2^{k-p} Fractional Factorial Designs

- □ Sign Table for a 2^{k-p} Design
- **Confounding**
- Other Fractional Factorial Designs
- □ Algebra of Confounding
- Design Resolution

2^{k-p} Fractional Factorial Designs

- Large number of factors
 - \Rightarrow large number of experiments
 - \Rightarrow full factorial design too expensive
 - \Rightarrow Use a fractional factorial design
- 2^{k-p} design allows analyzing k factors with only 2^{k-p} experiments.
 - 2^{k-1} design requires only half as many experiments 2^{k-2} design requires only one quarter of the experiments

□ Study 7 factors with only 8 experiments!

Fractional Design Features

Full factorial design is easy to analyze due to orthogonality of sign vectors.

Fractional factorial designs also use orthogonal vectors. That is:

> The sum of each column is zero.

$$\sum_{i} x_{ij} = 0 \quad \forall j$$

*j*th variable, *i*th experiment.

> The sum of the products of any two columns is zero.

$$\sum_{i} x_{ij} x_{il} = 0 \quad \forall j \neq 1$$

> The sum of the squares of each column is 2^{7-4} , that is, 8.

$$\sum_i {x_{ij}}^2 = 8 \ \forall \, j$$

Analysis of Fractional Factorial Designs Model:

$$y = q_0 + q_A x_A + q_B x_B + q_C x_C + q_D x_D$$
$$+ q_E x_E + q_F x_F + q_G x_G$$

□ Effects can be computed using inner products.

$$q_{A} = \sum_{i} y_{i} x_{Ai}$$

$$= \frac{-y_{1} + y_{2} - y_{3} + y_{4} - y_{5} + y_{6} - y_{7} + y_{8}}{8}$$

$$q_{B} = \sum_{i} y_{i} x_{Bi}$$

$$= \frac{-y_{1} - y_{2} + y_{3} + y_{4} - y_{5} - y_{6} + y_{7} + y_{8}}{8}$$
©2010 Raj Jain www.rajjain.com

Example 19.1											
Ι	А	В	С	D	Е	F	G	у			
1	-1	-1	-1	1	1	1	-1	20			
1	1	-1	-1	-1	-1	1	1	35			
1	-1	1	-1	-1	1	-1	1	7			
1	1	1	-1	1	-1	-1	-1	42			
1	-1	-1	1	1	-1	-1	1	36			
1	1	-1	1	-1	1	-1	-1	50			
1	-1	1	1	-1	-1	1	-1	45			
1	1	1	1	1	1	1	1	82			
317	101	35	109	43	1	47	3	Total			
39.62	12.62	4.37	13.62	5.37	0.125	5.87	0.37	Total/8			

Factors A through G explain 37.26%, 4.74%, 43.40%, 6.75%, 0%, 8.06%, and 0.03% of variation, respectively.

 \Rightarrow Use only factors C and A for further experimentation.

Sign Table for a 2^{k-p} Design

Steps:

- 1. Prepare a sign table for a full factorial design with k-p factors.
- 2. Mark the first column I.
- 3. Mark the next k-p columns with the k-p factors.
- Of the (2^{k-p}-k-p-1) columns on the right, choose p columns and mark them with the p factors which were not chosen in step 1.

	Expt No.	А	В	С	AB	AC	BC	ABC
-	1	-1	-1	-1	1	1	1	-1
	2	1	-1	-1	-1	-1	1	1
	3	-1	1	-1	-1	1	-1	1
	4	1	1	-1	1	-1	-1	-1
	5	-1	-1	1	1	-1	-1	1
	6	1	-1	1	-1	1	-1	-1
	7	-1	1	1	-1	-1	1	-1
	8	1	1	1	1	1	1	1

