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Take-Home Message 

• Biological sequence analysis is a source of 
high-impact computational problems 
 

• Using SIMD parallel computing for these 
problems requires dealing with irregularity 
 

• MERCATOR is an ongoing research effort to 
make irregular application development on 
SIMD platforms easier. 
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Who Am I? 
• I study how to accelerate high-                                      

impact bioinformatics problems. 
 

• One way to do this is via                                
parallelization on modern                                 
architectures (FPGAs, GPUs, …) 
 

• Along the way, many interesting CS questions… 
– Streaming computation [FCCM’07, JVSP’07,M&M’09] 
– Systolic array design  [FPL’09,FCCM’10,ASAP’10] 
– Deadlock avoidance [SPAA’10,PPoPP’12,DFM’13,JPDC’17] 
– SIMD mapping [ISPDC’14,DFM’15,HPCS’17] 
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Talk Overview 

• Problems: DNA comparison and read mapping 
 

• Algorithmic approach – Why SIMD? 
 

• MERCATOR overview and performance 
 

• Research challenges 
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Molecular Biology is Fundamental 

• Genetic basis of disease 
and disease risk 

• Systems biology – what 
are your cells doing? 

• Studying natural history 
and evolution 

• Engineering cells’ 
behavior for medicine, 
industry, agriculture 
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The First Step: DNA Sequencing 

• Sequencing can tell us 
what is in a genome… 
 

• … but also the basis of 
experiments to probe 
gene expression, protein 
binding, chromosome 

conformation, epigenetic marks, 
polymorphism, copy number variants … 

…acaggatagtaccgataccat 
cacccggataggacctatgag 
ggacacaggacttatggcattt… 6 
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Problem: Classical Similarity Search 

• Given 
– a genome-sized or larger DNA 

sequence database D 
– a “query” sequence q of some 

length L << |D| 
 

• Does q appear in D with at 
most k differences, and if so, 
where? 
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Typical Parameters 

• Database D has size 109 – 1010 bases 
 

• Query q has size 102 – 104 bases 
 

• # differences k is 5-25% of |q| (bases added, 
deleted, changed) 
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Tools for Similarity Search  

• BLAST [Altschul et al. 1990, 1996] 
 

• BLAT [Kent 2002] 

These tools use variants of same  
basic search algorithm. 
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Problem: Short-Read Mapping 

• Given 
– a genome-sized or larger DNA 

sequence database D 
– N “reads” – DNA seqs of some 

length L << |D| 
 

• For each read, does it appear 
in D with at most k 
differences, and if so, where? 
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Typical Parameters 

• Database D has size 109 – 1010 bases 
 

• Number of reads N is 106 – 108 
 

• Length L is 75-150 (may vary among reads) 
 

• # differences k is 0-3 (added, deleted, changed) 
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Tools for Mapping 

• Bowtie [Langmead et al. 2009, 2012] 
 

• BWA [Li & Durbin 2009, 2010] 
 

• SOAP2 [Li et al. 2009] 

All these tools use variants of same  
basic search algorithm. 
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Why Short-Read Mapping? 

• Some experimental procedure selects a subset 
of everything in the database 
 

• Reads are sampled from this subset by your 
sequencing machine 
 

• Mapping tells you which parts of database are 
present in your sample 
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Problem: Alignment-Free Organism ID 

• Given 
– a metagenome-sized DNA 

sequence database D 
– N microbial genomes – DNA seqs 

of some length L << |D| 
 

• For each genome, do (some of) 
its sequences appear in D? 
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Alignment-Free Techniques 

• Min-Hash Sketching – convert a seq to a small 
sample (m ~ 1000) of hash values 
 

• Approximate Containment: how much of (the 
sketch for) a genome overlaps (the sketch for) a 
metagenome? 
 

• MASH (Ondov et al. 2016) 
• SourMASH (Brown et al. 2016) 
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Talk Overview 

• Problems: DNA alignment and read mapping 
 

• Algorithmic approach – Why SIMD? 
 

• MERCATOR overview and performance 
 

• Research challenges 
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How BLAST Works 
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BLAST operates as a pipeline of computational stages. 



Stages of BLAST 

• Stage 1: identify potential match locations 
between q, D 
 

• Stage 2: keep only those locations that look 
somewhat promising 
 

• Stage 3: keep only those locations that 
actually yield high-similarity alignments 
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Generating Possible Matches 

• Every place where some 11-mer from q 
matches an 11-mer from D exactly is a 
candidate. 
 
 
 

• Can rapidly find all such matching locations 
using hash table of 11-mers in sequence q 
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Filtering Candidates 

• Uses explicit edit distance computation 
between q, part of D (Smith-Waterman algo) 
 

• Expensive dynamic programming! 
 

• “Easy” version (substitutions only), followed 
by hard version (add/delete chars allowed) 
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BLAST Parallelization 

• Can generate candidates in parallel at each DB 
location, then filter them in parallel. 
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What About Read Mapping? 

