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Queueing Models: What You will learn?Queueing Models: What You will learn?
What are various types of queues.
What is meant by an M/M/m/B/K queue?
How to obtain response time, queue lengths, and server 
utilizations?
How to represent a system using a network of several queues?
How to analyze simple queueing networks?
How to obtain bounds on the system performance using 
queueing models?
How to obtain variance and other statistics on system 
performance?
How to subdivide a large queueing network model and solve it?
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Basic Components of a QueueBasic Components of a Queue

1. Arrival
process

6. Service
discipline

2. Service time
distribution

4. Waiting 
positions 3. Number of 

servers
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Kendall Notation Kendall Notation A/S/m/B/K/SDA/S/m/B/K/SD

A: Arrival process
S: Service time distribution 
m: Number of servers
B: Number of buffers (system capacity) 
K: Population size, and 
SD: Service discipline
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Arrival ProcessArrival Process
Arrival times: 
Interarrival times: 
τj form a sequence of Independent and Identically Distributed 
(IID) random variables
Exponential + IID ⇒ Poisson 
Notation:

M = Memoryless = Poisson
E = Erlang
H = Hyper-exponential
G = General ⇒ Results valid for all distributions
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Service Time DistributionService Time Distribution

Time each student spends at the terminal.
Service times are IID. 
Distribution: M, E, H, or G
Device = Service center = Queue 
Buffer = Waiting positions
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Service DisciplinesService Disciplines
First-Come-First-Served (FCFS) 
Last-Come-First-Served (LCFS)
Last-Come-First-Served with Preempt and Resume (LCFS-PR)
Round-Robin (RR) with a fixed quantum.
Small Quantum ⇒ Processor Sharing (PS)
Infinite Server: (IS) = fixed delay
Shortest Processing Time first (SPT)
Shortest Remaining Processing Time first (SRPT)
Shortest Expected Processing Time first (SEPT)
Shortest Expected Remaining Processing Time first (SERPT).
Biggest-In-First-Served (BIFS)
Loudest-Voice-First-Served (LVFS)
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Common DistributionsCommon Distributions

M:  Exponential
Ek: Erlang with parameter k
Hk:  Hyper-exponential with parameter k
D:  Deterministic ⇒ constant
G:  General ⇒ All
Memoryless: 

Expected time to the next arrival is always 1/λ
regardless of the time since the last arrival
Remembering the past history does not help. 
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Example Example M/M/3/20/1500/FCFSM/M/3/20/1500/FCFS
Time between successive arrivals is exponentially  distributed.
Service times are exponentially distributed.
Three servers
20 Buffers = 3 service + 17 waiting
After 20, all arriving jobs are lost
Total of 1500 jobs that can be serviced.
Service discipline is first-come-first-served.
Defaults:

Infinite buffer capacity
Infinite population size
FCFS service discipline.

G/G/1 = G/G/1/∞/∞/FCFS
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Group Arrivals/ServiceGroup Arrivals/Service

Bulk arrivals/service
M[x]: x represents the group size
G[x]: a bulk arrival or service process with general 
inter-group times.
Examples:

M[x]/M/1 : Single server queue with bulk Poisson  
arrivals and exponential service times  
M/G[x]/m: Poisson  arrival process,  bulk service 
with  general service time distribution, and m
servers.
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Key VariablesKey Variables
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Key Variables (cont)Key Variables (cont)
τ = Inter-arrival time = time between two successive arrivals.
λ = Mean arrival rate = 1/E[τ]
May be a function of the state of the system, 
e.g., number of jobs already in the system.
s = Service time per job.
μ = Mean service rate per server = 1/E[s]
Total service rate for m servers is mμ
n = Number of jobs in the system. 
This is also called queue length.  
Note: Queue length includes jobs currently  receiving service 
as well as those waiting in the queue. 
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Key Variables (cont)Key Variables (cont)

nq = Number of jobs waiting
ns =  Number of jobs receiving service
r =  Response time or the time in the system 
= time waiting + time receiving service
w =  Waiting time 
= Time between arrival and beginning of service
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Rules for All QueuesRules for All Queues
Rules: The following apply to G/G/m queues
1. Stability Condition:

λ < mμ
Finite-population and the finite-buffer systems are always 
stable.

2. Number in System versus Number in Queue:
n = nq+ ns
Notice that n, nq, and ns are random variables. 
E[n]=E[nq]+E[ns]
If the service rate is independent of the number in the queue, 
Cov(nq,ns) = 0
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Rules for All Queues (cont)Rules for All Queues (cont)
3. Number versus Time: 

If jobs are not lost due to insufficient buffers, 
Mean number of jobs in the system 

= Arrival rate × Mean response time
4. Similarly, 

Mean number of jobs in the queue 
= Arrival  rate × Mean waiting time

This is known as Little's law.
5. Time in System versus Time in Queue

r = w + s
r, w, and s are random variables. 

