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1. INTRODUCTION
Big Data and Active Learning



Big Data

Image: DARPA
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Big data

Collecting massive amounts of data is becoming
easier and commonplace.
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Social networks

• Facebook has over 1.2
billion user accounts.

• Facebook stores over 30
petabytes of user data!
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Chemicals

• The ZINC database of purchasable
compounds contains approximately 35
million entries.
• 10 000 new compounds every day!
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Credit card transactions

• Over 26 billion credit card
transactions in the United
States in 2012.
• Over 390 million credit

card accounts in the
United States as of Q3
2013.
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Big data

• Collecting data is becoming easier and widespread.
• Analyzing these data, however, is often very expensive!

(And isn’t getting any easier. . . )
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Drug discovery

• Imagine having access to all 35 million
purchasable compounds.
• Which of them show significant

acitivity against a biological target?
• Even with high-throughput screening it

would take a year to test them all!
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Fraud detection

• Conducting a fraud
investigation is very
expensive, potentially
requiring human experts.
• Even by temporarily

shutting down a card, we
are losing potential sales!
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Intelligence analysis
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Information overload
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Making intelligent decisions

• Analyzing data is often
very expensive!
• In such cases, we should

think carefully about
which data we analyze.
• Having a lot of data to

choose from is both a
blessing and a curse!
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Active machine learning
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Active learning: Example

• Imagine trying to learn to
separate the blue points
from the green points
given examples.
• Given many examples, this

is easy.
• What if we can only afford

to choose a very small
number of examples?

p(y = | x,D)

Introduction Active Learning 15



Active learning: Example

random sampling (accuracy: 90%)
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Active learning

Image: Burr Settles
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Active learning: Example

• Can we do better than random sampling?
• Idea: given a model

p(y = | x,D),

choose the most uncertain point.
• Perhaps by focusing on the boundary, we can learn faster.
• This is known as uncertainty sampling, a simple example

of active learning.
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Active learning: Example

uncertainty sampling (accuracy: 95%)
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Making intelligent decisions

• Active learning is a powerful and flexible paradigm.
• Traditionally, active learning has focused on predictive

accuracy.
• There are many important real-world problems where this

is not our main concern!
• A main focus of my research is making intelligent

decisions when faced with expensive observations,
whatever the goal might be.
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2. ACTIVE SEARCH
Finding interesting points



Active search1

• In active search, we consider active learning with an
unusual goal: locating as many members of a particular
class as possible.

• Numerous real-world examples:
• drug discovery,
• intelligence analysis,
• product recommendation,
• playing Battleship.

1Garnett, Krishnamurthy, Xiong, Schneider (CMU), Mann (Uppsala).
ICML 2012.
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Battleship!
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Which is better?
This is a bit of an unusual setting—classification accuracy is
not directly important!
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Our approach

We approach this problem via Bayesian decision theory.
• We begin by defining a simple utility function naturally

suited for this task.
• The location of the next evaluation will be chosen by

maximizing the expected utility.
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The utility function

We begin by choosing the natural utility function for this
problem, the number of interesting points found among the
observed points. If the labels y ∈ {0, 1}, then given data D,

u(D) ,
∑
i

yi.
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Expected utility: One-step lookahead
• Suppose we only have one evaluation remaining.
• We calculate the expected utility of choosing point x∗

from among the remaining points. This is easy.

E
[
u(x∗, y∗,Dt−1) | x∗,Dt−1

]
= u(Dt−1)

+ 1× p(y∗ = 1 | x∗,Dt−1)

+ 0× p(y∗ = 0 | x∗,Dt−1)

= u(Dt−1) + p(y∗ = 1 | x∗,Dt−1).

• Therefore, our best choice is to simply select the point
with the highest probability.
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Multiple-step lookahead

• One-step lookahead is simple and fast, but it’s also
myopic. Can we do better?

• What if we plan even farther ahead?
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Multiple-step lookahead leads to nontrivial
behavior

Unlike the simple greedy one-step lookahead policy, two- and
more-step lookahead leads to nontrivial choices. Let δ ≥ ε,
and consider two evaluations. Which point should we choose
first?

ε

ε

δ

• one-step: ε+ δ

• two-step: 2ε+ (1− ε)δ

• difference:
ε(1− δ) > 0

Choosing the low-probability node is always better!
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Theoretical result

In fact, we can extend this example in a surprising way!

• Looking farther ahead can
always help by any arbitrary
amount!
• Marginal gains are not always

decreasing! ε

ε

δ
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Lookahead can always help

Theorem (Garnett, et al.)
Let `,m ∈ N+, ` < m. For any q > 0, there exists a search
problem P such that

ED
[
u(D) | m,P

]
ED

[
u(D) | `,P

] > q;

that is, the m-step active-search policy can outperform the
`-step policy by any arbitrary degree.
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Expected utility: Two-step lookahead

• Suppose now we have two evaluations remaining.
• To calculate the expected utility of choosing a point x∗,

we must marginalize the unknown label y∗ as well as the
location of the final evaluation and its label. This is a bit
harder.
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Big ugly equation?

