Simple Linear Regression Models Regression Models

- 1.Definition of a Good Model
- 2.Estimation of Model parameters
- 3. Allocation of Variation
- 4.Standard deviation of Errors
- 5. Confidence Intervals for Regression Parameters
- 6. Confidence Intervals for Predictions
- 7.Visual Tests for verifying Regression Assumption

Simple Linear Regression Models Simple Linear Regression Models

- **Regression Model**: Predict a response for a given set of predictor variables.
- **Response Variable**: Estimated variable
- **Predictor Variables**: Variables used to predict the response. predictors or factors
- **Linear Regression Models**: Response is a linear function of predictors.
- **Simple Linear Regression Models**: Only one predictor

Good Model (Cont) Good Model (Cont)

- **Regression models attempt to minimize the distance** measured vertically between the observation point and the model line (or curve).
- **□** The length of the line segment is called residual, modeling error, or simply error.
- **The negative and positive errors should cancel out** \Rightarrow Zero overall error

Many lines will satisfy this criterion.

Good Model (Cont) Good Model (Cont)

□ Choose the line that minimizes the sum of squares of the errors.

$$
\hat{y} = b_0 + b_1 x
$$

where, \hat{y} is the predicted response when the predictor variable is x. The parameter b_0 and b_1 are fixed regression parameters to be determined from the data.

Given *n* observation pairs $\{(x_1, y_1), ..., (x_n, y_n)\}\$, the estimated response \hat{y}_i for the ith observation is:

$$
\hat{y}_i = b_0 + b_1 x_i
$$

 \Box The error is:

$$
e_i = y_i - \hat{y}_i
$$

02010 Raj Jain www.rajjain

Good Model (Cont) Good Model (Cont)

The best linear model minimizes the sum of squared errors (SSE):

$$
\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2
$$

subject to the constraint that the mean error is zero:

$$
\sum_{i=1}^{n} e_i = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0
$$

 \Box This is equivalent to minimizing the variance of errors (see Exercise).

Estimation of Model Parameters Estimation of Model Parameters

□ Regression parameters that give minimum error variance are:

 $b_1 = \frac{\Sigma xy - n\bar{x}\bar{y}}{\Sigma x^2 - n\bar{x}^2}$ and $b_0 = \bar{y} - b_1\bar{x}$

□ where,

©2010 Rai Jain www.rajiain.c

Example 14.1 Example 14.1

- **□** The number of disk I/O's and processor times of seven programs were measured as: (14, 2), (16, 5), (27, 7), (42, 9), (39, 10), (50, 13), (83, 20)
- \Box For this data: *n*=7, Σ *xy*=3375, Σ *x*=271, Σ *x*²=13,855, Σ *y*=66, Σ *y*²=828, \bar{x} = 38.71, \bar{y} = 9.43. Therefore,

$$
b_1 = \frac{\Sigma xy - n\bar{x}\bar{y}}{\Sigma x^2 - n(\bar{x})^2} = \frac{3375 - 7 \times 38.71 \times 9.43}{13,855 - 7 \times (38.71)^2} = 0.2438
$$

$$
b_0 = \bar{y} - b_1\bar{x} = 9.43 - 0.2438 \times 38.71 = -0.0083
$$

The desired linear model is: $CPU time = -0.0083 + 0.2438(Number of Disk I/O's)$

©2010 Rai Jain www.raijain.

Example 14. (Cont) Example 14. (Cont)

Error Computation

Derivation of Regression Parameters Derivation of Regression Parameters

 \Box The error in the ith observation is:

$$
e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x_i)
$$

 \Box For a sample of n observations, the mean error is:

$$
\overline{e} = \frac{1}{\overline{y}} \sum_{i} e_i = \frac{1}{n} \sum_{i} \{ y_i - (b_0 + b_1 x_i) \}
$$

= $\overline{y} - b_0 - b_1 \overline{x}$

Setting mean error to zero, we obtain:

$$
b_0 = \bar{y} - b_1 \bar{x}
$$

 \Box Substituting b0 in the error expression, we get:

$$
e_i = y_i - \bar{y} + b_1 \bar{x} - b_1 x_i = (y_i - \bar{y}) - b_1 (x_i - \bar{x})
$$

Derivation of Regression Parameters (Cont) Derivation of Regression Parameters (Cont)

The sum of squared errors SSE is:

 $\boldsymbol{\eta}$

$$
SSE = \sum_{i=1}^{n} e_i^2
$$

=
$$
\sum_{i=1}^{n} \left\{ (y_i - \bar{y})^2 + 2b_1 (y_i - \bar{y}) (x_i - \bar{x}) + b_1^2 (x_i - \bar{x})^2 \right\}
$$

