One Factor Experiments Experiments

- \Box Computation of Effects
- \Box Estimating Experimental Errors
- \Box Allocation of Variation
- **Q** ANOVA Table and F-Test
- **□** Visual Diagnostic Tests
- **Q** Confidence Intervals For Effects
- \Box Unequal Sample Sizes

One Factor Experiments One Factor Experiments

□ Used to compare alternatives of a single categorical variable.

$$
y_{ij} = \mu + \alpha_j + e_{ij}
$$

For example, several processors, several caching schemes

- $r =$ Number of replications
- y_{ij} = ith response with jth alternative
- μ = mean response
- α_j = Effect of alternative j
- e_{ij} = Error term

$$
\sum \alpha_j = 0
$$

Computation of Effects Computation of Effects

$$
\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + r \sum_{j=1}^{a} \alpha_j + \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}
$$

$$
= ar\mu + 0 + 0
$$

$$
\mu = \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = \bar{y}.
$$

Computation of Effects (Cont) Computation of Effects (Cont)

$$
\bar{y}_{.j} = \frac{1}{r} \sum_{i=1}^{r} y_{ij}
$$
\n
$$
= \frac{1}{r} \sum_{i=1}^{r} (\mu + \alpha_j + e_{ij})
$$
\n
$$
= \frac{1}{r} \left(r\mu + r\alpha_j + \sum_{i=1}^{r} e_{ij} \right)
$$
\n
$$
= \mu + \alpha_j + 0
$$

$$
\alpha_j = \bar{y}_{.j} - \mu = \bar{y}_{.j} - \bar{y}_{.j}
$$

Example 20.1: Code Size Comparison Example 20.1: Code Size Comparison

 \Box Entries in a row are unrelated.

(Otherwise, need a two factor analysis.)

Example 20.1 Code Size (Cont) Example 20.1 Code Size (Cont)

Example 20.1: Interpretation Example 20.1: Interpretation

- \Box Average processor requires 187.7 bytes of storage.
- \Box The effects of the processors R, V, and Z are -13.3, -24.5, and 37.7, respectively. That is,
	- ¾ R requires 13.3 bytes less than an average processor
	- ¾ V requires 24.5 bytes less than an average processor, and
	- ¾ Z requires 37.7 bytes more than an average processor.

Estimating Experimental Errors Estimating Experimental Errors

Estimated response for *j*th alternative:

$$
\hat{y}_j = \mu + \alpha_j
$$

 \Box Error:

$$
e_{ij}=y_j-\hat{y}_j
$$

□ Sum of squared errors (SSE):

$$
\text{SSE} = \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}^2
$$

Allocation of Variation Allocation of Variation $y_{ij} = \mu + \alpha_j + e_{ij}$ $y_{ij}^2 = \mu^2 + \alpha_i^2 + e_{ij}^2 + 2\mu\alpha_j + 2\mu e_{ij} + 2\alpha_j e_{ij}$ $\sum_{i,j} y_{ij}^2 = \sum_{i,j} \mu^2 + \sum_{i,j} \alpha_j^2 + \sum_{i,j} e_{ij}^2$ $+{\rm Cross}$ product terms $SSY = SS0 + SSA + SSE$ $SS0 = \sum^{r} \sum^{a} \mu^{2} = ar\mu^{2}$ $i=1$ $j=1$

©2010 Rai Jain www.rajiain

Allocation of Variation (Cont) Allocation of Variation (Cont)

$$
SSA = \sum_{i=1}^{r} \sum_{j=1}^{a} \alpha_j^2
$$

$$
= r \sum_{j=1}^{a} \alpha_j^2
$$

Total variation of y (SST):

$$
SST = \sum_{i,j} (y_{i,j} - \bar{y}_{..})^2
$$

$$
= \sum_{i,j} y_{ij}^2 - ar\bar{y}_{..}^2
$$

$$
= SSY - SS0 = SSA + SSE
$$

©2010 Raj Jain www.rajjain.com

633639

$$
20-13
$$

$$
= 105357.3 - 10992.1 = 94365.2
$$

$$
SSE = SST - SSA
$$

$$
SST = SSY - SS0
$$

= 633639.0 - 528281.7 = 105357.3

 $SSY =$

$$
- 10992.1
$$

= $SSY - SS0$

$$
= 5[(-13.3)^{2} + (-24.5)]
$$

- 100021

$$
SSA = r \sum_{j} \alpha_j^2
$$

$$
= 5[(-13.3)^{2} + (-24.5)^{2} + (37.6)^{2}]
$$

 $9.75.10772$ 5000017

$$
= r \sum_j \alpha_j^2
$$

$$
= 3 \times 3 \times (187.7)^{-1} = 328281.7
$$

$$
= r \sum \alpha_i^2
$$

$$
SSY = 144^2 + 120^2 + \dots + 302^2 =
$$

$$
SS0 = ar\mu^2
$$

Example 20.3 Example 20.3

Example 20.3 (Cont) Example 20.3 (Cont)

Percent variation explained by processors = $100 \times \frac{10992.13}{105357.3} = 10.4\%$

- \Box 89.6% of variation in code size is due to experimental errors (programmer differences).
	- Is 10.4% statistically significant?