We have:

E
[
u(x∗, y∗, xt, yt,Dt−2) | x∗,Dt−2

]
=

∫∫∫
u(x∗, y∗, xt, yt,Dt−2)p(y

∗ | x∗,Dt−2)×

× p(xt | Dt−1)p(yt | xt,Dt−1) dy∗ dxt dyt
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Three- and more-step lookahead

• In general, finding the optimal choice in the `-step
lookahead case may be performed recursively.

• However, näively, it requires marginalizing `− 1 unknown
future observations, both their locations and associated
labels. This is expensive. (Exponential in the number of
points!)
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CiteSeer data

• Includes papers from the 50 most popular venues present
in the CiteSeer database.

• 42k nodes, 222k edges.
• We search for NIPS papers, 2.5k papers (6%).

←−−−−−−→
cites/cited by

paper A paper B

Active Search Notes on use 35



Huge graph!
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Cost of lookahead

` = 2 ` = 3 ` = 4

166 s ≈146 days ≈30 500 years

Lookahead can always help, but is it hopeless?
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Theoretical results

• For well-behaved classifiers, the optimal point can’t be
too far from the one with maximum probability!

• We can derive bounds on expected utility that we can use
to prune the search space, dramatically reducing
computation time and enabling farther lookahead.
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Bounding expected utility
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Results: Speedup from pruning

` = 2 ` = 3 ` = 4

no pruning 166 s ≈146 days ≈30 500 years
pruning 0.228 s 15.0 s 745 s
speedup 731 8.42 × 105 1.29 × 109
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Experiment

• We select a single NIPS paper at random, and begin with
that single positive observation.

• The one-, two-, and three-step lookahead approximations
are applied for a given number of evaluations.

Active Search Notes on use 41



Results
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Results: Notes

• Three-step lookahead found 8.5% of the targets after
scanning only 1.3% of the data, 6.5 times better than
random search would have done.

• Further experiments on several other datasets show
similar results, sometimes with even more significant
improvement from increasing the lookahead.
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Active Search

• One can understand the increased performance from two-
and more-step lookahead from a simple viewpoint.
• Uncertainty sampling is pure exploration.
• One-step lookahead is pure exploitation.
• Two-step lookahead is the first point where exploration

and exploitation are simultaneously considered.
• This behavior automatically falls out by choosing the

correct utility function and applying Bayesian decision
theory. No heuristics or tricks were required!

• We learned a lot from considering lookahead!
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Drug discovery2

• Goal: use multiple-step lookahead
active search for improving virtual
screening.

2Garnett, et al. Journal of Computer Aided Molecular Design 2015.
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Materials science

• Perhaps active search could be used for dealing with
large-scale combinatorial search spaces for discovering
new materials?

• Examples: novel alloys (high-entropy alloys, bulk metallic
glasses), novel catalysts, etc.
• Key challenge: designing informative classifiers!
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3. QUASARS
Cosmic lighthouses





Quasars

Quasars are massive, incredibly
bright, very distant objects.
They are probably
supermassive black holes at the
cores of young, active galaxies.
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Quasars are bright!

Seriously, quasars are very
bright. They can be 100 trillion
times brighter than the sun, or
about 100 times brighter than
the entire Milky Way galaxy.
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Quasars are distant!

Quasars (thankfully!) are
incredibly distant. They have
redshifts from around z = 0.06
to z > 7, which implies they’re
between hundreds of millions to
tens of billions light years away.

Quasars Example application 51



Quasars are old!

Quasars are therefore incredibly
old, giving us a glimpse into
the nature of the early universe
and galaxy formation.
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What to quasars look like?

• Here we will consider spectroscopic measurements of
quasars.

• In spectroscopy, we measure the spectral flux (emitted
radiation per unit wavelength per area) over a range of
wavelengths of light.
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Emission lines
Average of the spectra for many quasars:

Spikes correspond to intra-atomic events at fixed energies!
(Quantum mechanics to the rescue!)
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Hydrogen emission lines, Lyman-α
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What to quasars look like?
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The Lyman-α forest
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Damped Lyman-α absorbers

• When a very large gas cloud (column density
> 2× 1020 cm−2) intervenes the line of sight, it causes
characteristic “damping wings’’ to appear in the
absorption profile. These are called damped Lyman-α
absorbers (DLAs).
• DLAs are a direct probe of non-luminous neutral gas at

densities close to those required to form stars.
• They provide a powerful independent check on models of

galaxy formation in the early Universe (z ∼ 2–5).
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Damped Lyman-α absorbers
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Damped Lyman-α absorbers
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The state of the art
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SDSS

• The model of visual inspection is prone to errors (tired
grad students) and inefficient.
• There’s just too much data to keep up with. The Sloan

Digital Sky Survey (SDSS) has captured around 300 000
quasar spectra, and plans to measure millions more over
the next few years.
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Goal and approach (Garnett, et al. 2016)

• Goal: Put grad students out of business.
• Approach: Use tens of thousands of measured quasars to

build a probabilistic model of quasar spectra, and use this
to automatically infer whether there is a DLA in a given
spectrum.
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4. CONCLUSION



Conclusions

• When we have a lot of data but analysis is expensive, we
should think carefully about our decisions!
• We should always focus on our goal, which is often not

simply to learn the best model!
• We should be careful to find the data we actually want!
• As storage gets cheaper at a rate faster than analysis gets

easier, this will only become increasingly important!
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