Example: 2 ⁴⁻¹ Design											
Expt No.	A	В	С	AB	AC	BC	D				
1	-1	-1	-1	1	1	1	-1				
2	1	-1	-1	-1	-1	1	1				
3	-1	1	-1	-1	1	-1	1				
4	1	1	-1	1	-1	-1	-1				
5	-1	-1	1	1	-1	-1	1				
6	1	-1	1	-1	1	-1	-1				
7	-1	1	1	-1	-1	1	-1				
8	1	1	1	1	1	1	1				
					©201	0 Raj Jain www	.rajjain.com				

Confounding **Confounding**: Only the combined influence of two or more effects can be computed. $q_A = \sum y_i x_{Ai}$ $= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{-y_1 - y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}$ 8 $q_D = \sum y_i x_{Di}$ $= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{-y_1 - y_2 - y_3 - y_4 + y_5 - y_6 - y_7 + y_8}$ 8 ©2010 Raj Jain www.rajjain.com

$$Confounding (Cont)$$

$$q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

$$q_D = q_{ABC}$$

$$q_D + q_{ABC} = \sum_{i} y_i x_{Ai} x_{Bi} x_{Ci}$$

$$= \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{8}$$

□ ⇒ Effects of D and ABC are confounded. Not a problem if q_{ABC} is negligible.

Confounding (Cont)

Confounding representation: D=ABC
 Other Confoundings:

$$q_A = q_{BCD} = \sum_i y_i x_{Ai}$$
$$= \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{8}$$

 $\Rightarrow A = BCD$ A=BCD, B=ACD, C=ABD, AB=CD, AC=BD,

BC=AD, ABC=D, and I=ABCD

□ $I=ABCD \Rightarrow$ confounding of ABCD with the mean.

Other Fractional Factorial Designs

□ A fractional factorial design is not unique. 2^p different designs. Another 2⁴⁻¹ Experimental Design

				-			0	
_	Expt No.	А	В	С	D	AC	BC	ABC
_	1	-1	-1	-1	1	1	1	-1
	2	1	-1	-1	-1	-1	1	1
	3	-1	1	-1	-1	1	-1	1
	4	1	1	-1	1	-1	-1	-1
	5	-1	-1	1	1	-1	-1	1
	6	1	-1	1	-1	1	-1	-1
	7	-1	1	1	-1	-1	1	-1
	8	1	1	1	1	1	1	1
	onfounding	5S :	I=	ABD), A=	=BD,	B=A	D, C =
		Γ)=A	B, A	C =]	BCD,	BC =	ACD,
Not a	as good as t	the p	revic	ous de	esigr	1.		
								©201

Algebra of Confounding

- Given just one confounding, it is possible to list all other confoundings.
- **Rules:**
 - > *I* is treated as unity.
 - > Any term with a power of 2 is erased.

I = ABCD

Multiplying both sides by A:

 $A = A^2 B C D = B C D$

Multiplying both sides by B, C, D, and AB:

Algebra of Confounding (Cont)

$$B = AB^{2}CD = ACD$$
$$C = ABC^{2}D = ABD$$
$$D = ABCD^{2} = ABC$$
$$AB = A^{2}B^{2}CD = CD$$

and so on.

□ Generator polynomial: *I*=*ABCD* For the second design: *I*=*ABC*.

□ In a 2^{k-p} design, 2^p effects are confounded together.

Example 19.7

In the 2⁷⁻⁴ design: D = AB, E = AC, F = BC, G = ABC $\Rightarrow I = ABD, I = ACE, I = BCF, I = ABCG$ $\Rightarrow I = ABD = ACE = BCF = ABCG$ □ Using products of all subsets: I = ABD = ACE = BCF = ABCG = BCDE= ACDF = CDG = ABEF = BEG= AFG = DEF = ADEG = BDFG= CEFG = ABCDEFG

Example 19.7 (Cont)

□ Other confoundings:

$$A = BD = CE = ABCF = BCG = ABCDE$$

$$= CDF = ACDG = BEF = ABEG$$

$$= FG = ADEF = DEG = ABDFG$$

$$= ACEFG = BCDEFG$$

Design Resolution

□ Order of an effect = Number of terms

Order of ABCD = 4, order of I = 0.