• Uses an index (virtual suffix tree) of database 
 

• Matching involves tracing a path down index tree 
for each read 
 

• (must try several paths if differences are allowed) 
 

• Can do in parallel for many reads at once! 
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Suffix Tree Example 

D = acagaccaga$ 
0 1 2 3 4 5 6 7 8 9 10 

10 $ 

 9 a$ 

 0 aca… 

 4 acc… 

 7 aga$ 

 2 agac… 

 6 caga$ 

 5 cca… 

 1 cagac… 

 8 ga$ 

 3 gac… 
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Rapid Matching vs Suffix Tree 

• Can find all 
matches to a 
read in D in time 
proportional to 
read length L. 
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Extension to Inexact Matching 

• To permit matches with k substitutions, try 
multiple paths, but charge for each mismatch. 
 

• To permit matches with k differences, we do 
dynamic programming to compute edit distance 
of read against each path in tree. 
 

• Descent stops for a read when we hit bottom of 
tree or find that path requires > k differences. 
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Parallel Alignment is a SIMD 
Computation 

• We process every BLAST starting loc / every 
read through same filtering computation 
 

• Single Instruction stream, Multiple Data items 
 

Thread        1   2   3   4     5  6  7   8  9    10  11 12 13 14  15 16 17 18        



SIMD Targets 

• Our work: NVIDIA GPUs                                    
(32 SIMD lanes x 4+ threads x 2-64 cores) 
 

• Other possibilities: any multicore with wide 
vector instructions (Intel Xeon, AMD, ARM, …) 
 

• ~All modern processors have wide SIMD! 

33 



Batched Traversal (Short Reads) 

34 9 0 4 7 2 6 1 5 8 3 



Batched Traversal 
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Batched Traversal 

36 9 0 4 7 2 6 1 5 8 3 

x x x 

Some reads may 
accumulate > k 
diffs before others 



Batched Traversal 
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Batched Traversal 

38 9 0 4 7 2 6 1 5 8 3 

x x x x x x 

Stop descending 
when all reads 
either have > k 
diffs or are 
completely 
matched with 
fewer diffs 



Batched Traversal 

39 9 0 4 7 2 6 1 5 8 3 

x x x x x x 

Continue on 
next branch 
starting from 
batch on top 
of stack 



Batched Traversal 
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Batched Traversal 
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Performance? 

• Each stage of BLAST costs more but processes 
less input. 
 
 
 
 
 

• 98% of threads idle for 110/111 ms 
• 1.99% of threads idle for 100/111 ms 
• SIMD EFFICIENCY: 1.1%  
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Irregular Computations 

• DNA alignment is an irregular computation: 
different inputs (i.e. DB locations, reads) 
require different amounts of work to process. 
 

• Antithesis of, e.g., linear algebra calculations 
that are easily vectorized 
 

• Irregular computations are highly inefficient if 
naively implemented on SIMD processors. 
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The Key Problem 

• How can we efficiently map irregular 
computations onto a SIMD architecture? 
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Talk Overview 

• Problems: DNA alignment and read mapping 
 

• Algorithmic approach – Why SIMD? 
 

• MERCATOR overview and performance 
 

• Research challenges 
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MERCATOR Paradigm 

• Application processes a long stream of inputs 
 

• Application graph consists of nodes 
(computations), edges (data transfer) 
 

• Data flows through graph of computations 
 

• Irregularity: paths differ per input, each input to 
a node generates 0, 1, or multiple outputs 
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Handling Irregularity 

• Each edge between nodes has a queue 
 

• MERCATOR queues inputs to a node until 
there are enough to fill all its SIMD lanes 
 

• Node is only fired when it has “full ensemble” 
of inputs in all lanes. 
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Illustration of Queues 
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Illustration of Queues 
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Illustration of Queues 
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Illustration of Queues 
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A Few Complications 

• Shared Code – two or more nodes may do same 
thing (e.g. Viola-Jones) 
 

• Overhead – queueing isn’t free 
 

• Asynchrony – must use multiple processors, each 
with multiple SIMD lanes 
 

• Ordering – are inputs processed “in order”? 
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Exploiting Shared Code 

• “Module type”  CUDA code 
 

• Multiple nodes with same function have same 
module type 
 

• We execute all nodes of a given module type in 
parallel! 
 

• [Requires pulling data from each node’s queue 
concurrently] 
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Minimizing Overhead 

• Queue manipulation is itself parallelized 
 

• Easy case: “read next k inputs from queue into 
threads 1..k.” 
 

• More fun: “read k total inputs from all queues 
combined into threads 1..k, and remember 
which queue each input came from.” 
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Sneaky Tricks 

• Parallel scan 
 

• Branch-free binary search 
 

• Parallel output compaction 
 

• [exploits, maintains input ordering] 
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Results of Synthetic Trial 
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Dealing with Asynchrony 

• Shared input / output buffers 
 

• Output order with multiple processors? 
 

• [Need stream-synchronized signaling] 
 

• Associative (and commutative?) reductions 
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Applications with Cycles 

• App graph can have back edges 
 

• Issue: deadlock prevention 
 

• [topology restrictions, queueing policy] 
 

• Order preservation? 
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Optimization Opportunities 

• Parameter tuning (queue sizes, scheduler, …) 
 

• Latency-sensitive applications vs occupancy 
 

• Fusing nodes to elide queueing (at what cost 
to occupancy?) 
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Want to Play? 

• https://github.com/jdbuhler/mercator 
 

• MERCATOR will be a testing ground for SIMD-
aware irregular streaming computation 
 

• Many interesting problems still to be solved! 
 

•                           thesis topics 
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