=
$$
\frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 - 2b_1 \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y}) (x_i - \bar{x})
$$

+
$$
b_1^2 \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2
$$

=
$$
s_y^2 - 2b_1 s_{xy}^2 + b_1^2 s_x^2
$$

Derivation (Cont) Derivation (Cont)

 \Box Differentiating this equation with respect to b₁ and equating the result to zero:

$$
\frac{d(SSE)}{db_1} = -2s_{xy}^2 + 2b_1s_x^2 = 0
$$

That is,

$$
b_1 = \frac{s_{xy}^2}{s_x^2} = \frac{\Sigma xy - n\bar{x}\bar{y}}{\Sigma x^2 - n(\bar{x})^2}
$$

Allocation of Variation Allocation of Variation

 \Box Error variance without Regression = Variance of the response $=$ ϵ_i = Observed Response – Predicted Response Error $= y_i - \bar{y}$

and

Variance of Errors without regression

$$
= \frac{1}{n-1} \sum_{i=1}^{n} \epsilon_i^2
$$

$$
= \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2
$$

$$
= \text{Variance of } y
$$

Allocation of Variation (Cont) Allocation of Variation (Cont)

 \Box The sum of squared errors without regression would be:

$$
\sum_{i=1}^n (y_i - \bar{y})^2
$$

 $\boldsymbol{\eta}$

 \Box This is called **total sum of squares** or (SST). It is a measure of *y*'s variability and is called **variation** of *y*. SST can be computed as follows:

$$
SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \left(\sum_{i=1}^{n} y_i^2\right) - n\bar{y}^2 = SSY - SS0
$$

 \Box Where, SSY is the sum of squares of *y* (or Σ y²). SS0 is the sum of squares of \bar{y} and is equal to $n\bar{y}^2$

Allocation of Variation (Cont) Allocation of Variation (Cont)

 \Box The difference between SST and SSE is the sum of squares explained by the regression. It is called SSR:

 $SSR = SST - SSE$

or

$$
SST = SSR + SSE
$$

 \Box The fraction of the variation that is explained determines the goodness of the regression and is called the coefficient of determination, R²:

$$
R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\text{SST} - \text{SSE}}{\text{SST}}
$$

©2010 Rai Jain www.raijain.

Allocation of Variation (Cont) Allocation of Variation (Cont)

 \Box The higher the value of \mathbb{R}^2 , the better the regression. $\mathrm{R}^2\!\!=\!\!1 \Rightarrow \mathrm{Perfect}\ \mathrm{fit}\ \mathrm{R}^2\!\!=\!\!0 \Rightarrow \mathrm{No}\ \mathrm{fit}$

Sample Correlation $(x, y) = R_{xy} = \frac{s_{xy}^2}{s_x s_y}$

 \Box Coefficient of Determination = {Correlation Coefficient (x,y) }² \Box Shortcut formula for SSE:

$$
\text{SSE} = \Sigma y^2 - b_0 \Sigma y - b_1 \Sigma xy
$$

Example 14.2 Example 14.2

□ For the disk I/O-CPU time data of Example 14.1:

$$
SSE = \sum y^2 - b_0 \sum y - b_1 \sum xy
$$

= 828 + 0.0083 × 66 - 0.2438 × 3375 = 5.87

$$
SST = SSY - SS0 = \sum y^2 - n(\bar{y})^2
$$

$$
= 828 - 7 \times (9.43)^2 = 205.71
$$

$$
SSR = SST - SSE = 205.71 - 5.87 = 199.84
$$

$$
R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{199.84}{205.71} = 0.9715
$$

□ The regression explains 97% of CPU time's variation.

Standard Deviation of Errors Standard Deviation of Errors

 \Box Since errors are obtained after calculating two regression parameters from the data, errors have *n-2* degrees of freedom

$$
s_e = \sqrt{\frac{\text{SSE}}{n-2}}
$$

- \Box SSE/*(n-2)* is called **mean squared errors** or (MSE).
- \Box Standard deviation of errors = square root of MSE.
- SSY has *ⁿ* degrees of freedom since it is obtained from *ⁿ* independent observations without estimating any parameters.
- **□** SS0 has just one degree of freedom since it can be computed simply from \bar{y}
- **□** SST has *n-1* degrees of freedom, since one parameter must be calculated from the data before SST can be computed.