E[r] = E[w] + E[s]
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Rules for All Queues(cont)Rules for All Queues(cont)
6. If the service rate is independent of the number of jobs in the 

queue, 
Cov(w,s)=0
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Little's LawLittle's Law
Mean number in the system 

= Arrival rate × Mean response time 
This relationship applies to all systems or parts of systems in 
which the number of jobs entering the system is equal to those 
completing service.   
Named after Little (1961)
Based on a black-box view of the system: 

In systems in which some jobs are lost due to finite buffers, the 
law can be applied to the part of the system consisting of the 
waiting and serving positions

Black
Box

Arrivals Departures
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Proof of Little's LawProof of Little's Law

If T is large, arrivals = departures = N
Arrival rate = Total arrivals/Total time= N/T
Hatched areas = total time spent inside the 
system by all jobs = J
Mean time in the system= J/N
Mean Number in the system 
= J/T = 
= Arrival rate× Mean time in the system
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Application of Little's LawApplication of Little's Law

Applying to just the waiting facility of a  service center 
Mean number in the queue = Arrival rate × Mean waiting time
Similarly, for those currently receiving the service, we have:
Mean number in service = Arrival rate × Mean service time 

Arrivals Departures
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Example 30.3Example 30.3
A monitor on a disk server showed that the average time to 
satisfy an I/O request was 100 milliseconds. The I/O rate  was 
about 100 requests per second. What was the mean number  of 
requests at the disk server?

Using Little's law:
Mean number in the disk server
= Arrival rate × Response time
= 100 (requests/second) ×(0.1 seconds)
= 10 requests
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Stochastic ProcessesStochastic Processes
Process: Function of time
Stochastic Process: Random variables, which are functions of 
time
Example 1:

n(t) = number of jobs at the CPU of a computer system
Take several identical systems and observe n(t)
The number n(t) is a random variable. 
Can find the probability distribution functions for n(t) at 
each possible value of t.

Example 2:
w(t) = waiting time in a queue
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Types of Stochastic ProcessesTypes of Stochastic Processes
Discrete or Continuous State Processes
Markov Processes
Birth-death Processes
Poisson Processes
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Discrete/Continuous State ProcessesDiscrete/Continuous State Processes
Discrete = Finite or Countable
Number of jobs in a system n(t) = 0, 1, 2, ....
n(t) is a discrete state process
The waiting time w(t) is a continuous state process. 
Stochastic Chain: discrete state stochastic process 
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Markov ProcessesMarkov Processes
Future states  are independent of the past and depend only on 
the present.
Named after A. A. Markov who defined and analyzed them in 
1907.
Markov Chain: discrete state Markov process
Markov ⇒ It is not necessary to know how long the process 
has been in the current state ⇒ State time has a memoryless
(exponential) distribution
M/M/m queues can be modeled using Markov processes.
The time spent by a job in such a queue is a Markov process
and the number of jobs in the queue is a Markov chain.
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BirthBirth--Death ProcessesDeath Processes

The discrete space Markov processes in which the transitions  
are restricted to neighboring states
Process in state n can change only to state n+1 or n-1. 
Example: the number of jobs in a queue with a single server 
and individual arrivals (not bulk arrivals) 

0 1 2 j-1 j j+1…
λ0 λ1 λ2 λj−1 λj λj+1

μ1 μ2 μ3 μj μj+1 μ j+2
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Poisson ProcessesPoisson Processes
Interarrival time s = IID and exponential 
⇒ number of arrivals n over a given interval (t, t+x) has a 
Poisson distribution 
⇒ arrival = Poisson process or  Poisson stream

Properties:
1.Merging:

2.Splitting: If the probability of a job going to ith
substream is pi, each substream is also Poisson with a 
mean rate of pi λ
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3.If the arrivals to a single server with exponential 
service time are Poisson with mean rate λ,  the 
departures are also Poisson with the same rate λ
provided λ < μ.
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Poisson Process(cont)Poisson Process(cont)
4. If the arrivals to a service facility with m service centers 
are Poisson with a mean rate λ,  the departures also 
constitute a Poisson stream with the same rate λ, provided  
λ < ∑i μi.   Here, the servers are assumed to have 
exponentially distributed service times.
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Relationship Among Stochastic ProcessesRelationship Among Stochastic Processes
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SummarySummary

Kendall Notation: A/S/m/B/k/SD, M/M/1
Number in system, queue, waiting, service
Service rate, arrival rate, response time, waiting time, service
time
Little’s Law: Mean number in system = Arrival rate X Mean 
time spent in the system
Processes: Markov ⇒ Memoryless, 
Birth-death ⇒ Adjacent states 
Poisson ⇒ IID and exponential inter-arrival
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HomeworkHomework

Submit answer to Exercise 30.4
30.4 During a one-hour observation interval, the name server of a 

distributed system received 10,800 requests. The mean 
response time of these requests was observed to be one-third of 
a second.  What is the mean number of queries in the server? 
What assumptions have you made about the system? Would the 
mean number of queries be different if the service time was not 
exponentially distributed? 


