Random Variate Variate Generation Generation

- 1. Inverse transformation
- 2. Rejection
- 3. Composition
- 4. Convolution
- 5. Characterization

Random-Variate Generation

- **General Techniques**
- **□** Only a few techniques may apply to a particular distribution
- **□** Look up the distribution in Chapter 29

Inverse Transformation Inverse Transformation

 \Box Used when F-1 can be determined either analytically or empirically.

Proof

Let $y = g(x)$, so that $x = g^{-1}(y)$. $F_Y(y) = P(Y \le y) = P(x \le q^{-1}(y))$ $= F_X(g^{-1}(y))$ If $g(x) = F(x)$, or $y = F(x)$ $F(y) = F(F^{-1}(y)) = y$ And: $f(y) = dF/dy = 1$

That is, y is uniformly distributed between 0 and 1.

©2010 Raj Jain www.rajjain.com

Example 28.1 Example 28.1

O For exponential variates:

The pdf
$$
f(x) = \lambda e^{-\lambda x}
$$

The CDF $F(x) = 1 - e^{-\lambda x} = u$ or, $x = -\frac{1}{\lambda} \ln(1 - u)$

 \Box If u is $U(0,1)$, 1-u is also $U(0,1)$

 \Box Thus, exponential variables can be generated by:

$$
x = -\frac{1}{\lambda} \ln(u)
$$

Example 28.2 Example 28.2 The packet sizes (trimodal) probabilities: \Box Size Probability 64 Bytes 0.7 128 Bytes $\quad 0.1$ 512 Bytes 0.2 The CDF for this distribution is: \Box

$$
F(x) = \begin{cases} \n0.0 & 0 \le x < 64 \\ \n0.7 & 64 \le x < 128 \\ \n0.8 & 128 \le x < 512 \\ \n1.0 & 512 \le x \n\end{cases}
$$

©2010 Raj Jain www.rajjain.com

Example 28.2 (Cont) Example 28.2 (Cont)

 \Box The inverse function is:

$$
F^{-1}(u) = \begin{cases} 64 & 0 < u \le 0.7 \\ 128 & 0.7 < u \le 0.8 \\ 512 & 0.8 < u \le 1 \end{cases}
$$

$$
\begin{aligned}\n\text{Generate } u &\sim U(0, 1) \\
u &\leq 0.7 \Rightarrow Size = 64 \\
0.7 &< u \leq 0.8 \Rightarrow size = 128 \\
0.8 &< u \Rightarrow size = 512\n\end{aligned}
$$

 Note: CDF is *continuous from the right* \Rightarrow the value on the right of the discontinuity is used \Rightarrow The inverse function is continuous from the left \Rightarrow u=0.7 \Rightarrow x=64

©2010 Raj Jain www.rajjain.c

Applications of the Inverse-Transformation Technique Technique

Rejection Rejection

- \Box Can be used if a pdf $g(x)$ exists such that $c g(x)$ *majorizes* the $pdf f(x) \implies c g(x) \ge f(x) \forall x$
- \Box Steps:
- 1. Generate *x* with pdf *g(x).*
- 2. Generate *y* uniform on [0, *cg(x)*].
- 3. If $y \le f(x)$, then output *x* and return.
	- Otherwise, repeat from step 1.
	- ⇒ Continue *rejecting* the random variates *^x* and *y* until *y* > *f(x)*
- \Box Efficiency = how closely $c g(x)$ envelopes $f(x)$ Large area between *c* $g(x)$ and $f(x) \Rightarrow$ Large percentage of (x, y) generated in steps 1 and 2 are rejected
- ©2010 Raj Jain www.rajjain.com If generation of $g(x)$ is complex, this method may not be efficient.

Example 28.2 Example 28.2

Beta(2.4) density function:
 $f(x) = 20x(1 - x)^3$ $0 \le x \le 1$ \Box c=2.11 and $g(x) = 1$ $0 \le x \le 1$

- \Box Bounded inside a rectangle of height 2.11
	- \Rightarrow Steps:
		- \triangleright Generate x uniform on [0, 1].
		- ¾ Generate y uniform on [0, 2.11].
		- \triangleright If $y \le 20 x(1-x)^3$, then output *^x* and return. Otherwise repeat from step 1.

