2k-p Fractional Fractional Factorial Designs Factorial Designs

- **Q** Confounding
- **Q** Other Fractional Factorial Designs
- **□** Algebra of Confounding
- **Design Resolution**

2k-p Fractional Factorial Designs Fractional Factorial Designs

- **Q** Large number of factors
	- \Rightarrow large number of experiments
	- ⇒ full factorial design too expensive
	- \Rightarrow Use a fractional factorial design
- \Box 2^{k-p} design allows analyzing k factors with only 2^{k-p} experiments.
	- 2^{k-1} design requires only half as many experiments 2^{k-2} design requires only one quarter of the experiments

□ Study 7 factors with only 8 experiments!

Fractional Design Features Fractional Design Features

□ Full factorial design is easy to analyze due to orthogonality of sign vectors.

Fractional factorial designs also use orthogonal vectors. That is:

¾ The sum of each column is zero.

$$
\Sigma_i \: x_{ij} = \! 0 \: \; \forall \: j
$$

*j*th variable, *i*th experiment.

¾ The sum of the products of any two columns is zero.

$$
\Sigma_i x_{ij} x_{il} = 0 \ \forall j \neq 1
$$

 \triangleright The sum of the squares of each column is 2⁷⁻⁴, that is, 8.

$$
\Sigma_i\ x_{ij}{}^2=8\ \forall\ j
$$

Analysis of Fractional Factorial Designs Analysis of Fractional Factorial Designs \Box **Model**:

$$
y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_D x_D
$$

$$
+ q_E x_E + q_F x_F + q_G x_G
$$

 \Box Effects can be computed using inner products.

$$
q_A = \sum_i y_i x_{Ai}
$$

=
$$
\frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}
$$

$$
q_B = \sum_i y_i x_{Bi}
$$

=
$$
\frac{-y_1 - y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{8}
$$

Q2010 Raj Jain www.rajjain.com

19-6

 \Box Factors A through G explain 37.26%, 4.74%, 43.40%, 6.75%, 0%, 8.06%, and 0.03% of variation, respectively.

 \Rightarrow Use only factors C and A for further experimentation.

Sign Table for a 2^{k-p} Design

Steps:

- 1. Prepare a sign table for a full factorial design with k-p factors.
- 2. Mark the first column I.
- 3. Mark the next k-p columns with the k-p factors.
- 4. Of the $(2^k-p-k-p-1)$ columns on the right, choose p columns and mark them with the p factors which were not chosen in step 1.

Confounding Confounding Confounding: Only the combined influence of two or more \Box effects can be computed. $q_A = \sum y_i x_{Ai}$ $y_1 - y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8$ 8 $q_D = \sum_i y_i x_{Di}$ $=$ $\frac{-y_1+y_2+y_3-y_4+y_5-y_6-y_7+y_8}{2}$ $\mathcal{S}_{\mathcal{S}}$ ©2010 Raj Jain www.rajjain.com

Confounding (Cont)
\n
$$
q_{ABC} = \sum_{i} y_{i} x_{Ai} x_{Bi} x_{Ci}
$$
\n
$$
= \frac{-y_{1} + y_{2} + y_{3} - y_{4} + y_{5} - y_{6} - y_{7} + y_{8}}{8}
$$
\n
$$
q_{D} = q_{ABC}
$$
\n
$$
q_{D} + q_{ABC} = \sum_{i} y_{i} x_{Ai} x_{Bi} x_{Ci}
$$
\n
$$
= \frac{-y_{1} + y_{2} + y_{3} - y_{4} + y_{5} - y_{6} - y_{7} + y_{8}}{8}
$$

 $\Box \Rightarrow$ Effects of D and ABC are confounded. Not a problem if q_{ABC} is negligible.

Confounding (Cont) Confounding (Cont)

 \Box Confounding representation: *D=ABC* Other Confoundings:

$$
q_A = q_{BCD} = \sum_i y_i x_{Ai}
$$

=
$$
\frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}
$$

 $\Rightarrow A = BCD$ $A=BCD, B=ACD, C=ABD, AB=CD, AC=BD,$ $BC = AD$, $ABC = D$, and $I = ABCD$

 \Box *I=ABCD* \Rightarrow confounding of ABCD with the mean.

Other Fractional Factorial Designs Other Fractional Factorial Designs

 \Box A fractional factorial design is not unique. 2^p different designs.

Algebra of Confounding Algebra of Confounding

- \Box Given just one confounding, it is possible to list all other confoundings.
- \Box Rules:
	- ¾ *I* is treated as unity.
	- \triangleright Any term with a power of 2 is erased.

 $I = ABCD$

Multiplying both sides by A:

 $A = A^2 BCD = BCD$

Multiplying both sides by B, C, D, and AB:

Algebra of Confounding (Cont) Algebra of Confounding (Cont)

$$
B = AB2CD = ACD
$$

$$
C = ABC2D = ABD
$$

$$
D = ABCD2 = ABC
$$

$$
AB = A2B2CD = CD
$$

and so on.

 \Box Generator polynomial: *I=ABCD* For the second design: *I=ABC.*

 \Box In a 2^{k-p} design, 2^p effects are confounded together.

