

6. Bottleneck Analysis

©2010 Raj Jain www.rajjain.co

33-2

Operational Laws Operational Laws

- \Box Relationships that do not require any assumptions about the distribution of service times or inter-arrival times.
- \Box Identified originally by Buzen (1976) and later extended by Denning and Buzen (1978).
- \Box **Operational** [⇒] Directly measured.
- **Operationally testable assumptions**
	- \Rightarrow assumptions that can be verified by measurements.
	- ¾ For example, whether number of arrivals is equal to the number of completions?
	- ¾ This assumption, called job flow balance, is operationally testable.
	- \triangleright A set of observed service times is or is not a sequence of independent random variables is not is not operationally testable.

©2010 Raj Jain www.rajjain.com

Operational Quantities Operational Quantities

Utilization Law Utilization Law

$$
\begin{aligned}\n\text{Utilization } U_i &= \frac{\text{Busy Time}}{\text{Total Time}} = \frac{B_i}{T} \\
&= \frac{C_i}{T} \times \frac{B_i}{C_i} = \frac{\text{Completions}}{\text{Time}} \times \frac{\text{Busy Time}}{\text{Completions}} \\
&= \text{Throughout} \times \text{Mean Service Time} = X_i S_i\n\end{aligned}
$$

- \Box This is one of the operational laws
- \Box Operational laws are similar to the elementary laws of motion For example,

$$
d=\frac{1}{2}at^2
$$

 \Box Notice that distance *d*, acceleration *^a*, and time *t* are **operational quantities**. No need to consider them as expected values of random variables or to assume a distribution.

©2010 Raj Jain www.rajjain.com

Example 33.1 Example 33.1

- **□** Consider a network gateway at which the packets arrive at a rate of *125* packets per second and the gateway takes an average of two milliseconds to forward them.
- 0 **Throughput** X_i = Exit rate = Arrival rate = 125 packets/second
- \Box **Service time** $S_i = 0.002$ second
- □ **Utilization** $U_i = X_i S_i = 125 \times 0.002 = 0.25 = 25\%$
- \Box This result is valid for any arrival or service process. Even if inter-arrival times and service times to are not IID random variables with exponential distribution.

Forced Flow Law Forced Flow Law

- \Box Relates the system throughput to individual device throughputs.
- \Box In an open model, System throughput $=$ # of jobs leaving the system per unit time
- \Box In a closed model, System throughput $=$ # of jobs traversing OUT to IN link per unit time.
- **If** observation period *T* is such that $A_i = C_i$ ⇒ Device satisfies the assumption of *job flow balance*.
- \Box Each job makes V_i requests for ith device in the system
- $C_i = C_0 V_i$ or $V_i = C_i / C_0 V_i$ is called visit ratio

Forced Flow Law (Cont) Forced Flow Law (Cont)

Throughput of *i***th device:**

$$
D \text{evice Throughput } X_i = \frac{C_i}{T} = \frac{C_i}{C_0} \times \frac{C_0}{T}
$$

 \Box In other words:

$$
X_i = XV_i
$$

 \Box This is the **forced flow law**.

Bottleneck Device Bottleneck Device

 \Box Combining the forced flow law and the utilization law, we get:

$$
\begin{aligned} \text{Utilization of } i^{\text{th}} \text{ device } U_i &= X_i S_i \\ &= X V_i S_i \\ U_i &= X D_i \end{aligned}
$$

- \Box \Box Here $D_i = V_i S_i$ is the total service demand on the device for all visits of a job.
- \Box \Box The device with the highest D_i has the highest utilization and is the **bottleneck device**.

Example 33.2 Example 33.2

- \Box In a timesharing system, accounting log data produced the following profile for user programs.
	- ¾ Each program requires five seconds of CPU time, makes 80 I/O requests to the disk A and 100 I/O requests to disk B.
	- \triangleright Average think-time of the users was 18 seconds.
	- ¾ From the device specifications, it was determined that disk A takes 50 milliseconds to satisfy an I/O request and the disk B takes 30 milliseconds per request.
	- ¾ With 17 active terminals, disk A throughput was observed to be 15.70 I/O requests per second.
- We want to find the system throughput and device utilizations.