02010 Raj Jain www.rajjain.co

Standard Deviation of Errors (Cont) Standard Deviation of Errors (Cont)

- **□ SSR, which is the difference between SST and SSE,** has the remaining one degree of freedom.
- **□** Overall,

$$
\begin{array}{rclclclclcl} \mathrm{SST} & = & \mathrm{SSY} & - & \mathrm{SS0} & = & \mathrm{SSR} & + & \mathrm{SSE} \\ n-1 & = & n & - & 1 & = & 1 & + & (n-2) \end{array}
$$

□ Notice that the degrees of freedom add just the way the sums of squares do.

©2010 Rai Jain www.raijain.

Example 14.3 Example 14.3 □ For the disk I/O-CPU data of Example 14.1, the degrees of freedom of the sums are: $SS: SST = SSY - SSO = SSR + SSE$ $205.71 = 828 - 622.29 = 199.84 + 5.87$ DF: 6 = 7 - 1 = 1 + 5 **The mean squared error is:** $MSE = \frac{SSE}{DF for Errors} = \frac{5.87}{5} = 1.17$ **The standard deviation of errors is:** $s_e = \sqrt{\text{MSE}} = \sqrt{1.17} = 1.08$

Confidence Intervals for Regression Confidence Intervals for Regression Params

Q Regression coefficients b_0 and b_1 are estimates from a single sample of size $n \Rightarrow$ Random

 \Rightarrow Using another sample, the estimates may be different. If β_0 and β_1 are true parameters of the population. That is,

$$
y = \beta_0 + \beta_1 x
$$

0 \Box Computed coefficients b_0 and b_1 are estimates of β_0 and β_1 , respectively.

$$
s_{b_0} = s_e \left[\frac{1}{n} + \frac{\bar{x}^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}
$$

$$
s_{b_1} = \frac{s_e}{[\Sigma x^2 - n\bar{x}^2]^{1/2}}
$$

©2010 Rai Jain www.rajiain.

Confidence Intervals (Cont) Confidence Intervals (Cont)

 \Box **The 100(1-α)% confidence intervals for b₀ and b₁ can be be** computed using $t_{[1-\alpha/2; n-2]}$ --- the 1- $\alpha/2$ quantile of a t variate with n-2 degrees of freedom. The confidence intervals are:

$$
b_0 \mp t s_{b_0}
$$

And

$$
b_1\mp ts_{b_1}
$$

 \Box If a confidence interval includes zero, then the regression parameter cannot be considered different from zero at the at $100(1-\alpha)\%$ confidence level.

Example 14.4 Example 14.4

 \Box For the disk I/O and CPU data of Example 14.1, we have n=7, \bar{x} =38.71, Σx^2 =13,855, and s_e=1.0834.

 \Box \Box Standard deviations of b_0 and b_1 are:

$$
s_{b_0} = s_e \left[\frac{1}{n} + \frac{\bar{x}^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}
$$

= $1.0834 \left[\frac{1}{7} + \frac{(38.71)^2}{13,855 - 7 \times 38.71 \times 38.71} \right]^{1/2} = 0.8311$

$$
s_{b_1} = \frac{s_e}{\left[\Sigma x^2 - n\bar{x}^2 \right]^{1/2}}
$$

= $\frac{1.0834}{\left[13,855 - 7 \times 38.71 \times 38.71 \right]^{1/2}} = 0.0187$

Example 14.4 (Cont) Example 14.4 (Cont)

- From Appendix Table A.4, the 0.95-quantile of a *t*-variate with 5 degrees of freedom is 2.015. \Rightarrow 90% confidence interval for b₀ is: $=$ $(-1.6830, 1.6663)$ Since, the confidence interval includes zero, the hypothesis that \Box this parameter is zero cannot be rejected at 0.10 significance level. \Rightarrow b_0 is essentially zero. **90% Confidence Interval for b₁** is: $= (0.2061, 0.2814)$
- \Box Since the confidence interval does not include zero, the slope b_1 is significantly different from zero at this confidence level.

Case Study 14.1: Remote Procedure Call Case Study 14.1: Remote Procedure Call

Case Study 14.1 (Cont) Case Study 14.1 (Cont)

Best linear models are:

Time on UNIX $=$ 0.030 (Data size in bytes) + 24 Time on ARGUS $=$ 0.034 (Data size in bytes) + 30

□ The regressions explain 81% and 75% of the variation, respectively.

Does ARGUS takes larger time per byte as well as a larger set up time per call than UNIX?

 \Box Intervals for intercepts overlap while those of the slopes do not. \Rightarrow Set up times are not significantly different in the two systems while the per byte times (slopes) are different.