Example 19.7 Example 19.7

 \Box In the 2⁷⁻⁴ design: $D = AB, E = AC, F = BC, G = ABC$ $\Rightarrow I = ABD, I = ACE, I = BCF, I = ABCG$ $\Rightarrow I = ABD = ACE = BCF = ABCG$ **□** Using products of all subsets: $I = ABD = ACE = BCF = ABCG = BCDE$ $= ACDF = CDC = ABEF = BEG$ $= AFG = DEF = ADEG = BDFG$ $= CEFG = ABCDFFG$

Example 19.7 (Cont) Example 19.7 (Cont)

Q Other confoundings:

$$
A = BD = CE = ABCF = BCG = ABCDE
$$

$$
\hspace{2.6cm} = \hspace{.4cm} CDF = ACDG = BEF = ABEG
$$

$$
\hspace*{2.3cm} = \hspace*{.2cm} FG = ADEF = DEG = ABDFG
$$

$$
\hspace{2.3cm}=\hspace{2.2cm}ACEFG=BCDEFG
$$

Design Resolution Design Resolution

 \Box Order of an effect = Number of terms

Order of $ABCD = 4$, order of $I = 0$.

- \Box Order of a confounding = Sum of order of two terms E.g., AB=CDE is of order 5.
- **Resolution of a Design**
	- = Minimum of orders of confoundings
- \Box Notation: R_{III} = Resolution-III = 2^{k-p}_{III}
- **□** Example 1: $I = ABCD$ ⇒ R_{IV} = Resolution-IV = 2^{4-1} _{IV} $BC = AD$, $ABC = D$, and $I = ABCD$

Design Resolution (Cont) Design Resolution (Cont)

 \Box Example 2:

 $I = ABD \implies R_{III}$ design.

 \Box Example 3:

$$
I = ABD = ACE = BCF = ABCG = BCDE
$$

$$
\hspace{2.6cm} = \hspace{.4cm} ACDF = CDG = ABEF = BEG
$$

$$
\hspace{2.6cm} = \hspace{.4cm} AFG = DEF = ADEG = BDFG
$$

$$
\hspace*{2.5cm} = \hspace*{4.2cm} ABDG = CEFG = ABCDEFG
$$

 \Box This is a resolution-III design.

 \Box A design of higher resolution is considered a better design.

Case Study 19.1: Latex vs. troff Case Study 19.1: Latex vs. troff

Case Study 19.1 (Cont) Case Study 19.1 (Cont)

\Box Design: 2^{6-1} with I=BCDEF

Case Study 19.1: Conclusions Case Study 19.1: Conclusions

- \Box Over 90% of the variation is due to: Bytes, Program, and Equations and a second order interaction.
- \Box Text file size were significantly different making it's effect more than that of the programs.
- \Box High percentage of variation explained by the ``program \times Equation'' interaction

⇒ Choice of the text formatting program depends upon the number of equations in the text. troff not as good for equations.

Case Study 19.1: Conclusions (Cont) Case Study 19.1: Conclusions (Cont)

- \Box Low ``Program \times Bytes" interaction \Rightarrow Changing the file size affects both programs in a similar manner.
- **□** In next phase, reduce range of file sizes. Alternately, increase the number of levels of file sizes.

Case Study 19.2: Scheduler Design Case Study 19.2: Scheduler Design

 \Box Three classes of jobs: word processing, data processing, and background data processing.

Factors and Levels in the Scheduler Design Study

 \Box Design: 25-1 with *I=ABCDE*

Effects and Variation Explained Effects and Variation Explained

Case Study 19.2: Conclusions Case Study 19.2: Conclusions

- \Box For word processing throughput (T_w) : A (Preemption), B (Time slice), and AB are important.
- **□** For interactive jobs: E (Fairness), A (preemption), BE, and B (time slice).
- For background jobs: A (Preemption), AB, B (Time slice), E (Fairness).
- \Box May use different policies for different classes of workloads.
- **□** Factor C (queue assignment) or any of its interaction do not have any significant impact on the throughput.
- \Box Factor D (Requiring) is not effective.
- \Box Preemption (A) impacts all workloads significantly.
- \Box Time slice (B) impacts less than preemption.
- \Box Fairness (E) is important for interactive jobs and slightly important for background jobs.

- \Box Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- \Box Many effects and interactions are confounded
- \Box The resolution of a design is the sum of the order of confounded effects
- \Box A design with higher resolution is considered better

Exercise 19.1 Exercise 19.1

Analyze the 2^{4-1} design:

- \Box Quantify all main effects.
- \Box Quantify percentages of variation explained.
- \Box Sort the variables in the order of decreasing importance.
- \Box List all confoundings.
- \Box Can you propose a better design with the same number of experiments.
- \Box What is the resolution of the design?

Exercise 19.2 Exercise 19.2

```
Is it possible to have a 2^{4-1}{}_{\rm III} design? a 2^{4-1}{}_{\rm II} design? 2^{4-1}{}_{\rm II}1_{\text{IV}} design? If yes, give an example.
```
Homework Homework

 \Box Updated Exercise 19.1 Analyze the 2^{4-1} design:

- \Box Quantify all main effects.
- □ Quantify percentages of variation explained.
- \Box Sort the variables in the order of decreasing importance.
- \Box List all confoundings.
- \Box Can you propose a better design with the same number of experiments.
- \Box What is the resolution of the design?