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Other Regression Other Regression 
ModelsModels
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OverviewOverview

1. Multiple Linear Regression: More than one predictor 
variables

2. Categorical Predictors: Predictor variables are categories 
such as CPU type, disk type, and so on.

3. Curvilinear Regression: Relationship is nonlinear
4. Transformations: Errors are not normally distributed or the 

variance is not homogeneous
5. Outliers
6. Common mistakes in regression 
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Multiple Linear Regression ModelsMultiple Linear Regression Models

Given a sample of n observations with k predictors
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Vector NotationVector Notation
In vector notation, we have:

or
All elements in the first column of X are 1.  
See Box 15.1 for regression formulas.
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Example 15.1Example 15.1
Seven programs were  monitored to observe their resource 
demands. In particular,  the number of disk I/O's, memory size 
(in kBytes), and  CPU time (in milliseconds) were observed. 
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Example 15.1 (Cont)Example 15.1 (Cont)

In this case:
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Example 15.1 (Cont)Example 15.1 (Cont)

The regression parameters are:

The regression equation is:
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Example 15.1 (Cont)Example 15.1 (Cont)

From the table we see that SSE is:
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Example 15.1 (Cont)Example 15.1 (Cont)
An alternate method to compute SSE is to use:

For this data, SSY and SS0 are:

Therefore, SST and SSR are:
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Example 15.1 (Cont)Example 15.1 (Cont)
The coefficient of determination R2 is:

Thus, the regression explains 97% of the variation of y.  
Coefficient of multiple correlation:

Standard deviation of errors is:
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Example 15.1 (Cont)Example 15.1 (Cont)
Standard deviations of the regression parameters are:

The 90% t-value at 4 degrees of freedom is 2.132.

None of the three parameters is significant at a 90% confidence 
level.  
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Example 15.1 (Cont)Example 15.1 (Cont)
A single  future observation for programs with 100 disk I/O's 
and a memory size of 550:

Standard deviation of the predicted observation is:

90% confidence interval using the t value of 2.132 is:
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Example 15.1 (Cont)Example 15.1 (Cont)
Standard deviation for a mean of large number of observations 
is:

90% confidence interval is:
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Analysis of VarianceAnalysis of Variance
Test the hypothesis that SSR is less than or equal to SSE. 

Degrees of freedom = Number of independent values required 
to compute

Assuming 
Errors are i.i.d. Normal ⇒ y's are also normally distributed, 
x's are nonstochastic ⇒ Can be measured without errors 

Various sums of squares have a chi-square distribution  with 
the degrees of freedom as given above.  
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FF--Test Test 
Given SSi and SSj with νi and νj degrees of freedom, the ratio 
(SSi/νi)/(SSj/νj) has an F distribution with νi numerator degrees 
of freedom and νj denominator degrees of freedom.   

Hypothesis that the sum SSi is less than or equal to SSj is 
rejected at α significance level, if the ratio (SSi/νi)/(SSj/νj) is 
greater than the 1-α quantile of the F-variate.  
This procedure is also known as F-test.
The F-test can be used to check:  
Is SSR is significantly higher than SSE? 
⇒ Use F-test ⇒ Compute  (SSR/νR)/(SSE/νe) = MSR/MSE
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FF--Test (Cont)Test (Cont)

MSE = Variance of Error
MSR/MSE has F[k, n-k-1] distribution  
F-test = Null hypothesis that y doesn't depend upon any xj: 
against an alternate hypothesis that y depends upon at least one
xj and therefore, at least one bj ≠ 0.