Analysis of Variance (ANOVA)

- \Box Importance \neq Significance
- \Box Important \Rightarrow Explains a high percent of variation
- Significance
	- ⇒ High contribution to the variation compared to that by errors.
- **□** Degree of freedom
	- = Number of independent values required to compute

Note that the degrees of freedom also add up.

©2010 Rai Jain www.raijain.

F-Test

 \Box Purpose: To check if SSA is *significantly* greater than SSE. Errors are normally distributed \Rightarrow SSE and SSA have chisquare distributions.

The ratio $(SSA/v_A)/(SSE/v_e)$ has an F distribution.

where v_A =a-1 = degrees of freedom for SSA

 v_e =a(r-1) = degrees of freedom for SSE

Computed ratio > $F_{[1-\alpha; \nu_A, \nu_B]}$ \Rightarrow SSA is significantly higher than SSE. SSA/v_A is called mean square of A or (MSA). Similary, $MSE = SSE/V_e$

ANOVA Table for One Factor Experiments ANOVA Table for One Factor Experiments

Example 20.4: Code Size Comparison Example 20.4: Code Size Comparison

 \Box Computed F-value \langle F from Table

 \Box The variation in the code sizes is mostly due to experimental errors and not because of any significant difference among the processors.

Visual Diagnostic Tests Visual Diagnostic Tests

Assumptions:

- 1.Factors effects are additive.
- 2.Errors are additive.
- 3. Errors are independent of factor levels.
- 4.Errors are normally distributed.
- 5. Errors have the same variance for all factor levels.

Tests:

 \Box Residuals versus predicted response:

No trend ⇒ Independence

Scale of errors << Scale of response

 \Rightarrow Ignore visible trends.

 \Box Normal quantilte-quantile plot linear \Rightarrow Normality

Confidence Intervals For Effects Confidence Intervals For Effects

\Box Estimates are random variables

Degrees of freedom for errors $= a(r-1)$

 \Box For the confidence intervals, use t values at $a(r-1)$ degrees of freedom.

$$
\Box \text{ Mean responses: } \hat{y}_j = \mu + \alpha_j
$$

 \Box Contrasts $\sum h_i \alpha_i$: Use for α_1 - α_2

©2010 Rai Jain www.rajiain.c

Example 20.6: Code Size Comparison Example 20.6: Code Size Comparison

Error variance $s_e^2 = \frac{94365.2}{12} = 7863.8$

Std Dev of errors $= \sqrt{(Var. of errors)}$ $= 88.7$

Std Dev of $\mu = s_e / \sqrt{ar} = 88.7 / \sqrt{15} = 22.9$

Std Dev of
$$
\alpha_j = s_e \sqrt{\{(a-1)/(ar)\}}
$$

\n $= 88.7 \sqrt{(2/15)} = 32.4$

©2010 Rai Jain www.rajiain.

Example 20.6 (Cont) Example 20.6 (Cont)

- \Box For 90% confidence, $t_{[0.95; 12]} = 1.782$.
- **Q** 90% confidence intervals:

$$
\mu = 197.7 \pm (1.782)(22.9) = (146.9, 228.5)
$$

$$
\alpha_1 = -13.3 \pm (1.782)(32.4) = (-71.0, 44.4)
$$

$$
\alpha_2 = -24.5 \pm (1.782)(32.4) = (-82.2, 33.2)
$$

$$
\alpha_3 = 37.6 \pm (1.782)(32.4) = (-20.0, 95.4)
$$

- \Box The code size on an average processor is significantly different from zero.
- **Processor effects are not significant.**

©2010 Rai Jain www.raijain.

Example 20.6 (Cont) Example 20.6 (Cont)

■ Using $h_1=1$, $h_2=-1$, $h_3=0$, $(\sum h_j=0)$: Mean $\alpha_1 - \alpha_2 = \bar{y}_{11} - \bar{y}_{2} = 174.4 - 163.2 = 11.2$ Std dev of $\alpha_1 - \alpha_2 = s_e \sqrt{\left(\sum h_j^2/r\right)}$ $= 88.7\sqrt{(2/5)} = 56.1$

$$
90\% \text{ CI for } \alpha_1 - \alpha_2 = 11.2 \pm (1.782)(56.1)
$$

$$
= (-88.7, 111.1)
$$

 \Box CI includes zero \Rightarrow one isn't superior to other.

