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OverviewOverview

1. Definition of a Good Model
2. Estimation of Model parameters
3. Allocation of Variation
4. Standard deviation of Errors
5. Confidence Intervals for Regression Parameters
6. Confidence Intervals for Predictions
7. Visual Tests for verifying Regression Assumption
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Simple Linear Regression ModelsSimple Linear Regression Models

Regression Model: Predict a response for a given set 
of predictor variables.
Response Variable: Estimated variable
Predictor Variables: Variables used to predict the 
response. predictors or factors
Linear Regression Models: Response is a linear 
function of predictors. 
Simple Linear Regression Models: 
Only one predictor
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Definition of a Good ModelDefinition of a Good Model
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Good Model (Cont)Good Model (Cont)

Regression models attempt to minimize the distance 
measured vertically  between the observation point 
and the model line (or curve).
The length of the line segment is called residual, 
modeling error, or simply error. 
The negative and positive errors should cancel out 
⇒ Zero overall error 
Many lines will satisfy this criterion.
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Good Model (Cont)Good Model (Cont)
Choose the line that minimizes the sum of squares of 
the errors. 

where,     is the predicted response when the 
predictor  variable is x. The parameter b0 and b1 are 
fixed regression parameters to be determined from the 
data.
Given n observation pairs {(x1, y1), …,  (xn, yn)}, the 
estimated response     for the ith observation is:

The error is:
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Good Model (Cont)Good Model (Cont)

The best linear model minimizes the sum of squared 
errors (SSE):

subject to the constraint that the mean error is zero:

This is equivalent to minimizing the variance of errors   
(see Exercise).
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Estimation of Model ParametersEstimation of Model Parameters

Regression parameters that give minimum error 
variance are:

where,

and
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Example 14.1Example 14.1

The number of disk  I/O's and processor times of 
seven programs were measured as: (14, 2), (16, 5), 
(27, 7), (42, 9), (39, 10), (50, 13),  (83, 20)
For this data: n=7, Σ xy=3375, Σ x=271, Σ x2=13,855,  
Σ y=66, Σ y2=828,    = 38.71,    = 9.43. Therefore,

The desired linear model is:
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Example 14.1 (Cont)Example 14.1 (Cont)
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Example 14. (Cont)Example 14. (Cont)

Error Computation
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Derivation of Regression ParametersDerivation of Regression Parameters

The error in the ith observation is:

For a sample of n observations, the mean error is:

Setting mean error to zero, we obtain:

Substituting b0 in the error expression, we get:
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Derivation of Regression Parameters (Cont)Derivation of Regression Parameters (Cont)

The sum of squared errors SSE is:
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Derivation (Cont)Derivation (Cont)

Differentiating this equation with respect to b1 and 
equating the result to zero:

That is,
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Allocation of VariationAllocation of Variation
Error variance without Regression = Variance of the response

and
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Allocation of Variation (Cont)Allocation of Variation (Cont)
The sum of squared errors without regression would be:

This is called total sum of squares or (SST).  It is a measure of 
y's variability and is called variation of y.  SST can be 
computed as follows:

Where, SSY is the sum of squares of y (or Σ y2). SS0 is the sum 
of squares of    and is equal to       .
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Allocation of Variation (Cont)Allocation of Variation (Cont)
The difference between SST and SSE is the sum of squares 
explained by the regression. It is called SSR:

or

The fraction of the variation that is explained determines  the 
goodness of the regression and is called the coefficient of  
determination, R2:
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Allocation of Variation (Cont)Allocation of Variation (Cont)
The higher the value of R2, the better the regression. 
R2=1 ⇒ Perfect fit R2=0 ⇒ No fit

Coefficient of Determination = {Correlation Coefficient (x,y)}2

Shortcut formula for SSE:
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Example 14.2Example 14.2
For the disk I/O-CPU time data of Example 14.1:

The regression explains 97% of CPU time's variation. 



14-20
©2010 Raj Jain www.rajjain.com

Standard Deviation of ErrorsStandard Deviation of Errors
Since errors are obtained after calculating two regression 
parameters from the data, errors have n-2 degrees of freedom

SSE/(n-2) is called mean squared errors or (MSE). 
Standard deviation of errors = square root of MSE. 
SSY has n degrees of freedom since it is obtained from n
independent observations without  estimating any parameters.
SS0 has just one degree of freedom since it can be computed 
simply from       
SST has n-1 degrees of freedom, since one parameter 
must be calculated from the data before SST can be computed. 
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Standard Deviation of Errors (Cont)Standard Deviation of Errors (Cont)

SSR, which is the difference between SST and SSE, 
has the remaining  one degree of freedom.
Overall,

Notice that the degrees of freedom add just the way 
the sums of squares do. 
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Example 14.3Example 14.3

For the disk I/O-CPU data of Example 14.1, the 
degrees of freedom of the sums are:

The mean squared error is:

The standard deviation of errors is:
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Confidence Intervals for Regression Confidence Intervals for Regression ParamsParams

Regression coefficients b0 and b1 are estimates  from a single 
sample of size n ⇒ Random 
⇒ Using another sample, the estimates may be different.  If β0

and β1 are true parameters of the population. That is,

Computed coefficients b0 and b1 are estimates of β0 and β1, 
respectively. 
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Confidence Intervals (Cont)Confidence Intervals (Cont)

The 100(1-α)% confidence intervals for b0 and  b1 can be  be 
computed using t[1-α/2; n-2] --- the 1-α/2 quantile of a t variate
with n-2 degrees of freedom.   The confidence intervals are:

