
VARIABILITY IN
OPERATING SYSTEMS

Brian Kocoloski
Assistant Professor in CSE Dept.

October 8, 2018 1

CLOUD COMPUTING

2

Current estimate is that 94% of all computation
will be performed “in the cloud” by 2021

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.html

CLOUD COMPUTING

3

Rent resources to
users

WHY IS CLOUD COMPUTING
ATTRACTIVE
• From the user’s perspective

• Don’t need to purchase own machines
• Don’t need to maintain infrastructure

• Power/cooling/maintenance
• Lower IT costs

• Dynamically scale resources based on need
• e.g., webserver with “bursty” traffic can dynamically scale up its

virtual server capacity

• From the cloud provider’s perspective
• Can consolidate multiple users on same underlying

infrastructure
• Resource sharing increases revenue

4

SUPERCOMPUTING

5

Aurora supercomputer expected in 2021
• First “exascale” machine in the United States

• Likely more than 50K server nodes
• Likely more than 1M cores

• Capable of one billion billion floating point calculations per second

THE NEED FOR PREDICTABILITY

• Some applications struggle to make use of the vast
resources of clouds and supercomputing systems

• Latency sensitive cloud applications
• Paper from Google: Dean and Barroso. “The tail at scale”,

CACM 56(2), 2013

• Bulk synchronous applications
• Common with HPC, machine learning, graph analytics

• Real-time computing workloads

6

PROBLEMS IN THE CLOUD

7

The tail at Scale
[Dean and Barroso, CACM 56(2), 74-80, 2015]

Each incurs some latency with some probability

The total latency is a function of the slowest

PROBLEMS IN THE CLOUD

• When user requests require many individual components, the
probability of an overall service slowdown increases
• Longest latency dictates overall service performance

8

Ø Assume 100 needed to
handle a user request

Ø P(one server slow) = 1%
Ø P(overall slowdown)

= 1 – (.99^100) ~ 63%
Ø 63% of all services are slowed

by the 1/100 outliers

SPATIAL VARIABILITY

9

GLOBAL
SYNCHRONIZATION

THREAD I

THREAD J

THREAD K

…

GLOBAL
SYNCHRONIZATION

Without variability, all threads make equal
progress in equal time

time

With variability, some threads progress slower than others

Variability slows global synchronization
(extends runtime, wastes power, wastes energy)

SPATIAL VARIABILITY

10

GLOBAL
SYNCHRONIZATION

WAITING …

THREAD I

THREAD J

THREAD K

…

GLOBAL
SYNCHRONIZATION

WAITING …

time

PROBLEMS IN BSP APPLICATIONS

• Variability is a major challenge for tightly synchronized
applications

11

Ø Over 75% of
execution time
spent blocked on
global
synchronization

Ø Up to 90% of cpu
dynamic power
consumption
wasted

http://portal.nersc.gov/project/CAL/designforward.htm

http://portal.nersc.gov/project/CAL/designforward.htm

Takeaways
• Outliers are important

• “Techniques that concentrate on these slow outliers can yield dramatic
reductions in overall service performance” (Dean and Barosso)

• Removing variability at small scale translates to significant gains
at large scale
• 5% improvement in small scale performance is significant

• Improving the worst case is more important than improving the
average case
• Metrics: at small scale, standard deviation is at least as important as mean

12

DEALING WITH VARIABILITY

OVERVIEW OF MY RESEARCH

1. Hobbes: a new operating system designed to
enable predictable performance via performance
isolation

2. Analysis of low-level OS variability present in
software technologies used in the cloud

13

OVERVIEW OF MY RESEARCH

1. Hobbes: a new operating system designed to
enable predictable performance via performance
isolation

14

LIGHTWEIGHT KERNELS

• Operating systems designed specifically for
supercomputers
• Give application direct control of hardware
• Simplified algorithms for scheduling + memory mgmt
• Primary goal: consistent, predictable performance

