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Introduction

» “Resources” that are controlled by or regulated by society are
scarce; often cannot rely on market mechanisms
» Shelter beds and services for homeless households
» Organs for transplantation
» Public school spaces, ...
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Introduction

» “Resources” that are controlled by or regulated by society are
scarce; often cannot rely on market mechanisms
» Shelter beds and services for homeless households
» Organs for transplantation
» Public school spaces, ...
» How can we best allocate these resources to those who need
them? Complex problem — we must (at least):
» Predict outcomes
» Consider preferences and incentives
» Define objectives (efficiency, equity, justice/fairness)
» Today: Two case studies
» Living donor kidney transplantation

> (With Zhuoshu Li, Sofia Carrillo, William Macke, Kelsey
Lieberman, Chien-Ju Ho, and Jason Wellen)

» Homelessness services
> (With Amanda Kube and Patrick Fowler)
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Case Study 1: Living Donor Kidney Transplantation

» About 100,000 people waiting for kidney transplants in the
US (2016)

» About, 19,500 kidney transplants in recent years, ~ 5500
from living donors

» Unfortunately, willing living donors are often not medically
compatible.

» One option for them is to enter a kidney exchange program
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Kidney Exchange
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Kidney Exchange in Practice

Problems

» A raft of coordination problems

» Exchange fragmentation

Parts of the solution
» More pooling of pairs (national/international exchanges)
» Desensitization / ABO incompatible transplants

» Today: Incorporate compatible pairs into exchanges
(Gentry et al., 2007)
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Incorporating Compatible Pairs

» Why would a compatible pair want to enter the exchange?
(cf. (Anshelevich, Das, and Naamad, 2013))
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Measuring Match Quality: LKDPI (Massie et al., 2016)

LKDPI Score:

9

This model calculates a risk score for a recipient of a potential live donor kidney.

Live Donor Characteristics:

Donor age: 43
Donor sex: male
Recipient sex: female
Donor eGFR: 95
Donor SBP: 130
Donor BMI: 24
Donor is African-American: No

Donor history of cigarette use: No
Donor and recipient biologically
related:

Donor and recipient are ABO
incompatible:

Yes
No

Donor/Recipient Weight Ratio: 0.90 or higher

0|0|0|0|0|0|0|0|0|0|0|0O

Donor and recipient HLA-B
mismatches:

Donor and recipient HLA-DR -

1
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From LKDPI to Graft Survival

» Expected graft survival: estimated as a function of LKDPI
14.78e—0-01230LKDPI
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Single Center Analysis

» De-identified data from 2014 - 2016
< All donor and recipient characteristics for calculating LKDPI

25 Expected graft survival distribution 10 LKDPI distribution
BN Optimal with constraint
B Two&Three-cycle Swap
W Original

BN Optimal with constraint
B Two&Three-cycle Swap 2
e Original

Frequency
Frequency

0
4 6 8 10 12 14 16 18 20 0 20 40
Expected graft survival LKDI

60 80 100

deceased donor
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Heterogeneity of Match Quality

166 dataset

LKDPI LKDPI LKDPI
original | 2&3 swap | Optimal
Original | 5715 | 2550 22.46
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Heterogeneity of Match Quality

the whole matrix

LKDPI LKDPI LKDPI
original | 2&3 swap | Optimal
Original
166 dataset 3r.15 25.50 22.46
Sample from 10,51 > 67 e
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Heterogeneity of Match Quality

per recipient

LKDPI LKDPI LKDPI
original | 2&3 swap | Optimal
Original
166 dataset 37.15 25.50 22.46
Sample from |, o) 2.67 25
the whole matrix
Shuffle all donors 40.9 411 0.47
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Heterogeneity of Match Quality

per donor

LKDPI LKDPI LKDPI
original | 2&3 swap | Optimal
Original
166 dataset 37.15 25.50 22.46
Sample from |, o) 2.67 25
the whole matrix
Shuffle all donors |-y 95 | 41 -0.47
per recipient
Shuffle all recipients 40.70 20.6 15.49
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Heterogeneity of Match

Quality

LKDPI LKDPI LKDPI
original | 2&3 swap | Optimal
Original
166 dataset 37.15 25.50 22.46
Sample from | o 2.67 25
the whole matrix
Shuffle all donors | 05 1 4 43 -0.47
per recipient
Shuffle all recipients 40.70 20.6 15.49
per donor

Takeaway: Largely donor driven, but with some pairwise

idiosyncracies
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Simulator

» To analyze the effects of policy changes, we need a faithful
simulation of the real process
» Basic simulator model:

o Generate LKDPI-related characteristics to measure expected
graft survival

o Compatibility based on the simulator from Saidman et al.
(2006)
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Simulator: Initial Assessment

our simulator

LKDPI LKDPI LKDPI
original | 2&3 swap | Optimal
Original
166 dataset 37.15 25.50 22.46
Sample from 1 o 2.67 25
the whole matrix
Shuffle al! qonors 40.92 411 0.47
per recipient
Shuffle all recipients 40.70 20.6 15.49
per donor
Sample from 3021 | 2450 | 20.09
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Including Compatible Pairs in Kidney Exchange

