by active
networks research [9, 11] has failed to motivate real
deployments. The active networks approach required
applications to be allowed to run custom application processing
code on network nodes creating policy and security concerns
for the network infrastructure providers.
Application delivery intelligence in modern application
deployments is implemented through specific purpose
middleboxes interposed in the application delivery path.
However, due to the lack of support for middleboxes in the
original Internet architecture, it poses considerable challenge
for network administrators to configure policy-routing of
application-traffic flows through a specific set of middleboxes.
To alleviate this difficulty, delegation–oriented architecture
(DOA) [10] was proposed. However, DOA was not designed
for dynamic application delivery environments made available
through cloud computing today. OpenADN borrows the
principles of delegation from DOA and applies it to modern
application delivery contexts. More recently a flexible
forwarding plane design has been proposed by the Rule-based
Forwarding architecture (RBF) [6]. RBF proposes that packets
be forwarded to a “rule” instead of a destination address. The
rule would encode the specific processing required by a packet
at a network node. However, rules early bind a packet to a set
of processing nodes. Also, rules only allow enforcing receiver-
centric policies. In OpenADN, packets carry application
context and it is late bound to a rule in the network. Moreover,
OpenADN provides a standardized data plane abstraction for
application traffic flow processing and is thus more suitable for
being deployed on high performance network switches as
compared to the (more) general purpose rule processing
required by RBF.
Serval [5] is another recent approach for service centric
networking. Serval treats all packets of a service identically
and therefore cannot distinguish differing requirements for
various application level messages from the same service. In
addition to message level granularity, OpenADN allows ASPs
to specify a sequence of middleboxes and end entities that
specific messages will travel. In addition, OpenADN allows
both senders and receivers policies. OpenADN is also more
general in the sense that both packet level and message level
middleboxes are allowed.

5. CONCLUSION
Recent explosion of mobile apps serving a global audience
requires smart networking facilities that can help ASPs to
replicate their servers on cloud computing facilities around the
world on demand to dynamically optimize for user access
patterns. OpenADN is an open networking platform that allows
ISPs to offer such services. It uses the flow abstraction layer of
SDN and adds ID/locator split and cross-layer communication
in the form of an application label-switching (APLS) header in
layer 3.5 that allows OpenFlow switches to be enhanced to
offer application level services without the need to reassemble
application level messages.
A key feature of OpenADN is that it can be incrementally
deployed with just a few OpenADN aware OpenFlow switches
and is fully compatible with current Internet. Those ISPs that
deploy these switches and those ASPs that connect to these
switches will be able to benefit immediately from the
technology. Also, ISPs keep complete control over their
network resources while ASPs keep complete control over their
application data that may be confidential and encrypted. ISPs
can also deploy OpenADN aware middle-boxes and offer
middle-box services to ASPs. Best of all, this can be done now
while the SDN technology is still evolving. Cloud service
providers like Amazon, Google, Microsoft, Rackspace, etc. can
also add these features to their offerings. Some components of
OpenADN, such as, APLS header can be used for virtualizing
application classes and offering application specific services in
other contexts. In this paper we have presented a work-in-
progress space-constrained report of a large project.

6. REFERENCES
[1] P. Gill, et al., “Youtube traffic characterization: a view from the edge,”

7th ACM SIGCOMM conference on Internet measurement, pp. 15-28,
2007.

[2] P. Gill, et al., “The flattening internet topology: natural evolution,
unsightly barnacles or contrived collapse,” 9th international conference
on Passive and Active Network Measurement, pp. 1-10, 2008.

[3] D.A. Joseph, A. Tavakoli, I. Stoica, “A Policy-aware Switching Layer
for Data Centers,” SIGCOMM, 2008.

[4] N. McKeown, et.al., “OpenFlow: Enabling Innovation in Campus
Networks,” Whitepaper, OpenFlow Switch Consortium, May 2008.

[5] E. Nordström, et.al., “Serval: An End-Host Stack for Service-Centric
Networking,” NSDI, April, 2012.

[6] L. Popa, N. Egi, S. Ratnasamy, I. Stoica, “Bulding Extensible Networks
with Rule-based Forwarding (RBF),” USENIX OSDI 2010.

[7] J. Seedorf, E. Burger, “Application-Layer Traffic Optimization (ALTO)
Problem Statement,” RFC 5963, 2009.

[8] I. Stoica, et.al., "Internet Indirection Infrastructure," ACM SIGCOMM,
August, 2002.

[9] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, G. J.
Minden, “A Survey of Active Network Research,” IEEE Comm., 1997.

[10] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan, R. Morris,
S.Shenker, “Middleboxes no longer considered harmful,” OSDI, 2004.

[11] D. Wetherall, “Active network vision and reality: Lessons from a
Capsule based system,” ACM SOSP, 1999.

[12] OpenFlow Switch Specification, Version 1.1.0 Implemented, February
28, 2011, http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