• Long history of scalability on supercomputers

15

Kitten, Sandia’s most recent lightweight kernel

16

0
10
20
30
40
50
60
70
80

128 256 512 1024 2048

So
lv

in
g

Ph
as

e
(s

)

Cores

Linux CNK

Adaptive MultiGrid on IBM BG/P
Morari et. al, IPDPS 2012

OS Comparison on IBM Blue Gene/P

17

0
10
20
30
40
50
60
70
80

128 256 512 1024 2048

So
lv

in
g

Ph
as

e
(s

)

Cores

Linux CNK

Adaptive MultiGrid on IBM BG/P
Morari et. al, IPDPS 2012

OS Comparison on IBM Blue Gene/P

So lightweight kernels are used on all large
scale computers, right?

LINUX IS NECESSARY

• Performance is not the only
consideration
• Technical reasons
• Huge suite of device drivers,

network stacks, file systems,
etc.

• Non-technical reasons
• Familiar development

environment
• Ease of programmability
• Lots of system calls

18

99.6%

0.4%

Operating System Share
of Top500 (Nov. 2016)

Linux Other

https://www.top500.org/

https://www.top500.org/

THE HOBBES EXASCALE OS/R

• Started as Department of Energy exascale OS and
runtime project
• http://xstack.sandia.gov/hobbes/

• Vision: we need to support application composition
(e.g., simulation + analysis + visualization)

• My work: dynamic runtime reconfiguration of the
operating system

19

http://xstack.sandia.gov/hobbes/

PERFORMANCE ISOLATION

Handling complex workload mixes across
different users is necessary in clouds and
HPC systems

Common in cloud systems (multi-
tenancy)

Becoming more common in
supercomputers as well

20

KERNEL INTERFERENCE (LINUX)
With Parallel Kernel

Build (on different cores)

With Parallel Kernel
Build (on different cores)Isolated

Each point represents
the latency of an OS
interruption

21

Single Application

KERNEL INTERFERENCE (LINUX)

With Competition

22

Single Application

WHY DOES THIS HAPPEN?

• Linux is a commodity OS that generally does not care about
extreme scale features
• Cares about running anywhere and everywhere
• No understanding of how this impacts massive scale applications

• Our novel insight: OS resources generate variability
• B. Kocoloski, J. Ouyang, and J. Lange, “A Case for Dual Stack Virtualization:

Consolidating HPC and Commodity Applications in the Cloud,” SOCC ‘12
• B. Kocoloski and J. Lange, “HPMMAP: Lightweight Memory Management for

Commodity Operating Systems,” IPDPS ’14
• B. Kocoloski and J. Lange, “Lightweight Memory Management for High

Performance Applications in Consolidated Environments,” TPDS ‘16

• Page table locks, page caches, scheduling queues all
examples of contended OS resources

23

Target
Performance isolation

between applications at the
OS level

24

HARDWARE

ISOLATED
KERNEL

LINUX
KERNEL

25

Tightly
synchronized
applications

Workloads that
need Linux

KITTEN LIGHTWEIGHT KERNEL

• Lightweight kernel (LWK) from Sandia National
Laboratories designed to execute massively parallel HPC
applications

• Major design goal: provide more repeatable performance
than general purpose OS (like Linux) for tightly
synchronized workloads

• Simplified, lightweight resource management

https://software.sandia.gov/trac/kitten

https://software.sandia.gov/trac/kitten

PISCES CO-KERNELS

• We designed a co-kernel framework to boot multiple
lightweight operating systems “next to Linux”
• J. Ouyang, B. Kocoloski, J. Lange, K. Pedretti “Achieving Performance Isolation

with Lightweight Co-Kernels,” HPDC ’15
• B. Kocoloski et al., “System-Level Support for Composition of Applications,”

ROSS ‘15

• Complete isolation between separate OS kernels

• Each OS runs its own scheduler, memory manager, network
stacks, device drivers, etc.