Confidence Intervals for Predictions Confidence Intervals for Predictions

 $\hat{y}_p = b_0 + b_1 x_p$

 \Box This is only the mean value of the predicted response. Standard deviation of the mean of a future sample of m observations is:

$$
s_{\hat{y}_{mp}} = s_e \left[\frac{1}{m} + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}
$$

 \Box m = 1 \Rightarrow Standard deviation of a single future observation:

$$
s_{\hat{y}_{1p}} = s_e \left[1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}
$$

CI for Predictions (Cont) CI for Predictions (Cont)

 \Box m = ∞ \Rightarrow Standard deviation of the mean of a large number of future observations at x_p :

$$
s_{\hat{y}_p} = s_e \left[\frac{1}{n} + \frac{(x_p - \bar{x})^2}{\Sigma x^2 - n\bar{x}^2} \right]^{1/2}
$$

 \Box 100(1- α)% confidence interval for the mean can be constructed using a t quantile read at *n-2* degrees of freedom.

CI for Predictions (Cont) CI for Predictions (Cont)

Q Goodness of the prediction decreases as we move away from the center.

Example 14.5 Example 14.5

□ Using the disk I/O and CPU time data of Example 14.1, let us estimate the CPU time for a program with 100 disk I/O's.

```
CPU time = -0.0083 + 0.2438(Number of disk I/O's)
```
□ For a program with 100 disk I/O's, the mean CPU time is:

 CPU time $= -0.0083 + 0.2438(100) = 24.3674$

Standard deviation of errors $s_e = 1.0834$

Example 14.5 (Cont) Example 14.5 (Cont)

 \Box The standard deviation of the predicted mean of a large number of observations is:

$$
s_{\hat{y}_p} = 1.0834 \left[\frac{1}{7} + \frac{(100 - 38.71)^2}{13,855 - 7(38.71)^2} \right]^{1/2} = 1.2159
$$

 \Box From Table A.4, the 0.95-quantile of the t-variate with 5 degrees of freedom is 2.015.

 \Rightarrow 90% CI for the predicted mean

$$
= 24.3674 \pm (2.015)(1.2159)
$$

= (21.9174, 26.8174)

©2010 Rai Jain www.raijain.

Example 14.5 (Cont) Example 14.5 (Cont)

O CPU time of a single future program with 100 disk I/O's:

$$
s_{\hat{y}_{1p}} = 1.0834 \left[1 + \frac{(100 - 38.71)^2}{13,855 - 7(38.71)^2} \right]^{1/2} = 1.6286
$$

Q 90% CI for a single prediction:

$$
= 24.3674 \pm (2.015)(1.6286)
$$

= (21.0858, 27.6489)

Visual Tests for Regression Assumptions Visual Tests for Regression Assumptions

Regression assumptions:

- 1. The true relationship between the response variable *y* and the predictor variable *^x* is linear.
- 2. The predictor variable *^x* is non-stochastic and it is measured without any error.
- 3. The model errors are statistically independent.
- 4. The errors are normally distributed with zero mean and a constant standard deviation.

1. Linear Relationship: Visual Test 1. Linear Relationship: Visual Test

 \Box Scatter plot of y versus $x \Rightarrow$ Linear or nonlinear relationship

2. Independent Errors: Visual Test 2. Independent Errors: Visual Test

1. Scatter plot of $\varepsilon_{\rm i}$ versus the predicted response

©2010 Rai Jain www.rajiain.

Independent Errors (Cont) Independent Errors (Cont)

2. Plot the residuals as a function of the experiment number

3. Normally Distributed Errors: Test 3. Normally Distributed Errors: Test

P Prepare a normal quantile-quantile plot of errors. Linear \Rightarrow the assumption is satisfied.

3. Linear normal quantile-quantile plot \Rightarrow Larger deviations at lower values but all values are small

- **Terminology:** Simple Linear Regression model, Sums of Squares, Mean Squares, degrees of freedom, percent of variation explained, Coefficient of determination, correlation coefficient
- **□** Regression parameters as well as the predicted responses have confidence intervals
- \Box It is important to verify assumptions of linearity, error independence, error normality \Rightarrow Visual tests

Exercise 14.7 Exercise 14.7

 \Box The time to encrypt a *k* byte record using an encryption technique is shown in the following table. Fit a linear regression model to this data. Use visual tests to verify the regression assumptions.

Exercise 2.1 Exercise 2.1

T From published literature, select an article or a report that presents results of a performance evaluation study. Make a list of good and bad points of the study. What would you do different, if you were asked to repeat the study?

Homework Homework

- Read Chapter 14
- **□** Submit answers to exercise 14.7
- **Submit answer to exercise 2.1**