If the computed ratio is less than the value read from the table, the 
null hypothesis cannot be rejected at the stated significance level.  
In simple regression models, 
If the confidence interval of b1 does not include zero 
⇒ Parameter is nonzero 
⇒ Regression explains a significant part of the response variation 
⇒ F-test is not required. 

and
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ANOVA Table for Multiple Linear RegressionANOVA Table for Multiple Linear Regression

See Table 15.3 on page 252
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Example 15.2Example 15.2
For the Disk-Memory-CPU data of Example15.1
Computed F ratio > F value from the table 
⇒ Regression does explain a significant part of the variation

Note: Regression passed the F test ⇒ Hypothesis of all 
parameters being zero cannot be accepted. However, none of 
the regression parameters are significantly different from zero.
This contradiction ⇒ Problem of multicollinearity
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Problem ofProblem of MulticollinearityMulticollinearity

Two lines are said to be collinear if they have the same slope 
and same intercept.  
These two lines can be represented in just one dimension 
instead of the two dimensions required for lines which are not 
collinear. 
Two collinear lines are not independent. 
When two predictor variables are linearly dependent, they are 
called collinear. 
Collinear predictors ⇒ Problem of multicollinearity
⇒ Contradictory results from various significance tests.

High Correlation ⇒ Eliminate one variable and check if 
significance improves
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Example 15.3Example 15.3
For the data of Example 15.2, n=7, Σ x1i=271, Σ x2i=1324,  
Σ x1i

2=1385, Σ x2i
2=326,686,  Σ x1ix2i=67,188.

Correlation is  high 
⇒ Programs with large memory sizes have more I/O's  
In Example14.1, CPU time on number of  disk I/O's regression 
was found significant.
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Example 15.3 (Cont)Example 15.3 (Cont)
Similarly, in Exercise 14.3, CPU time is regressed on the 
memory size and  the resulting regression  parameters are 
found to be significant. 
Thus, either  the number of I/O's or the memory size can be 
used to estimate  CPU time, but not both.
Lesson: 

Adding a predictor variable does not always improve a 
regression.
If the variable is correlated to other predictors, it may 
reduce the statistical accuracy of the regression.

Try all 2k possible subsets and choose the one that gives the 
best results with small number of variables. 
Correlation matrix for the subset chosen should be checked 
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Regression with Categorical Predictors Regression with Categorical Predictors 
Note: If all predictor variables are categorical, use one of the
experimental design and analysis techniques for statistically 
more precise (less variant) results Use regression if most 
predictors are quantitative and only a few predictors are 
categorical.  
Two Categories:

bj = difference in the effect of the two alternatives 
bj = Insignificant ⇒ Two alternatives have similar performance
Alternatively:

bj = Difference from the average response Difference of the 
effects of the two levels is 2bj
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Categorical Predictors (Cont)Categorical Predictors (Cont)
Three Categories: Incorrect:

This coding implies an order ⇒ B is half way between A and 
C.  This may not be true.  
Recommended: Use two predictor variables
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Categorical Predictors (Cont)Categorical Predictors (Cont)
Thus,

This coding does not imply any ordering among the types.  
Provides an easy way to interpret the regression parameters.
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Categorical Predictors (Cont)Categorical Predictors (Cont)
The average responses for the three types are:

Thus, b1 represents the difference between type A and C.  
b2 represents the difference between type B and C.  
b0 represents type C.  
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Categorical Predictors (Cont)Categorical Predictors (Cont)
Level = Number of values that a categorical variable can take
To represent a categorical variable with k levels, 
define k-1 binary variables:

kth (last) value is defined by x1= x2= L = xk-1= 0.  
b0 = Average response with the kth alternative. 
bj = Difference between alternatives j and k.  
If one of the alternatives represents the status quo or a standard 
against which other alternatives have to be measured, that 
alternative should be coded as the kth alternative. 
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Case Study 15.1: RPC performanceCase Study 15.1: RPC performance

RPC performance on Unix 
and Argus

where, y is the elapsed 
time, x1 is the data size 
and
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Case Study 15.1 (Cont)Case Study 15.1 (Cont)

All three parameters are significant. The regression explains 
76.5% of the variation. 
Per byte processing cost (time) for both operating systems is 
0.025 millisecond. 
Set up cost is 36.73 milliseconds on ARGUS which is 14.927 
milliseconds more than that with UNIX.  
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Differing ConclusionsDiffering Conclusions
Case Study 14.1 concluded that there was no significant 
difference in the set up costs. The per byte costs were different.
Case Study 15.1 concluded that per byte cost is same but the 
set up costs are different.
Which conclusion is correct?