> Including compatible pairs to thicken the exchange with
incompatible pairs

¢ Increase in the number of matches for incompatible pairs

(quantity)
¢ Increase in the expected graft survival for compatible pairs

(quality)
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Batch Optimization

» Simulated population: Any size
o Compatible & incompatible pairs
¢ Expected graft survival graph
» Optimization goal
© Sum of expected graft survivals:
A-D, B-C
¢ Expected number of matches:
A-D, B, C-E

Incompatible pair
Compatible pair
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Batch Optimization Results

» Increase in number of matches for incompatible pairs

(quantity)
Without With
compatible | compatible
Size of pool: 50 (25+25) 33% 64%
Size of pool: 100 (50+50) 40% 76%
Size of pool: 1000 (500+500) 53% 95%
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Batch Optimization Results

» Increase in number of matches for incompatible pairs

(quantity)
Without With
compatible | compatible
Size of pool: 50 (25+25) 33% 64%
Size of pool: 100 (50+50) 40% 76%
Size of pool: 1000 (500+500) 53% 95%

> Increase in expected graft survival for compatible pairs

(quality)

EGS of compatible pairs!

Max expected survival

2.04 - 2.36

Max # of matched pairs

1.20 - 1.59

"Whose assignments changed
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Dynamic Matching

» Compatible pairs may not be willing to wait any longer than
necessary

» Also debate in the literature about the value of patience
regardless (Akbarpour, S. Li, and Oveis Gharan, 2017; Ashlagi
et al., 2017; Z. Li et al., 2018)

» New model: Impatient compatible pairs and a pool of patient
incompatible pairs
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Hybrid Static-Dynamic Matching Model

Standby agents (Incompatible pool)
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Online agent (Compatible pair) \.
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Hybrid Static-Dynamic Matching Model

Standby agents (Incompatible pool)
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Online agent (Compatible pair)
t=3
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Hybrid Static-Dynamic Matching Model

Standby agents (Incompatible pool)
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Hybrid Static-Dynamic Matching Model

Standby agents (Incompatible pool)
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An Oracle for 2-Matching

> w's: weights; x's:
match variables.
» When i =0, x50

NI represents a
max ZZ Wp,iXn,i self-match of agent n.
n=1i=0 » When i > 0 and

n < T, xn; represents
a match between
online n and standby

I
s.t. ZX”J <1,Vne|[T]

i=0

N I :

' o . )

;g;xm'+_;£;XT+“"‘l’v'e T, When i >0 and
n> T, x,; represents
a match between
standby j=n—T
and standby 7

xn,i € {0,1},¥n € [N],Vi € [I]*
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Dual Formulation and the ODASSE Algorithm

T I
min Zat—i—ZB;
t=1 i=0
st. wei—ar— B <0, Vte[T],iell]
Weyji — B — Bi < 0,Vie[l],jell]
ataﬁi > Oth € [T],IE [I]

Bo=0

> «y, i can be interpreted as estimated values (shadow survival
estimates) of compatible pairs and incompatible pairs
respectively.
» Given optimal 3; we can derive the online assignment rule
i* = argmax;{wy,; — B} } (Online Dual Assignment Using
Shadow Survival Estimates).
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Estimating 3/

» Run many simulations and get 3; values
» Train a linear model on
» Demographic information of an incompatible pair
» Initial graph state of incompatible pairs (5; value when solving
the dual on just the incompatible pool).

» Predicted vs. true 8* values.

301

[y}
(e}

Predicted B
S
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Results
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Results

Total expected graft survival by algorithm
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Original | Greedy | ODASSE | Oracle
53% 61% 2% 76%

Matched proportion
of incompatible pairs

Expected graft survival
of compatible pairs
Expected graft survival
of incompatible pairs

9.65 11.13 11.16 11.39

10.32 9.75 9.80 9.99
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Results: Disadvantaged Populations
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Results: Disadvantaged Populations
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Overall benefits (compared with no compatibles) are
disproportionately good for Type O, and proportional for High
PRA patients.
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Discussion

» Quantifying benefits allows us to think about a richer
mechanism that includes compatible pairs in exchanges.

