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CLOUD COMPUTING
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Current estimate is that 94% of all computation
will be performed “in the cloud” by 2021

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html


CLOUD COMPUTING
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Rent resources to
users



WHY IS CLOUD COMPUTING
ATTRACTIVE
• From the user’s perspective

• Don’t need to purchase own machines
• Don’t need to maintain infrastructure

• Power/cooling/maintenance
• Lower IT costs

• Dynamically scale resources based on need
• e.g., webserver with “bursty” traffic can dynamically scale up its 

virtual server capacity

• From the cloud provider’s perspective
• Can consolidate multiple users on same underlying 

infrastructure
• Resource sharing increases revenue
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SUPERCOMPUTING
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Aurora supercomputer expected in 2021
• First “exascale” machine in the United States

• Likely more than 50K server nodes
• Likely more than 1M cores

• Capable of one billion billion floating point calculations per second



THE NEED FOR PREDICTABILITY

• Some applications struggle to make use of the vast 
resources of clouds and supercomputing systems

• Latency sensitive cloud applications
• Paper from Google: Dean and Barroso. “The tail at scale”, 

CACM 56(2), 2013

• Bulk synchronous applications
• Common with HPC, machine learning, graph analytics

• Real-time computing workloads
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PROBLEMS IN THE CLOUD
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The tail at Scale 
[Dean and Barroso, CACM 56(2), 74-80, 2015]

Each             incurs some latency with some probability 

The total latency is a function of the slowest 



PROBLEMS IN THE CLOUD

• When user requests require many individual components, the 
probability of an overall service slowdown increases
• Longest latency dictates overall service performance
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Ø Assume 100             needed to 
handle a user request

Ø P(one server slow) = 1% 
Ø P(overall slowdown) 

= 1 – (.99^100) ~ 63%
Ø 63% of all services are slowed 

by the 1/100 outliers



SPATIAL VARIABILITY
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With variability, some threads progress slower than others

Variability slows global synchronization
(extends runtime, wastes power, wastes energy)

SPATIAL VARIABILITY
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PROBLEMS IN BSP APPLICATIONS

• Variability is a major challenge for tightly synchronized 
applications
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Ø Over 75% of 
execution time 
spent blocked on 
global 
synchronization

Ø Up to 90% of cpu 
dynamic power 
consumption 
wasted

http://portal.nersc.gov/project/CAL/designforward.htm

http://portal.nersc.gov/project/CAL/designforward.htm


Takeaways
• Outliers are important

• “Techniques that concentrate on these slow outliers can yield dramatic 
reductions in overall service performance” (Dean and Barosso)

• Removing variability at small scale translates to significant gains 
at large scale
• 5% improvement in small scale performance is significant

• Improving the worst case is more important than improving the 
average case
• Metrics: at small scale, standard deviation is at least as important as mean
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DEALING WITH VARIABILITY



OVERVIEW OF MY RESEARCH

1. Hobbes: a new operating system designed to 
enable predictable performance via performance 
isolation

2. Analysis of low-level OS variability present in 
software technologies used in the cloud
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OVERVIEW OF MY RESEARCH

1. Hobbes: a new operating system designed to 
enable predictable performance via performance 
isolation
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LIGHTWEIGHT KERNELS

• Operating systems designed specifically for 
supercomputers
• Give application direct control of hardware
• Simplified algorithms for scheduling + memory mgmt
• Primary goal: consistent, predictable performance

• Long history of scalability on supercomputers
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Kitten, Sandia’s most recent lightweight kernel



16

0
10
20
30
40
50
60
70
80

128 256 512 1024 2048

So
lv

in
g 

Ph
as

e 
(s

)

Cores

Linux CNK

Adaptive MultiGrid on IBM BG/P
Morari et. al, IPDPS  2012

OS Comparison on IBM Blue Gene/P



17

0
10
20
30
40
50
60
70
80

128 256 512 1024 2048

So
lv

in
g 

Ph
as

e 
(s

)

Cores

Linux CNK

Adaptive MultiGrid on IBM BG/P
Morari et. al, IPDPS  2012

OS Comparison on IBM Blue Gene/P

So lightweight kernels are used on all large 
scale computers, right?



LINUX IS NECESSARY

• Performance is not the only 
consideration
• Technical reasons
• Huge suite of device drivers, 

network stacks, file systems, 
etc.

• Non-technical reasons
• Familiar development 

environment
• Ease of programmability
• Lots of system calls
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99.6%

0.4%

Operating System Share 
of Top500 (Nov. 2016)

Linux Other

https://www.top500.org/

https://www.top500.org/


THE HOBBES EXASCALE OS/R

• Started as Department of Energy exascale OS and 
runtime project
• http://xstack.sandia.gov/hobbes/

• Vision: we need to support application composition
(e.g., simulation + analysis + visualization)

• My work: dynamic runtime reconfiguration of the 
operating system
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http://xstack.sandia.gov/hobbes/


PERFORMANCE ISOLATION

Handling complex workload mixes across 
different users is necessary in clouds and 
HPC systems

Common in cloud systems (multi-
tenancy)

Becoming more common in 
supercomputers as well
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KERNEL INTERFERENCE (LINUX)
With Parallel Kernel 

Build (on different cores)

With Parallel Kernel 
Build (on different cores)Isolated

Each point represents 
the latency of an OS 
interruption
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Single Application



KERNEL INTERFERENCE (LINUX)

With Competition
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Single Application



WHY DOES THIS HAPPEN?