Need system (domain) knowledge. Statistical techniques 
applied without understanding the system can lead to a 
misleading result.

Case Study 14.1 was based on the assumption that the 
processing as well as set up in the two operating systems are 
different ⇒ Four parameters  
The data showed that the setup costs were numerically 
indistinguishable.
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Differing Conclusions (Cont)Differing Conclusions (Cont)
The model used in Case Study 15.1 is based on the assumption  
that the operating systems have no effect on per byte 
processing.  
This will be true if the processing is identical on the two 
systems  and does not involve the operating systems. 
Only set up requires operating system calls. If this is, in fact, 
true then the regression coefficients  estimated in the joint 
model of this case study 15.1 are more realistic estimates of the 
real world.
On the other hand, if system programmers can show that the 
processing follows a different code path in the two systems, 
then the model of Case Study 14.1 would be more realistic. 



15-31
©2010 Raj Jain www.rajjain.com

Curvilinear RegressionCurvilinear Regression
If the relationship between response and predictors is nonlinear
but it can be  converted into a linear form 
⇒ curvilinear regression.
Example:

Taking a logarithm of both sides we get:

Thus, ln x and ln y are linearly related. The values of ln b and a 
can be found by a linear regression of ln y on ln x.  
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Curvilinear Regression: Other ExamplesCurvilinear Regression: Other Examples

If a predictor variable appears in more than one  transformed 
predictor variables, the transformed variables are likely to be 
correlated ⇒ multicollinearity.
Try various possible subsets of the predictor variables to find a 
subset that  gives significant parameters and explains a high 
percentage of the observed variation. 
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Example 15.4Example 15.4
Amdahl's law: I/O rate is proportional to the processor speed.  
For each instruction executed there is one bit of I/O on the 
average. 
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Example 15.4 (Cont)Example 15.4 (Cont)
Let us fit the following curvilinear model to this data:

Taking a log of both sides we get:
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Example 15.4 (Cont)Example 15.4 (Cont)

Both coefficients are significant at 
90% confidence level.  
The regression explains 84% of the 
variation.
At this confidence level,  we can 
accept the hypothesis that the 
relationship is linear since the 
confidence interval for b1 includes 
1. 
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Example 15.4 (Cont)Example 15.4 (Cont)

Errors in log I/O rate do seem to be normally distributed. 
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TransformationsTransformations
Transformation: Some function of the measured response 
variable y is used. For example,

Transformation is a subset of the curvilinear regression.  
However, the ideas apply to non-regression model as well. 

1. Physical considerations ⇒ Transformation 
For example, if  response =  inter-arrival times y and it is 
known that the number of requests per unit time (1/y) has a 
linear relationship to a predictor

2. If the range of the data covers several orders of magnitude and 
the sample size is small. That is, if                          is large. 

3. If the homogeneous variance (homoscedasticity)  assumption 
of the residuals is violated. 
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Transformations (Cont)Transformations (Cont)
scatter plot shows non-homogeneous spread ⇒ Residuals are 
still functions of the predictors  
Plot the standard deviation of residuals at each value of    as a 
function of the mean    . 
If s and the mean    :

Then a transformation of the form:

may help solve the problem 
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Useful TransformationsUseful Transformations
Log Transformation: Standard deviation s is a linear function 
of the mean (s = a    )

w = ln y
and, therefore:
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Useful Transformations (Cont)Useful Transformations (Cont)
Logarithmic transformation is useful only if the ratio          
is large.
For a small range the log function is almost linear.  
Square Root Transformation: For a Poisson distributed 
variable:

Variance versus mean 
will be a straight line

helps stabilize 
the variance.
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Useful Transformations (Cont)Useful Transformations (Cont)
Arc Sine Transformation: If y is a proportion or percentage,    

may be helpful. 
Omega Transformation: This transformation is popularly used 
when the response y is a proportion. 