And

If a confidence interval includes zero, then the regression  
parameter cannot be considered different from zero at the at 
100(1-α)% confidence level. 
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Example 14.4Example 14.4
For the disk I/O and CPU data of Example 14.1, we have n=7,    
=38.71,         =13,855, and se=1.0834.   
Standard deviations of b0 and b1 are:
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Example 14.4 (Cont)Example 14.4 (Cont)
From Appendix Table A.4, the 0.95-quantile of a t-variate with 
5 degrees  of freedom is 2.015.  
⇒ 90% confidence interval for b0 is:

Since, the confidence interval includes zero, the hypothesis that 
this parameter is zero cannot be rejected at 0.10 significance 
level. ⇒ b0 is essentially zero.
90% Confidence Interval for b1 is:

Since the confidence interval does not include zero, the slope 
b1 is significantly different from zero at  this confidence level.
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Case Study 14.1: Remote Procedure CallCase Study 14.1: Remote Procedure Call
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Case Study 14.1 (Cont)Case Study 14.1 (Cont)

UNIX:
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Case Study 14.1 (Cont)Case Study 14.1 (Cont)

ARGUS:
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Case Study 14.1 (Cont)Case Study 14.1 (Cont)

Best linear models are:

The regressions explain 81% and 75% of the 
variation, respectively.
Does ARGUS takes larger time per byte as well as a 
larger set up time per call than UNIX?
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Case Study 14.1 (Cont)Case Study 14.1 (Cont)

Intervals for intercepts overlap while those of the slopes do not. 
⇒ Set up times are not significantly different in the two 
systems while the per byte times (slopes) are different.  
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Confidence Intervals for PredictionsConfidence Intervals for Predictions

This is only the mean value of the predicted response. Standard 
deviation of the mean of a future sample of m observations is:

m =1 ⇒ Standard deviation of a single future observation:
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CI for Predictions (Cont)CI for Predictions (Cont)

m = ∞⇒ Standard deviation of the mean of a large 
number of future observations at xp:

100(1-α)% confidence interval for the mean can be 
constructed  using a t quantile read at n-2 degrees of 
freedom.  
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CI for Predictions (Cont)CI for Predictions (Cont)

Goodness of the prediction decreases as we move 
away from the center.
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Example 14.5Example 14.5

Using the disk I/O and CPU time data of Example 
14.1, let us estimate the CPU time  for a program with 
100 disk I/O's. 

For a program with 100 disk I/O's, 
the mean CPU time is:
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Example 14.5 (Cont)Example 14.5 (Cont)
The standard deviation of the predicted mean of a large number 
of observations is:

From Table A.4, the 0.95-quantile of the t-variate with  5 
degrees of freedom is 2.015.
⇒ 90% CI for the predicted mean
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Example 14.5 (Cont)Example 14.5 (Cont)

CPU time of a single future  program with 100 disk 
I/O's:

90% CI for a single prediction:
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Visual Tests for Regression AssumptionsVisual Tests for Regression Assumptions

Regression assumptions:
1. The true relationship between the response variable y

and the predictor variable x is linear.
2. The predictor variable x is non-stochastic and it is 

measured without any error.
3. The model errors are statistically independent.
4. The errors are normally distributed with zero mean 

and a constant standard deviation.
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1. Linear Relationship: Visual Test1. Linear Relationship: Visual Test
Scatter plot of y versus x ⇒ Linear or nonlinear relationship
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2. Independent Errors: Visual Test2. Independent Errors: Visual Test
1.  Scatter plot of εi versus the predicted response

All tests for independence simply try to find dependence.
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Independent Errors (Cont)Independent Errors (Cont)
2. Plot the residuals as a function of the  experiment number
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3. Normally Distributed Errors: Test3. Normally Distributed Errors: Test
Prepare a normal quantile-quantile plot of errors.  
Linear ⇒ the assumption is satisfied.
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4. Constant Standard Deviation of Errors4. Constant Standard Deviation of Errors
Also known as homoscedasticity

Trend ⇒ Try curvilinear regression or transformation
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Example 14.6Example 14.6
For the disk I/O and CPU time data of Example 14.1

1. Relationship is linear
2. No trend in residuals ⇒ Seem independent
3. Linear normal quantile-quantile plot ⇒ Larger deviations at 

lower values but all values are small

Number of disk I/Os Predicted Response Normal Quantile
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Example 14.7: RPC PerformanceExample 14.7: RPC Performance

1. Larger errors at larger responses
2. Normality of errors is questionable

Predicted Response Normal Quantile
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SummarySummary

Terminology: Simple Linear Regression model, Sums of 
Squares, Mean Squares, degrees of freedom, percent of 
variation explained, Coefficient of determination, correlation 
coefficient
Regression parameters as well as the predicted responses have 
confidence intervals
It is important to verify assumptions of linearity, error 
independence, error normality ⇒ Visual tests
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Exercise 14.7Exercise 14.7
The time to encrypt a k byte record using an encryption 
technique is shown in the following table. Fit a linear 
regression model to this data. Use visual tests to verify the 
regression assumptions. 
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Exercise 2.1Exercise 2.1

From published literature, select an article or a report 
that presents results of a performance evaluation 
study. Make a list of good and bad points of the study. 
What would you do different, if you were asked to 
repeat the study?
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HomeworkHomework

Read Chapter 14
Submit answers to exercise 14.7
Submit answer to exercise 2.1