©2010 Rai Jain www.rajiain.c

Example 33.2 (Cont)
\n
$$
D_{CPU} = 5 \text{ seconds},
$$
\n
$$
V_A = 80,
$$
\n
$$
V_B = 100,
$$
\n
$$
Z = 18 \text{ seconds},
$$
\n
$$
S_A = 0.050 \text{ seconds},
$$
\n
$$
S_B = 0.030 \text{ seconds},
$$
\n
$$
N = 17, \text{ and}
$$
\n
$$
X_A = 15.70 \text{ jobs/second}
$$

 \Box Since the jobs must visit the CPU before going to the disks or terminals, the CPU visit ratio is:

$$
V_{CPU} = V_A + V_B + 1 = 181
$$

\n
$$
D_{CPU} = 5
$$
 seconds
\n
$$
D_A = S_A V_A = 0.050 \times 80 = 4
$$
 seconds
\n
$$
D_B = S_B V_B = 0.030 \times 100 = 3
$$
 seconds

©2010 Raj Jain www.rajjain.c

Example 33.2 (Cont) Example 33.2 (Cont)

 \Box Using the forced flow law, the throughputs are:

$$
X = \frac{X_A}{V_A} = \frac{15.70}{80} = 0.1963 \text{ jobs/second}
$$

$$
X_{CPU} = XV_{CPU} = 0.1963 \times 181
$$

 $=$ 35.48 requests/second

$$
X_B = XV_B = 0.1963 \times 100
$$

$$
= 19.6
$$
 requests/second

□ Using the utilization law, the device utilizations are:

$$
U_{CPU} = X D_{CPU} = 0.1963 \times 5 = 98\%
$$

\n
$$
U_A = X D_A = 0.1963 \times 4 = 78.4\%
$$

\n
$$
U_B = X D_B = 0.1963 \times 3 = 58.8\%
$$

©2010 Raj Jain www.rajjain.

Transition Probabilities Transition Probabilities

- \Box p_{ij} = Probability of a job moving to jth queue after service completion at ith queue
- **□** Visit ratios and transition probabilities are equivalent in the sense that given one we can always find the other. \overline{M}
- \Box In a system with job flow balance:
- $i = 0 \implies$ visits to the outside link
- $\Box p_{i0}$ = Probability of a job exiting from the system after completion of service at *ⁱ*th device
- \Box Dividing by C_0 we get:

$$
V_j = \sum_{i=0}^{M} V_i p_{ij}
$$

 $i=0$

0 Raj Jain www.rajjain.

Transition Probabilities (Cont) Transition Probabilities (Cont)

- \Box Since each visit to the outside link is defined as the completion of the job, we have: $V_0 = 1$
- These are called **visit ratio equations**
- In central server models, after completion of service at every queue, the jobs always move back to the CPU queue:

$$
p_{i1} = 1 \quad \forall i \neq 1
$$

$$
p_{ij} = 0 \quad \forall i, j \neq 1
$$

Transition Probabilities (Cont) Transition Probabilities (Cont)

 \Box The above probabilities apply to exit and entrances from the system $(i=0)$, also. Therefore, the visit ratio equations become:

$$
1 = V_1 p_{10}
$$

\n
$$
V_1 = 1 + V_2 + V_3 + \dots + V_M
$$

\n
$$
V_j = V_1 p_{1j} = \frac{p_{1j}}{p_{10}} \quad j = 2, 3, \dots, M
$$

 \Box Thus, we can find the visit ratios by dividing the probability p_{1i} of moving to jth queue from CPU by the exit probability p_{10} .

©2010 Rai Jain www.rajiain.

Example 33.3 (Cont) Example 33.3 (Cont)

 \Box Given the transition probabilities, we can find the visit ratios by dividing these probabilities by the exit probability (0.005525):

$$
V_A = \frac{0.4420}{0.005525} = 80
$$

\n
$$
V_B = \frac{0.5525}{0.005525} = 100
$$

\n
$$
V_{CPU} = 1 + V_A + V_B = 1 + 80 + 100 = 181
$$

Little's Law Little's Law

Mean number in the device

 $=$ Arrival rate \times Mean time in the device

$$
Q_i = \lambda_i R_i
$$

 \Box If the job flow is balanced, the arrival rate is equal to the throughput and we can write:

$$
Q_i=X_iR_i
$$

Example 33.4 Example 33.4

- \Box The average queue length in the computer system of Example 33.2 was observed to be: 8.88, 3.19, and 1.40 jobs at the CPU, disk A, and disk B, respectively. What were the response times of these devices?
- \Box In Example 33.2, the device throughputs were determined to be:

 $X_{CPU} = 35.48$, $X_A = 15.70$, and $X_B = 19.6$

 \Box The new information given in this example is:

$$
Q_{CPU} = 8.88, \ Q_A = 3.19, \text{ and } Q_B = 1.40
$$

Example 33.4 (Cont) Example 33.4 (Cont)

 \Box Using Little's law, the device response times are:

