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Introduction

I “Resources” that are controlled by or regulated by society are
scarce; often cannot rely on market mechanisms

I Shelter beds and services for homeless households
I Organs for transplantation
I Public school spaces, . . .

I How can we best allocate these resources to those who need
them? Complex problem – we must (at least):

I Predict outcomes
I Consider preferences and incentives
I Define objectives (efficiency, equity, justice/fairness)

I Today: Two case studies
I Living donor kidney transplantation

I (With Zhuoshu Li, Sofia Carrillo, William Macke, Kelsey
Lieberman, Chien-Ju Ho, and Jason Wellen)

I Homelessness services
I (With Amanda Kube and Patrick Fowler)
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Case Study 1: Living Donor Kidney Transplantation

I About 100, 000 people waiting for kidney transplants in the
US (2016)

I About, 19, 500 kidney transplants in recent years, ∼ 5500
from living donors

I Unfortunately, willing living donors are often not medically
compatible.

I One option for them is to enter a kidney exchange program

3 / 34



Kidney Exchange
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Kidney Exchange in Practice

Problems

I A raft of coordination problems

I Exchange fragmentation

Parts of the solution

I More pooling of pairs (national/international exchanges)

I Desensitization / ABO incompatible transplants

I Today: Incorporate compatible pairs into exchanges
(Gentry et al., 2007)
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Incorporating Compatible Pairs

I Why would a compatible pair want to enter the exchange?
(cf. (Anshelevich, Das, and Naamad, 2013))
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Measuring Match Quality: LKDPI (Massie et al., 2016)
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From LKDPI to Graft Survival

I Expected graft survival: estimated as a function of LKDPI
14.78e−0.01239LKDPI
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Single Center Analysis

I De-identified data from 2014 - 2016

� All donor and recipient characteristics for calculating LKDPI
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Heterogeneity of Match Quality

LKDPI
original

LKDPI
2&3 swap

LKDPI
Optimal

Original
166 dataset

37.15 25.50 22.46
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Heterogeneity of Match Quality

LKDPI
original

LKDPI
2&3 swap

LKDPI
Optimal

Original
166 dataset

37.15 25.50 22.46

Sample from
the whole matrix

40.51 2.67 -2.5

Shuffle all donors
per recipient

40.92 4.11 -0.47

Shuffle all recipients
per donor

40.70 20.6 15.49

Takeaway: Largely donor driven, but with some pairwise
idiosyncracies
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Simulator

I To analyze the effects of policy changes, we need a faithful
simulation of the real process

I Basic simulator model:

� Generate LKDPI-related characteristics to measure expected
graft survival

� Compatibility based on the simulator from Saidman et al.
(2006)
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Simulator: Initial Assessment

LKDPI
original

LKDPI
2&3 swap

LKDPI
Optimal

Original
166 dataset

37.15 25.50 22.46

Sample from
the whole matrix

40.51 2.67 -2.5

Shuffle all donors
per recipient

40.92 4.11 -0.47

Shuffle all recipients
per donor

40.70 20.6 15.49

Sample from
our simulator

39.21 24.50 20.09
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Including Compatible Pairs in Kidney Exchange

I Including compatible pairs to thicken the exchange with
incompatible pairs

� Increase in the number of matches for incompatible pairs
(quantity)

� Increase in the expected graft survival for compatible pairs
(quality)
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Batch Optimization

Incompatible pair
Compatible pair

I Simulated population: Any size

� Compatible & incompatible pairs
� Expected graft survival graph

I Optimization goal

� Sum of expected graft survivals:
A-D, B-C

� Expected number of matches:
A-D, B, C-E
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Batch Optimization Results

I Increase in number of matches for incompatible pairs
(quantity)

Without
compatible

With
compatible

Size of pool: 50 (25+25) 33% 64%

Size of pool: 100 (50+50) 40% 76%

Size of pool: 1000 (500+500) 53% 95%

I Increase in expected graft survival for compatible pairs
(quality)

EGS of compatible pairs1

Max expected survival 2.04 - 2.36

Max # of matched pairs 1.20 - 1.59

1Whose assignments changed
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Dynamic Matching

I Compatible pairs may not be willing to wait any longer than
necessary

I Also debate in the literature about the value of patience
regardless (Akbarpour, S. Li, and Oveis Gharan, 2017; Ashlagi
et al., 2017; Z. Li et al., 2018)

I New model: Impatient compatible pairs and a pool of patient
incompatible pairs
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Hybrid Static-Dynamic Matching Model
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Hybrid Static-Dynamic Matching Model
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An Oracle for 2-Matching

max
N∑

n=1

I∑
i=0

wn,ixn,i

s.t.
I∑

i=0

xn,i ≤ 1,∀n ∈ [T ]

N∑
n=1

xn,i +
I∑

j=1

xT+i ,j ≤ 1,∀i ∈ [I ]

xn,i ∈ {0, 1},∀n ∈ [N],∀i ∈ [I ]∗

I w ’s: weights; x ’s:
match variables.

I When i = 0, xn,0
represents a
self-match of agent n.

I When i > 0 and
n ≤ T , xn,i represents
a match between
online n and standby
i .