The transformed values w's are said to be in units of deci-
Bells. The term comes from signaling theory where the 

ratio of output power to input power is measured in dBs.
Omega transformation converts fractions between 0 and 1

to values  between -∞ to +∞. 
This transformation is particularly helpful  if the fractions 
are  very small or very large. 
If the fractions are close to 0.5,  a transformation may not be 
required.
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Useful Transformations (Cont)Useful Transformations (Cont)
Power Transformation: ya is regressed on the predictor 
variables.  

Standard deviation of residuals se is proportional to           . 
a=-1 and general a, respectively.
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Useful Transformations (Cont)Useful Transformations (Cont)
Shifting: y+c (with some suitable c) may be used in place of y. 

Useful if there are negative or zero values and if the 
transformation function is not defined for these values. 
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BoxBox--Cox TransformationsCox Transformations
If the value of the exponent a in a power transformation   is not 
known, Box-Cox family of transformations can be used:

Where g is the geometric mean of the responses:

The Box-Cox transformation has the property that w has the 
same units as the response y for all values of the exponent a.
All real values of a, positive or negative can be tried. 
The transformation is continuous even at zero, since:
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BoxBox--Cox Transformations (Cont)Cox Transformations (Cont)
Use a that gives the smallest SSE. 
Use simple values for a. If  if a=0.52 is found to give the 
minimum SSE and the SSE at a=0.5 is not significantly higher, 
the latter value may be preferable.  
100(1-α) confidence interval for a:

Where,                is the minimum SSE, and ν is the number of 
degrees of freedom for the errors.   
If the confidence interval for a includes a = 1, then the 
hypothesis that the relationship is linear cannot be rejected  
⇒ No need for the transformation.  
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Case Study 15.2: Garbage collectionCase Study 15.2: Garbage collection
The garbage collection time for various values of heap sizes. 
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Case Study 15.2: Garbage collectionCase Study 15.2: Garbage collection

The points do not appear to be close to the straight line. 
The analyst hypothesizes
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Case Study 15.2 (Cont)Case Study 15.2 (Cont)
Is exponent on time is different than a half? 
⇒ Use Box-Cox transformations with “a” ranging from -0.4 to 
0.8

The minimum SSE of 2049 occurs at a = 0.45. 
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Case Study 15.2 (Cont)Case Study 15.2 (Cont)
Since 0.95-quantile of a t variate with 10 degrees of freedom is 
1.812

The SSE = 2271 line intersects the curve at a = 0.2465 and 
a = 0.5726.
90% confidence interval for a is (0.2465, 0.5726).  Since the 
interval includes 0.5, we cannot reject the hypothesis that the 
exponent is 0.5. 
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OutliersOutliers
Any observation that is atypical of the remaining observations 
may be considered an outlier.
Including the outlier in the analysis may change the 
conclusions significantly.
Excluding the outlier from the analysis may lead to a 
misleading conclusion, if the outlier in fact represents a correct 
observation of the system behavior.
A number of statistical tests have been proposed to test if a 
particular value is an outlier. Most of these tests assume a 
certain distribution for the observations. If the observations do 
not satisfy the assumed distribution, the results of the statistical 
test would be misleading.
Easiest way to identify outliers is to look at the scatter plot of 
the data.
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Outliers (Cont)Outliers (Cont)
Any value significantly away from the remaining observations 
should be investigated for possible experimental errors.
Other experiments in the neighborhood of the outlying 
observation may be conducted to verify that the response is 
typical of the system behavior in that operating region.
Once the possibility of errors in the experiment has been 
eliminated, the analyst may decide to include or exclude the 
suspected outlier based on  the intuition.
One alternative is to repeat the analysis with and without the 
outlier and state the results separately.
Another alternative is to divide the operating region into two 
(or more) sub-regions and obtain a separate model for each 
sub-region. 
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Common Mistakes in RegressionCommon Mistakes in Regression
1. Not verifying that the relationship is linear.
2. Relying on automated results without visual verification