• Order of a confounding = Sum of order of two terms

E.g., AB=CDE is of order 5.

□ Resolution of a Design

= Minimum of orders of confoundings

□ Notation: $R_{III} = Resolution-III = 2^{k-p}_{III}$

□ Example 1: $I=ABCD \Rightarrow R_{IV} = \text{Resolution-IV} = 2^{4-1}_{IV}$ A=BCD, B=ACD, C=ABD, AB=CD, AC=BD, BC=AD, ABC=D, and I=ABCD

Design Resolution (Cont)

Example 2:

 $I = ABD \implies R_{III}$ design.

Example 3:

$$I = ABD = ACE = BCF = ABCG = BCDE$$

$$= ACDF = CDG = ABEF = BEG$$

$$= AFG = DEF = ADEG = BDFG$$

$$= ABDG = CEFG = ABCDEFG$$

□ This is a resolution-III design.

□ A design of higher resolution is considered a better design.

Case Study 19.1: Latex vs. troff

<u>Factors and Levels</u>										
	Factor	-Level	+Level							
А	Program	Latex	troff-me							
В	Bytes	2100	25000							
С	Equations	0	10							
D	Floats	0	10							
Ε	Tables	0	10							
\mathbf{F}	Footnotes	0	10							

Case Study 19.1 (Cont)

□ Design: 2⁶⁻¹ with I=BCDEF

	Factor	Effect	% Variation
В	Bytes	12.0	39.4%
А	Program	9.4	24.4%
С	Equations	7.5	15.6%
AC	Program		
	\times Equations	7.2	14.4%
Ε	Tables	3.5	3.4%
F	Footnotes	1.6	0.70%

Case Study 19.1: Conclusions

- Over 90% of the variation is due to: Bytes, Program, and Equations and a second order interaction.
- Text file size were significantly different making it's effect more than that of the programs.
- High percentage of variation explained by the ``program × Equation" interaction

 \Rightarrow Choice of the text formatting program depends upon the number of equations in the text. troff not as good for equations.

<u>CPU Time</u>									
Program	# of Equations								
	-1(0)	1(10)							
-1(Latex)	-9.7	-9.1							
1(Troff)	-5.3	24.1							

Case Study 19.1: Conclusions (Cont)

- □ Low ``Program × Bytes" interaction ⇒ Changing the file size affects both programs in a similar manner.
- □ In next phase, reduce range of file sizes. Alternately, increase the number of levels of file sizes.

Case Study 19.2: Scheduler Design

Three classes of jobs: word processing, data processing, and background data processing.

Factors and Levels in the Scheduler Design Study

Symbol	Factor	Level -1	Level 1
A	Preemption	No	Yes
В	Time Slice	Small	Large
С	Queue Assignment	One Queue	Two Queues
D	Requeueing	Two Queues	Five Queues
Е	Fairness	Off	On

Design: 2^{5-1} with I=ABCDE

Measured Throughputs											
No.	A	В	С	D	Ε	T_W	T_{I}	T_B			
1	-1	-1	-1	-1	1	15.0	25.0	15.2			
2	1	-1	-1	-1	-1	11.0	41.0	3.0			
3	-1	1	-1	-1	-1	25.0	36.0	21.0			
4	1	1	-1	-1	1	10.0	15.7	8.6			
5	-1	-1	1	-1	-1	14.0	63.9	7.5			
6	1	-1	1	-1	1	10.0	13.2	7.5			
7	-1	1	1	-1	1	28.0	36.3	20.2			
8	1	1	1	-1	-1	11.0	23.0	3.0			
9	-1	-1	-1	1	-1	14.0	66.1	6.4			
10	1	-1	-1	1	1	10.0	9.1	8.4			
11	-1	1	-1	1	1	27.0	34.6	15.7			
12	1	1	-1	1	-1	11.0	23.0	3.0			
13	-1	-1	1	1	1	14.0	26.0	12.0			
14	1	-1	1	1	-1	11.0	38.0	2.0			
15	-1	1	1	1	-1	25.0	35.0	17.2			
16	1	1	1	1	1	11.0	22.0	2.0			
							©20)10 Raj Jain w			