Composition Composition

 \Box Can be used if CDF $F(x) = Weighted sum of n other CDFs$.

$$
F(x) = \sum_{i=1} p_i F_i(x)
$$

Here, $p_i \geq 0$, $\sum_{i=1}^{n} p_i = 1$, and F_i 's are distribution functions.

- **□** *n* CDFs are composed together to form the desired CDF Hence, the name of the technique.
- **□** The desired CDF is decomposed into several other CDFs ⇒ Also called **decomposition**.
- Can also be used if the pdf *f(x)* is a weighted sum of *ⁿ* other pdfs: \boldsymbol{n}

$$
f(x) = \sum_{i=1} p_i f_i(x)
$$

Steps:

□ Generate a random integer *I* such that:

 $P(I = i) = p_i$

- **This can easily be done using the inverse**transformation method.
- Generate *x* with the ith pdf $f_i(x)$ and return.

Example 28.4 Example 28.4

$$
\Box \text{ pdf: } f(x) = \frac{1}{2a} e^{-|x|/a}
$$

- **□ Composition of two** exponential pdf's
- Generate \Box $u_1 \sim U(0,1)$ $u_2 \sim U(0,1)$
- \Box If $u_1<$ 0.5, return; otherwise return $x=a$ *ln* u_2 .
- **I** Inverse transformation better for Laplace

Convolution Convolution

- Sum of *ⁿ* variables:
- Generate n random variate y_i 's and sum
- \Box For sums of two variables, pdf of $x =$ convolution of pdfs of y_1 and y_2 . Hence the name
- **Although no convolution in generation**
- \Box If pdf or $CDF = Sum \Rightarrow$ Composition
- \Box Variable $x = Sum \implies Convolution$

$$
f\ast g(t)=\int f(\tau)g(t-\tau)d\tau
$$

Convolution: Examples Convolution: Examples

```
Erlang-k = \sum_{i=1}^{k} Exponential<sub>i</sub>
Binomial(n, p) = \sum_{i=1}^{n} Bernoulli(p)
   \Rightarrow Generated n U(0,1),
  return the number of RNs less than p
\Box \chi^2(\nu) = \sum_{i=1}^{n} v N(0,1)^2\Box \Gamma(a, b_1) + \Gamma(a, b_2) = \Gamma(a, b_1 + b_2)\Rightarrow Non-integer value of b = integer + fraction
\sum_{i=1}^{n} Any = Normal \Rightarrow \sum U(0,1) = Normal
\sum_{i=1}^{m} Geometric = Pascal
\sum_{i=1}^{\infty} Uniform = Triangular
```
Characterization Characterization

- \Box Use special characteristics of distributions [⇒] **characterization**
- \Box Exponential inter-arrival times \Rightarrow Poisson number of arrivals \Rightarrow Continuously generate exponential variates until their sum exceeds T and return the number of variates generated as the Poisson variate.
- The a^{th} smallest number in a sequence of $a+b+1$ U(0,1) uniform variates has a β(*a, b*) distribution.
- \Box The ratio of two unit normal variates is a Cauchy(0, 1) variate.
- \Box A chi-square variate with even degrees of freedom $\chi^2(v)$ is the same as a gamma variate $\gamma(2,\nu/2)$.
- If x₁ and x₂ are two gamma variates γ (a,b) and γ (a,c), respectively, the ratio $x_1/(x_1+x_2)$ is a beta variate $\beta(b,c)$.
- If *x* is a unit normal variate, $e^{\mu+\sigma x}$ is a lognormal(μ , σ) variate.

02010 Rai Jain www.rajjain.co

Exercise 28.1 Exercise 28.1

 \Box A random variate has the following triangular density:

$$
f(x) = \min(x, 2 - x) \quad 0 \le x \le 2
$$

- \Box Develop algorithms to generate this variate using each of the following methods:
- a.Inverse-transformation
- b.Rejection
- c.Composition
- d.Convolution

Homework Homework

 \Box A random variate has the following triangular density:

$$
f(x) = \frac{1}{16} \min(x, 8 - x) \quad 0 \le x \le 8
$$

- \Box Develop algorithms to generate this variate using each of the following methods:
- a.Inverse-transformation
- b.Rejection
- c.Composition
- d.Convolution