• Linux is a commodity OS that generally does not care about 
extreme scale features
• Cares about running anywhere and everywhere
• No understanding of how this impacts massive scale applications

• Our novel insight: OS resources generate variability
• B. Kocoloski, J. Ouyang, and J. Lange, “A Case for Dual Stack Virtualization: 

Consolidating HPC and Commodity Applications in the Cloud,” SOCC ‘12
• B. Kocoloski and J. Lange, “HPMMAP: Lightweight Memory Management for 

Commodity Operating Systems,” IPDPS ’14
• B. Kocoloski and J. Lange, “Lightweight Memory Management for High 

Performance Applications in Consolidated Environments,” TPDS ‘16

• Page table locks, page caches, scheduling queues all 
examples of contended OS resources
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Target
Performance isolation

between applications at the
OS level
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HARDWARE

ISOLATED
KERNEL

LINUX
KERNEL
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Tightly 
synchronized 
applications

Workloads that 
need Linux



KITTEN LIGHTWEIGHT KERNEL

• Lightweight kernel (LWK) from Sandia National 
Laboratories designed to execute massively parallel HPC 
applications

• Major design goal: provide more repeatable performance 
than general purpose OS (like Linux) for tightly 
synchronized workloads

• Simplified, lightweight resource management

https://software.sandia.gov/trac/kitten

https://software.sandia.gov/trac/kitten


PISCES CO-KERNELS

• We designed a co-kernel framework to boot multiple 
lightweight operating systems “next to Linux”
• J. Ouyang, B. Kocoloski, J. Lange, K. Pedretti “Achieving Performance Isolation 

with Lightweight Co-Kernels,” HPDC ’15
• B. Kocoloski et al., “System-Level Support for Composition of Applications,”

ROSS ‘15

• Complete isolation between separate OS kernels

• Each OS runs its own scheduler, memory manager, network 
stacks, device drivers, etc.

• Hardware partitioned at runtime using Linux resource 
offlining utilities
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APPROACH: PARTITION + ISOLATE
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KERNEL INTERFERENCE
(PISCES + KITTEN)

Single Application With Competition
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ELIMINATION OF OUTLIERS
(HPCCG)

Pisces Native
Linux KVM
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Ø A few percentage 
points on average is 
nice …

Ø But removal of 
outliers is critical to 
achieve scalability



OVERVIEW OF MY RESEARCH

2. Analysis of low-level OS variability present in 
software technologies used in the cloud
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WHAT IS GOING ON IN THE
KERNEL?
• Motivation: let’s try to understand more specifically 

what is going on in the kernel that generates 
variability

• This is a problem outside of just BSP
• Hard real-time applications (e.g., control system in 

nuclear power plant)
• Cyber-physical systems, esp. with real-time components 

(e.g., real-time vision processing for autonomous 
vehicles)
• Latency-sensitive cloud applications (tail at scale)
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HIGH LEVEL PROBLEM: 
WORST CASE != AVERAGE CASE
• Dependence on worst-case performance is what 

unifies these workloads

• Problem: almost all computational platforms rely on 
the Linux kernel, which is (generally) not designed 
with worst-case performance characteristics in mind

• Competition: workloads compete for each other for 
resources; the focus here is on understanding how a 
shared OS kernel could be subject to competition
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METHODOLOGY
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Linux kernel

System call corpus
Each thread does nothing but 
issue system calls to the kernel
• Higher levels of parallelism 

stress the ability of the kernel
to isolate workloads from
each other

Workload is not hardware 
intensive – it relies almost 
exclusively on software 
efficiency
• Locks on data structures
• Software caches (e.g. 

page cache, SLAB allocator)

t0 t1 t2 tn-1



DEPLOYING SOFTWARE IN THE
CLOUD
• Beyond understanding kernel variability, we can extend this 

framework to study variability that arises from concurrent 
contention to any shared software layer
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Shared software layer

API
t0 t1 t2 tn-1



CONTAINERS AND VMS
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EXPERIMENTAL SETUP

• 64-core machine

• Each core executes a set of 3,000 + system calls 
concurrently with every other core

• Three configurations:
• 64 native Linux processes
• 64 1-core virtual machines
• 64 1-core containers

37



SETUP
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t0 t1 t2 t63

Configuration 1
Linux only

Linux kernel

Physical Cores



SETUP
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t0 t1 t2 t63

Configuration 2
KVM

virtualization
Linux kernel

KVM hypervisor

Linux 
kernel

Linux 
kernel

Linux 
kernel

Linux 
kernel

Physical Cores



SETUP
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t0 t1 t2 t63

Configuration 3
Docker

containerization
Linux kernel

Docker
container

Docker
container

Docker
container

Docker
container

Physical Cores



SYSTEM CALL PERFORMANCE
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LACK OF VM BOUNDARY CAUSES UP
TO 100X WORSE 99TH %ILE
PERFORMANCE
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VMS MUCH MORE EFFECTIVE AT
LIMITING WORST-CASE BEHAVIOR
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SUMMARY

• Worst-case performance is important for many 
applications

• Linux is not built to provide good worst-case 
performance, particularly due to contention that spills 
across workloads

• Techniques such as virtualization help, but other 
approaches may be better
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WORKING IN MY LAB

• Things you will need (in order from most to least 
important)

1. Ability to articulate interest in an area that I have some 
expertise 
- e.g., cloud, supercomputing, real-time, reliability, support for 

machine learning applications
2. Firm understanding of low level programming languages 

(e.g., C)
3. Solid background in statistics

• Skills you will develop
• Understanding of low-level hardware/software performance
• Systems building and evaluation
• Ability to design and carry out experimental research
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