Example 20.6 (Cont) Example 20.6 (Cont)

 \Box Similarly,

90% CI for
$$
\alpha_1 - \alpha_3
$$

\n= $(174.4 - 225.4) \neq (1.782)(56.1)$
\n= $(-150.9, 48.9)$
\n90% CI for $\alpha_2 - \alpha_3$
\n= $(163.2 - 225.4) \neq (1.782)(56.1)$
\n= $(-162.1, 37.7)$

□ Any one processor is not superior to another.

Unequal Sample Sizes Unequal Sample Sizes

$$
y_{ij} = \mu + \alpha_j + e_{ij}
$$

By definition:

$$
\sum_{j=1}^{a} r_j \alpha_j = 0
$$

 \Box Here, r_j is the number of observations at *j*th level. N =total number of observations:

$$
N=\sum_{j=1}^a r_j
$$

Parameter Estimation Parameter Estimation

Analysis of Variance Analysis of Variance

- **□** All means are obtained by dividing by the number of observations added.
- The column effects are 2.15, 13.75, and -21.92 .

Example 20.6: Analysis of Variance Example 20.6: Analysis of Variance

Example 20.6 ANOVA (Cont) Example 20.6 ANOVA (Cont)

□ Sums of Squares:

 \Box

$$
SSY = \sum y_{ij}^2 = 397375
$$

\n
$$
SS0 = N\mu^2 = 356040.75
$$

\n
$$
SSA = 5\alpha_1^2 + 4\alpha_2^2
$$

\n
$$
+3\alpha_3^2 = 2220.38
$$

\n
$$
SSE = (-30.40)^2 + (-54.40)^2 + \cdots
$$

\n
$$
+(-9.33)^2 = 39113.87
$$

\n
$$
SST = SSY - SS0 = 41334.25
$$

\n
$$
Degrees of Freedom:\n
$$
SSY = SS0 + SSA + SSE
$$

\n
$$
N = 1 + (a-1) + N-a
$$

\n
$$
12 = 1 + 2 + 9
$$
$$

Example 20.6 ANOVA Table Example 20.6 ANOVA Table

 \Box **Conclusion**: Variation due processors is insignificant as compared to that due to modeling errors.

Example 20.6 Standard Dev. of Effects

 \Box Consider the effect of processor Z: Since,

$$
\alpha_3 = y_{.3} - y_{..}
$$
\n
$$
= \frac{1}{3}(y_{13} + y_{23} + y_{33}) - \frac{1}{12}(y_{11} + y_{21} + \dots + y_{32} + y_{42} + y_{13} + y_{23} + y_{33})
$$
\n
$$
= \frac{1}{4}(y_{13} + y_{23} + y_{33}) - \frac{1}{12}(y_{11} + y_{21} + \dots + y_{32} + y_{42})
$$
\n
$$
\Box \text{ Error in } \alpha_3 = \sum \text{ Errors in terms on the right hand side:}
$$
\n
$$
e_{\alpha_3} = \frac{1}{4}(e_{13} + e_{23} + e_{33}) - \frac{1}{12}(e_{11} + e_{21} + \dots + e_{32} + e_{42})
$$
\n
$$
\Box \text{ } e_{ij} \text{'s are normally distributed } \Rightarrow \alpha_3 \text{ is normal with}
$$
\n
$$
s_{\alpha_3}^2 = \frac{1}{4^2} \times 3s_e^2 + \frac{1}{12^2} \times 9s_e^2 = 1086.36
$$

• Model for One factor experiments:

$$
y_{ij} = \mu + \alpha_j + e_{ij} \qquad \sum_{j=1}^{a} \alpha_j = 0
$$

- \Box Computation of effects
- \Box Allocation of variation, degrees of freedom
- \Box ANOVA table
- \Box Standard deviation of errors
- \Box Confidence intervals for effects and contracts
- \Box Model assumptions and visual tests

Exercise 20.1 Exercise 20.1

For a single factor design, suppose we want to write an expression for α _i in terms of y_{ii}'s:

 $\alpha_j = a_{11j}y_{11} + a_{12j}y_{12} + \cdots + a_{raj}y_{ra}$

What are the values of a_{\cdot} 's? From the above expression, the error in α_i is seen to be:

$$
e_{\alpha_j} = a_{11j}e_{11} + a_{12j}e_{12} + \cdots + a_{raj}e_{ra}
$$

Assuming errors e_{ii} are normally distributed with zero mean and variance σ_e^2 , write an expression for variance of e_{α_j} .
Verify that your answer matches that in Table 20.5.

©2010 Rai Jain www.raijain.

Homework Homework

Analyze the following one factor experiment:

- 1.Compute the effects
- 2.Prepare ANOVA table
- 3. Compute confidence intervals for effects and interpret
- 4.Compute Confidence interval for α_1 - α_3
- 5. Show graphs for visual tests and interpret