• Hardware partitioned at runtime using Linux resource
offlining utilities

27

APPROACH: PARTITION + ISOLATE

28

1
Cores

2

3 4

Socket
1

Memory
Region A

5
Cores

6

7 8

Memory
Region B

Socket
2PCI

Kitten
Co-Kernel

Memory
Region C

Linux

NIC
2

NIC
1

KERNEL INTERFERENCE
(PISCES + KITTEN)

Single Application With Competition

29

ELIMINATION OF OUTLIERS
(HPCCG)

Pisces Native
Linux KVM

30

Ø A few percentage
points on average is
nice …

Ø But removal of
outliers is critical to
achieve scalability

OVERVIEW OF MY RESEARCH

2. Analysis of low-level OS variability present in
software technologies used in the cloud

31

WHAT IS GOING ON IN THE
KERNEL?
• Motivation: let’s try to understand more specifically

what is going on in the kernel that generates
variability

• This is a problem outside of just BSP
• Hard real-time applications (e.g., control system in

nuclear power plant)
• Cyber-physical systems, esp. with real-time components

(e.g., real-time vision processing for autonomous
vehicles)
• Latency-sensitive cloud applications (tail at scale)

32

HIGH LEVEL PROBLEM:
WORST CASE != AVERAGE CASE
• Dependence on worst-case performance is what

unifies these workloads

• Problem: almost all computational platforms rely on
the Linux kernel, which is (generally) not designed
with worst-case performance characteristics in mind

• Competition: workloads compete for each other for
resources; the focus here is on understanding how a
shared OS kernel could be subject to competition

33

METHODOLOGY

34

Linux kernel

System call corpus
Each thread does nothing but
issue system calls to the kernel
• Higher levels of parallelism

stress the ability of the kernel
to isolate workloads from
each other

Workload is not hardware
intensive – it relies almost
exclusively on software
efficiency
• Locks on data structures
• Software caches (e.g.

page cache, SLAB allocator)

t0 t1 t2 tn-1

DEPLOYING SOFTWARE IN THE
CLOUD
• Beyond understanding kernel variability, we can extend this

framework to study variability that arises from concurrent
contention to any shared software layer

35

Shared software layer

API
t0 t1 t2 tn-1

CONTAINERS AND VMS

36

EXPERIMENTAL SETUP

• 64-core machine

• Each core executes a set of 3,000 + system calls
concurrently with every other core

• Three configurations:
• 64 native Linux processes
• 64 1-core virtual machines
• 64 1-core containers

37

SETUP

38

t0 t1 t2 t63

Configuration 1
Linux only

Linux kernel

Physical Cores

SETUP

39

t0 t1 t2 t63

Configuration 2
KVM

virtualization
Linux kernel

KVM hypervisor

Linux
kernel

Linux
kernel

Linux
kernel

Linux
kernel

Physical Cores

SETUP

40

t0 t1 t2 t63

Configuration 3
Docker

containerization
Linux kernel

Docker
container

Docker
container

Docker
container

Docker
container

Physical Cores

SYSTEM CALL PERFORMANCE

41

LACK OF VM BOUNDARY CAUSES UP
TO 100X WORSE 99TH %ILE
PERFORMANCE

42

VMS MUCH MORE EFFECTIVE AT
LIMITING WORST-CASE BEHAVIOR

43

SUMMARY

• Worst-case performance is important for many
applications

• Linux is not built to provide good worst-case
performance, particularly due to contention that spills
across workloads

• Techniques such as virtualization help, but other
approaches may be better

44

WORKING IN MY LAB

• Things you will need (in order from most to least
important)

1. Ability to articulate interest in an area that I have some
expertise
- e.g., cloud, supercomputing, real-time, reliability, support for

machine learning applications
2. Firm understanding of low level programming languages

(e.g., C)
3. Solid background in statistics

• Skills you will develop
• Understanding of low-level hardware/software performance
• Systems building and evaluation
• Ability to design and carry out experimental research

45