• In all these cases,
R2 = High
• High R2 is necessary 
but not sufficient for a 
good model.
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Common Mistakes in Regression (Cont)Common Mistakes in Regression (Cont)
3. Attaching importance to numerical values of regression  

parameters. 
CPU time in seconds = 0.01 (Number of disk I/O's) + 0.001 

(Memory  size in kilobytes)  
0.001 is too small ≠> memory size can be ignored   
CPU time in milliseconds = 10 (Number of disk I/O's) + 1 

(Memory size in kilobytes)
CPU time in seconds = 0.01 (Number of disk I/O's) + 

1 (Memory  size in Mbytes)
4. Not specifying confidence intervals for the regression  

parameters.
5. Not specifying the coefficient of determination.
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Common Mistakes in Regression (Cont)Common Mistakes in Regression (Cont)
6. Confusing the coefficient of determination and  the coefficient 

of correlation
R=Coefficient of correlation, R2= Coefficient of determination 
R=0.8, R2=0.64 
⇒ Regression explains only 64% of variation and not 80%.

7. Using highly correlated variables as predictor variables. 
Analysts often start a multi-linear regression with as  many 
predictor variables as possible 
⇒ severe multicollinearity problems.

8. Using regression to predict far beyond the measured range. 
Predictions should be specified along with their confidence 
intervals 

9. Using too many predictor variables. 
k predictors ⇒ 2k-1 subsets
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Common Mistakes in Regression (Cont)Common Mistakes in Regression (Cont)
Subset giving the minimum R2 is the best. But, other subsets 
that are close may be used instead for practical or engineering 
reasons. For example, if the second best has only one variable 
compared to five in the best, the second best may the 
preferred model.

10. Measuring only a small subset of the complete range of 
operation, e.g., 10 or 20 users on a 100 user system.
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Common Mistakes in Regression (Cont)Common Mistakes in Regression (Cont)
11. Assuming that a good predictor variable is also a good 

control variable. 
Correlation ⇒ Can predict with a high precision 
≠> Can control response with predictor 
For example, the disk I/O versus CPU time regression 
model can be used to predict the number of disk I/O's for a 
program given its CPU  time. 
However, reducing the CPU time by installing a faster CPU 
will not  reduce the number of disk I/O's.
w and y both controlled by x 
⇒ w and y  highly correlated and would be good predictors 

for each other.
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Common Mistakes in Regression (Cont)Common Mistakes in Regression (Cont)

The prediction works both ways: 
w can be used to predict y and vice versa.
The control often works only one way: 
x controls y but y may not control x.
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SummarySummary

Too many predictors may make the model weak.
Categorical predictors are modeled using binary predictors
Curvilinear regression can be used if a transformation gives 
linear relationship.
Transformation: s = g(y) ⇒

Outliers: Use your system knowledge. Check measurements.
Common mistakes:No visual verification, control vs correlation
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Exercise 15.1Exercise 15.1

The results of a multiple regression based on 9 
observations  are shown in the following table.
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Exercise 15.1 (Cont)Exercise 15.1 (Cont)
Based on these results answer the following questions:
1. What percent of variance is explained by the regression?
2. Is the regression significant at 90% confidence level?
3. Which variable has the highest coefficient?
4. Which variable is most significant?
5. Which parameters are not significant at 90%?
6. What is the problem with this regression?
7. What would you try next?
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Exercise 15.2Exercise 15.2
Time to encrypt or decrypt a k-bit record was measured on a 
uniprocessor as well as on a multi-processor. The times in 
milliseconds are shown below. Using a log transformation and 
the method for categorical predictors fit a regression model and
interpret the results.
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HomeworkHomework
(Updated Exercise 15.2) Time to encrypt or decrypt a k-bit 
record was measured on a uniprocessor as well as on a multi-
processor. The times in milliseconds are shown below. Using a 
log transformation and the method for categorical predictors fit
a regression model and interpret the results.