I When i > 0 and
n > T , xn,i represents
a match between
standby j = n − T
and standby i
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Dual Formulation and the ODASSE Algorithm

min
T∑
t=1

αt +
I∑

i=0

βi

s.t. wt,i − αt − βi ≤ 0,∀t ∈ [T ], i ∈ [I ]∗

wt+j ,i − βj − βi ≤ 0, ∀i ∈ [I ], j ∈ [I ]

αt , βi ≥ 0, ∀t ∈ [T ], i ∈ [I ]

β0 = 0

I αt , βi can be interpreted as estimated values (shadow survival
estimates) of compatible pairs and incompatible pairs
respectively.

I Given optimal β∗i we can derive the online assignment rule
i∗ = argmaxi{wt,i − β∗i } (Online Dual Assignment Using
Shadow Survival Estimates).
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Estimating β∗i
I Run many simulations and get β∗i values
I Train a linear model on

I Demographic information of an incompatible pair
I Initial graph state of incompatible pairs (βi value when solving

the dual on just the incompatible pool).
I Predicted vs. true β∗ values.
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Results

Greedy ODASSE Oracle
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Total expected graft survival by algorithm

Original Greedy ODASSE Oracle

Matched proportion
of incompatible pairs

53% 61% 72% 76%

Expected graft survival
of compatible pairs

9.65 11.13 11.16 11.39

Expected graft survival
of incompatible pairs

10.32 9.75 9.80 9.99
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Results: Disadvantaged Populations
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Overall benefits (compared with no compatibles) are
disproportionately good for Type O, and proportional for High

PRA patients.
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Discussion

I Quantifying benefits allows us to think about a richer
mechanism that includes compatible pairs in exchanges.

I We estimate substantial benefits in terms of number of
incompatible pairs matched and increase in graft survival for
compatible pairs.

I Methodological directions:
I A model with real weights for weighted matching algorithms to

work on!
I A new hybrid static-dynamic matching model.
I Online primal-dual + learning algorithm
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Case Study 2: Homelessness Services

I More than 1.4 million people used services in the US in 2016

I System struggles to keep up with demand

I Yet, limited assessment of efficacy of allocations

Transi'onal	
Housing		

Rapid	Re-
housing		

Emergency	
Shelters		

Homelessness	
Preven'on		
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Improving Allocations Using Counterfactual Predictions

I Idea: Personalized intervention / resource allocation
I Estimate how well a household would have done if allocated

to one of several different possible interventions
I Measure: Probability of re-entry within two years of exit
I Need: Causal / counterfactual prediction

I We use detailed demographic and assessment data from 58
different homeless agencies in a major metro area.

I Use an ensemble method called BART to estimate
counterfactual probabilities of re-entry (Chipman, George,
McCulloch, et al., 2010; Hill, 2011)

I Optimize allocations on a weekly basis
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Data

Service Type Number Assigned Percent Reentered

Emergency Shelter 2897 56.20
Transitional Housing 1927 40.22

Rapid Rehousing 589 53.48
Homelessness Prevention 2061 24.16

Total 7474 43.03

Type Number Examples

Binary 3 Gender, Spouse Present, HUD Chronic Homeless
Other Categorical 61 Veteran, Disabling Condition, Substance Abuse

Continuous 4 Age, Income, Calls to Hotline, Duration of Wait
Total Features 68
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Optimal Allocation

Optimization Problem

min
xij

∑
i

∑
j

pijxij

subject to
∑
j

xij = 1 ∀i

∑
i

xij ≤ Cj ∀j

I xij : whether or not household
i is placed in intervention j

I pij : probability of household i
reentering if they are placed
in intervention j

I Cj : capacity of intervention j

Results

I We estimate capacities and re-allocate among interventions
weekly (for 166 weeks).

I Reduces number of re-entries from 2193 households (43.04%)
to 1624 in expectation (31.88%) – a 27.08% reduction!

I BART predicts 2227 re-entries out-of-sample, so empirically
relatively unbiased.
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Fairness
The optimal allocation hurts as many households as it helps, it just
helps more overall

Differences in probability of reentry between the original allocation and the optimal allocation
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Who is Helped and Hurt?

I We use machine learning techniques to learn whether a
household is likely to be helped or hurt in the new allocation.

I Then find the features that are most predictive and analyze
them

I The optimal allocation seems to help households that are
more in need:

I Lower monthly incomes
I Longer waits and more calls to the hotline before being placed
I More substance abuse problems
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Fairness Constraints

I Allocations may be because of policy constraints
I E.g. require prioritization of those fleeing domestic abuse

I We can require the allocation to not hurt anyone more than a
small percentage in expectation

I Add a constraint
I ∑

j

pijxij ≤
∑
j

pijyij + 0.05 ∀i

I yij represents whether or not household i was originally placed
in intervention j
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“Fairer” Allocation

I Now 1904 households (37.38%) reenter the system within two
years.

I Higher than the optimized allocation without the constraint,
but still a 14.66% decrease

I Less room for improvement under constraints

Differences in probability of reentry between the original allocation and the optimal allocation
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Looking Forward

I Homelessness system itself
I Different constraints (confidence in counterfactual?)
I Online matching!
I Richer sets of resources for allocation (counseling, beds, cash

transfers, etc)?
I Plan for paths through the system (shelter → transitional

housing, e.g.)

I Bigger picture:
I Getting the conversation started
I How can we use data and AI in the service of efficiency, equity,

and justice in society?
I Interplay between (dynamic) optimization and prediction,

combined with consideration of long-run incentives is key
I Ethical and systemic issues must be primary
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