 $R_{CPU} = Q_{CPU}/X_{CPU} = 8.88/35.48 = 0.250$ seconds $R_A = Q_A/X_A = 3.19/15.70 = 0.203$ seconds $R_B = Q_B/X_B = 1.40/19.6 = 0.071$ seconds

General Response Time Law General Response Time Law

- **There is one terminal per user and** the rest of the system is shared by all users.
- **□** Applying Little's law to the central subsystem:
- *Q = X R*
- \Box Here,
- *Q* = Total number of jobs in the system
- \Box $R =$ system response time
- $\Box X$ = system throughput

$$
XR = X_1R_1 + X_2R_2 + \cdots + X_MR_M
$$

©2010 Rai Jain www.rajjain.c

General Response Time Law (Cont) General Response Time Law (Cont)

■ Dividing both sides by *X* and using forced flow law:

$$
R = V_1 R_1 + V_2 R_2 + \cdots + V_M R_M
$$

 \Box or,

$$
R = \sum_{i=1}^{M} R_i V_i
$$

- \Box This is called the **general response time law**.
- \Box This law holds even if the job flow is not balanced.

Example 33.5 Example 33.5 \Box Let us compute the response time for the timesharing system of Examples 33.2 and 33.4 \Box For this system: $V_{CPU} = 181, V_A = 80, \text{ and } V_B = 100$ $R_{CPU} = 0.250, R_A = 0.203, \text{ and } R_B = 0.071$ **The system response time is:** $R = R_{CPU}V_{CPU} + R_AV_A + R_BV_B$ $= 0.250 \times 181 + 0.203 \times 80 + 0.071 \times 100$ $= 68.6$ The system response time is 68.6 seconds. \Box

©2010 Rai Jain www.raijain

Interactive Response Time Law Interactive Response Time Law

\Box If $Z =$ think-time, $R =$ Response time

¾ The total cycle time of requests is *R+Z*

¾ Each user generates about *T/(R+Z)* requests in *T* **If there are** *N* users:

System throughput $X = \text{Total} \#$ of requests/Total time $= N(T/(R+Z))/T$ $= N/(R+Z)$

or

$$
R = (N/X) - Z
$$

This is the interactive response time law

©2010 Rai Jain www.raijain.

Example 33.6 Example 33.6

- **□** For the timesharing system of Example 33.2, we can compute the response time using the interactive response time law as follows:
- \Box Therefore:

$$
X = 0.1963, N = 17, \text{ and } Z = 18
$$

$$
R = \frac{N}{X} - Z = \frac{17}{0.1963} - 18 = 86.6 - 18 = 68.6
$$
 seconds

 \Box This is the same as that obtained earlier in Example 33.5.

©2010 Raj Jain www.rajjain.c

Bottleneck Analysis Bottleneck Analysis

 \Box From forced flow law:

 $U_i \propto D_i$

- **□** The device with the highest total service demand D_i has the highest utilization and is called the bottleneck device.
- **□** Note: Delay centers can have utilizations more than one without any stability problems. Therefore, delay centers cannot be a bottleneck device.
- \Box Only queueing centers used in computing D_{max} .
- **□** The bottleneck device is the key limiting factor in achieving higher throughput.

02010 Rai Jain www.rajjain.c

Bottleneck Analysis (Cont) Bottleneck Analysis (Cont)

- \Box Improving the bottleneck device will provide the highest payoff in terms of system throughput.
- \Box Improving other devices will have little effect on the system performance.
- \Box Identifying the bottleneck device should be the first step in any performance improvement project.

Bottleneck Analysis (Cont) Bottleneck Analysis (Cont)

Throughput and response times of the system are bound as follows:

$$
X(N) \le \min\{\frac{1}{D_{\max}}, \frac{N}{D+Z}\}
$$

and

$$
R(N) \geq max\{D, ND_{max} - Z\}
$$

- \Box Here, $D = \sum D_i$ is the sum of total service demands on all devices except terminals.
- **These are known as asymptotic bounds**

©2010 Rai Jain www.raijain.

Bottleneck Analysis: Proof Bottleneck Analysis: Proof

- **The asymptotic bounds are based on the following** observations:
- **□** The utilization of any device cannot exceed one. This puts a limit on the maximum obtainable throughput.
- The response time of the system with *N* users cannot be less than a system with just one user. This puts a limit on the minimum response time.