> We estimate substantial benefits in terms of number of
incompatible pairs matched and increase in graft survival for
compatible pairs.
» Methodological directions:
» A model with real weights for weighted matching algorithms to
work on!
> A new hybrid static-dynamic matching model.
» Online primal-dual + learning algorithm
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Case Study 2: Homelessness Services

» More than 1.4 million people used services in the US in 2016
» System struggles to keep up with demand
> Yet, limited assessment of efficacy of allocations

¢ — &
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ije‘\

Emergency Homelessness
Shelters Prevention
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Improving Allocations Using Counterfactual Predictions

» Idea: Personalized intervention / resource allocation

» Estimate how well a household would have done if allocated
to one of several different possible interventions

» Measure: Probability of re-entry within two years of exit
» Need: Causal / counterfactual prediction
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Improving Allocations Using Counterfactual Predictions

» Idea: Personalized intervention / resource allocation

» Estimate how well a household would have done if allocated
to one of several different possible interventions

» Measure: Probability of re-entry within two years of exit
» Need: Causal / counterfactual prediction

> We use detailed demographic and assessment data from 58
different homeless agencies in a major metro area.

» Use an ensemble method called BART to estimate
counterfactual probabilities of re-entry (Chipman, George,
McCulloch, et al., 2010; Hill, 2011)

» Optimize allocations on a weekly basis
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Data

’ Service Type Number Assigned | Percent Reentered
Emergency Shelter 2897 56.20
Transitional Housing 1927 40.22
Rapid Rehousing 589 53.48
Homelessness Prevention 2061 24.16
Total 7474 43.03
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Data

’ Service Type

Number Assigned

Percent Reentered

Emergency Shelter 2897 56.20
Transitional Housing 1927 40.22
Rapid Rehousing 589 53.48
Homelessness Prevention 2061 24.16
Total 7474 43.03
[ Type [ Number [ Examples ]

Binary 3 Gender, Spouse Present, HUD Chronic Homeless

Other Categorical 61 Veteran, Disabling Condition, Substance Abuse

Continuous 4 Age, Income, Calls to Hotline, Duration of Wait

Total Features 68
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Optimal Allocation

Optimization Problem

) » x;i: whether or not household
n?(;.n ZZPUX’J i is placed in intervention j
J

' > pj: probability of household i
reentering if they are placed
in intervention j

J
inj <G Vv » C;: capacity of intervention j
i

subject to Zx,-j =1 Vi

29 /34



Optimal Allocation

Optimization Problem

) » x;i: whether or not household
nyjn ZZPUX’J i is placed in intervention j
i . .
> pjj: probability of household i
reentering if they are placed

in intervention j

J
inj <G Vv » C;: capacity of intervention j
i

subject to Zx,-j =1 Vi

Results

> We estimate capacities and re-allocate among interventions
weekly (for 166 weeks).

» Reduces number of re-entries from 2193 households (43.04%)
to 1624 in expectation (31.88%) — a 27.08% reduction!
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Optimal Allocation

Optimization Problem

) » x;i: whether or not household
nyjn ZZPUX’J i is placed in intervention j
i . .
> pjj: probability of household i
reentering if they are placed

in intervention j

J
inj <G Vv » C;: capacity of intervention j
i

subject to Zx,-j =1 Vi

Results
> We estimate capacities and re-allocate among interventions
weekly (for 166 weeks).

» Reduces number of re-entries from 2193 households (43.04%)
to 1624 in expectation (31.88%) — a 27.08% reduction!

» BART predicts 2227 re-entries out-of-sample, so empirically
relatively unbiased.
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Fairness
The optimal allocation hurts as many households as it helps, it just
helps more overall
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Who is Helped and Hurt?

> We use machine learning techniques to learn whether a
household is likely to be helped or hurt in the new allocation.

» Then find the features that are most predictive and analyze
them
» The optimal allocation seems to help households that are
more in need:
» Lower monthly incomes

» Longer waits and more calls to the hotline before being placed
» More substance abuse problems
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Fairness Constraints

» Allocations may be because of policy constraints
» E.g. require prioritization of those fleeing domestic abuse
» We can require the allocation to not hurt anyone more than a
small percentage in expectation
» Add a constraint

>

> pixi <> piyi +0.05Vi
j j

> y; represents whether or not household i was originally placed
in intervention j
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“Fairer” Allocation

» Now 1904 households (37.38%) reenter the system within two
years.
» Higher than the optimized allocation without the constraint,
but still a 14.66% decrease
> Less room for improvement under constraints
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Looking Forward

» Homelessness system itself

» Different constraints (confidence in counterfactual?)

» Online matching!

» Richer sets of resources for allocation (counseling, beds, cash
transfers, etc)?

» Plan for paths through the system (shelter — transitional
housing, e.g.)
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Looking Forward

» Homelessness system itself
» Different constraints (confidence in counterfactual?)
» Online matching!
» Richer sets of resources for allocation (counseling, beds, cash
transfers, etc)?
» Plan for paths through the system (shelter — transitional
housing, e.g.)
» Bigger picture:
» Getting the conversation started
» How can we use data and Al in the service of efficiency, equity,
and justice in society?
» Interplay between (dynamic) optimization and prediction,
combined with consideration of long-run incentives is key
» Ethical and systemic issues must be primary
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