Effects and Variation Explained

Confounded		T_W			Γ_I	T_B		
- E	Effects	Esti-	Perc.	Esti-	Perc.	Esti-	Perc.	
1	2	mate	Var.	mate	Var.	mate	Var.	
I	ABCDE	15.44		31.74		9.54		
A	BCDE	-4.81	55.5%	-8.62	31.0%	-4.86	58.8%	
B	ACDE	3.06	22.5%	-3.54	5.2%	1.79	8.0%	
C	ABDE	0.06	0.0%	0.43	0.1%	-0.62	1.0%	
D	ABCE	-0.06	0.0%	-0.02	0.0%	-1.21	3.6%	
AB	CDE	-2.94	20.7%	1.34	0.8%	-2.33	13.5%	
AC	BDE	0.06	0.0%	0.49	0.1%	-0.44	0.5%	
AD	BCE	0.19	0.1%	-0.08	0.0%	0.37	0.3%	
BC	ADE	0.19	0.1%	0.44	0.1%	-0.12	0.0%	
BD	ACE	0.06	0.0%	0.47	0.1%	-0.66	1.1%	
CD	ABE	-0.19	0.1%	-1.91	1.5%	0.58	0.8%	
DE	ABC	-0.06	0.0%	0.21	0.0%	-0.47	0.5%	
CE	ABD	0.06	0.0%	1.21	0.6%	-0.16	0.1%	
BE	ACD	0.31	0.2%	7.96	26.4%	-1.37	4.7%	
AE	BCD	-0.56	0.8%	0.88	0.3%	0.28	0.2%	
E	ABCD	0.19	0.1%	-9.01	33.8%	1.66	6.8%	

Case Study 19.2: Conclusions

- □ For word processing throughput (T_W): A (Preemption), B (Time slice), and AB are important.
- □ For interactive jobs: E (Fairness), A (preemption), BE, and B (time slice).
- For background jobs: A (Preemption), AB, B (Time slice), E (Fairness).
- □ May use different policies for different classes of workloads.
- Factor C (queue assignment) or any of its interaction do not have any significant impact on the throughput.
- □ Factor D (Requiring) is not effective.
- □ Preemption (A) impacts all workloads significantly.
- □ Time slice (B) impacts less than preemption.
- □ Fairness (E) is important for interactive jobs and slightly important for background jobs.

- Fractional factorial designs allow a large number of variables to be analyzed with a small number of experiments
- □ Many effects and interactions are confounded
- The resolution of a design is the sum of the order of confounded effects
- □ A design with higher resolution is considered better

Exercise 19.1

Analyze the 2⁴⁻¹ design:

- □ Quantify all main effects.
- □ Quantify percentages of variation explained.
- □ Sort the variables in the order of decreasing importance.
- List all confoundings.
- Can you propose a better design with the same number of experiments.
- □ What is the resolution of the design?

Exercise 19.2

```
Is it possible to have a 2<sup>4-1</sup><sub>III</sub> design? a 2<sup>4-1</sup><sub>II</sub> design? 2<sup>4-1</sup><sub>IV</sub> design? If yes, give an example.
```

Homework

□ Updated Exercise 19.1 Analyze the 2⁴⁻¹ design:

- Quantify all main effects.
- □ Quantify percentages of variation explained.
- □ Sort the variables in the order of decreasing importance.
- □ List all confoundings.
- Can you propose a better design with the same number of experiments.
- □ What is the resolution of the design?