Proof (Cont) Proof (Cont)

- **The interactive response time formula can be used to** convert the bound on throughput to that on response time and vice versa.
- **T** For the bottleneck device *b* we have:

$$
U_b = X D_{max}
$$

 \Box Since U_b cannot be more than one, we have:

$$
XD_{max} \le 1
$$

$$
X \le \frac{1}{D_{max}}
$$

Proof (Cont) Proof (Cont)

 \Box With just one job in the system, there is no queueing and the system response time is simply the sum of the service demands:

$$
R(1) = D_1 + D_2 + \cdots + D_M = D
$$

□ Here, *D* is defined as the sum of all service demands.

□ With more than one user there may be some queueing and so the response time will be higher. That is:

©2010 Raj Jain www.rajjain.com

Proof (Cont) Proof (Cont)

Applying the interactive response time law to the bounds:

 $R(N) \geq D$

Q Combining these bounds we get the asymptotic bounds.

$$
R(N) = \frac{N}{X(N)} - Z \geq ND_{max} - Z
$$

$$
N \qquad N \qquad N
$$

$$
X(N) = \frac{N}{R(N) + Z} \le \frac{N}{D + Z}
$$

Typical Asymptotic Bounds (Cont) Typical Asymptotic Bounds (Cont)

 \Box The number of jobs N^* at the knee is given by:

$$
D = N^* D_{max} - Z
$$

$$
N^* = \frac{D + Z}{D_{max}}
$$

- \Box If the number of jobs is more than *N**, then we can say with certainty that there is queueing somewhere in the system.
- \Box The asymptotic bounds can be easily explained to people who do not have any background in queueing theory or performance analysis.

©2010 Rai Jain www.raijain.

Example 33.7 Example 33.7

□ For the timesharing system considered in Example 33.2:

$$
D_{CPU} = 5, D_A = 4, D_B = 3, Z = 18
$$

$$
D = D_{CPU} + D_A + D_B = 5 + 4 + 3 = 12
$$

$$
D_{max} = D_{CPU} = 5
$$

The asymptotic bounds are:

$$
X(N) \le \min\left\{\frac{N}{D+Z}, \frac{1}{D_{max}}\right\} = \min\left\{\frac{N}{30}, \frac{1}{5}\right\}
$$

$$
R(N) \ge \max\{D, ND_{max} - Z\} = \max\{12, 5N - 18\}
$$

Example 33.7 (Cont) Example 33.7 (Cont)

The knee occurs at:

$$
12 = 5N^* - 18
$$

or

$$
N^* = \frac{12 + 18}{5} = \frac{30}{5} = 6
$$

□ Thus, if there are more than 6 users on the system, there will certainly be queueing in the system.

Example 33.8 Example 33.8

- \Box How many terminals can be supported on the timesharing system of Example 33.2 if the response time has to be kept below 100 seconds?
- \Box Using the asymptotic bounds on the response time we get:

 $R(N) \ge \max\{12, 5N - 18\}$

- \Box The response time will be more than 100, if: $5N - 18 > 100$
- \Box That is, if: $N > 23.6$
- \Box the response time is bound to be more than 100. Thus, the system cannot support more than 23 users if a response time of less than 100 is required.

©2010 Rai Jain www.rajiain.

©2010 Raj Jain www.rajjain.com

Homework Homework

- For a timesharing system with two disks (user and system), the probabilities for jobs completing the service at the CPU were found to be 0.**75** to disk A, **0.15** to disk B, and **0.1** to the terminals. The user think time was measured to be 5 seconds, the disk service times are 30 milliseconds and 25 milliseconds, while the average service time per visit to the CPU was 40 milliseconds.
- Using the queueing network model shown in Figure 32.8 answer the following for this system:
- a. For each job, what are the visit ratios for CPU, disk A, and disk B?
- b. For each device, what is the total service demand?
- c. If disk A utilization is **50**%, what is the utilization of the CPU and disk B?
- d. If the utilization of disk B is 8%, what is the average response time when there are 20 users on the system?

©2010 Rai Jain www.rajiain.

Homework (Cont) Homework (Cont)

- e. What is the bottleneck device?
- f. What is the minimum average response time?
- g. What is the maximum possible disk A utilization for this configuration?
- h. What is the maximum possible throughput of this system?
- i. What changes in CPU speed would you recommend to achieve a response time of ten seconds with **30** users? Would you also need a faster disk A or disk B?
- j. Write the expressions for asymptotic bounds on throughput and response time.

Homework (Cont) Homework (Cont)

For this system which device would be the bottleneck if:

k. The CPU is replaced by another unit that is twice as fast?

l. disk A is replaced by another unit that is twice as slow?

m. disk B is replaced by another unit that is twice as slow?

n. The memory size is reduced so that the jobs make **25** times more visits to disk B due to increased page faults?