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Abstract 
Generative Artificial Intelligence (GAI) has experienced an explosion in popularity in recent 
years, with many applications still being discovered. Driven by these advances, the use of GAI in 
Physical Layer applications has been heavily researched. We discuss three such applications, 
including Semantic Communication, Channel Estimation and Sensing, and Security and provide 
an overview of the literature in each respective area. Recommended approaches and challenges 
are presented in addition to a general introduction of each topic. Finally, some challenges facing 
widespread adoption of GAI technologies are discussed.  
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1 aEf Introduction 
Recent advances in generative artificial intelligence (GAI) have led to widespread adoption of 
the technology, aimed at addressing problems in diverse fields. GAI has been heavily researched 
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for its applications to the fields of networking and security. GAI technologies have proven useful 
in mobile and wireless networking, addressing problems such as network routing, channel 
estimation, and anomaly detection [Thai-Hoc2024]. This work focuses on GAI networking 
applications at the physical (PHY) layer.  
 
Section 2 provides brief historical context and a general overview of GAI technologies. Sections 
3, 4, and 5 describe the application of GAI to the problems of semantic communication, channel 
estimation, and network security, respectively. Section 6 provides a summary of the topics 
discussed.  

 

2 aEf Generative Artificial Intelligence 
GAI has undergone a boom in growth in the last several years fueled by developments in model 
architecture and training. While traditional artificial intelligence (AI) technologies focus on 
pattern recognition problems, GAI models have the ability to produce new content including 
text, imagery, video, and audio. Much of GAI's success has been due to the probabilistic nature 
of the outputs in contrast to the classically deterministic outputs of traditional AI models. Recent 
advancements in GAI have been fueled by notable releases from AI research organizations, such 
as OpenAI (ChatGPT) [OpenAI2024] and Google DeepMind (DeepDream) [Google2024]. As 
understanding and adoption have grown, these technologies have found widespread application 
in a variety of industries and research areas, including networking and security [Thai-Hoc2024], 
[Khoramnejad2024].  

 

3 aEf Semmantic Communications 
Semantic communication (SemCom) broadly refers to the communication and interpretation of 
meaning instead of the exact communication or reproduction of source data [Liang2024]. More 
simply, "SemCom focuses on conveying the meaning of the information being transmitted, 
rather than just the exact data bits" [Khoramnejad2024]. SemCom has the potential to increase 
spectrum utilization by exploiting redundancy in transmitted data by compressing it to 
communicate only its essential meaning [Khoramnejad2024], [Liang2024]. A key challenge in 
SemCom is the design of semantic encoders and decoders [Khoramnejad2024]. In 
[Grassucci2024], semantic communication is described using the Shannon-Weaver 
communication model paradigm in which three levels of communication are described (Figure 
1). Semantic communication addresses the semantic level of communication, which describes 
the way that meaning is conveyed [Shannon1949].  

3.1 aEf Semantic Encoding 

As described by [Liang2024], a semantic encoder leverages background knowledge and context 
to extract bits containing the core meaning of the transmission. Grassucci, et al. [Grassucci2024] 
describe a practical approach to the semantic encoding problem, leveraging the strengths of 
various GAI models for encoding and decoding tasks. In that work, the PHY layer encoder is 
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described as a semantic extractor and the use of Variation Auto Encoders (VAE) models for the 
semantic extraction task is proposed. VAEs have been used in dimensionality reduction 
techniques, where they encode the mean and variance of the data into a lower-dimensional 
Gaussian distribution [Kingma2013]. This lower-dimension latent vector represents the limited 
information required to reconstruct the complete data.  

3.2 aEf Semantic Decoding 

In semantic decoding, the decoder inverts the encoding process and recovers the core meaning of 
the transmission [Khoramnejad2024]. In [Grassucci2024], diffusion models are proposed as a 
suitable model for the semantic decoding task. During the training of Denoising Diffusion 
Probabilistic Models (DDPMs), data is transformed into pure noise. The model learns to estimate 
the amount of noise added to the input and can then reverse the process at decoding time. 
DDPMs have recently been shown to excel at the semantic decoding task [Khoramnejad2024], 
[Grassucci2023].  
 

 
Figure 1: A schematic depicting GAI at the semantic level of the Shannon-Weaver 
communication model (reproduced from [Grassucci2024]).  

 

4 aEf Channel Estimation and Sensing 
GAI has also recently grown in popularity for its use in channel estimation and channel sensing 
tasks. Channel estimation refers to the problem of detecting the characteristics of the 
communication channel while channel sensing refers to the problem of determining if a 
communication channel is available. Historically, channel estimation methods have required the 
use of sophisticated statistical approaches, like maximum-likelihood estimation 
[VanHuynh2024], while channel sensing has used approaches, like spectrum sensing, which can 
be vulnerable to noisy channels [Axell2012].  
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4.1 aEf Channel Estimation 

Channel estimation characteristics can include values such as modulation scheme, signal 
classification, and beamforming parameters [VanHuynh2024]. Traditional estimation of these 
characteristics required knowledge of the channel. In [VanHuynh2024], the authors argue that 
traditional methods of channel estimation will lose performance in increasingly complex wireless 
systems. In GAI-enabled channel estimation, deep learning (DL) methods are used to learn 
relationships between channel inputs and outputs. In [Sun2020] and [Ye2020], Generative 
Adversarial Networks (GANs) are effectively used to retrieve maximum-likelihood estimates of 
transmitted sequences and model unknown networks. Traditional DL methods are used in 
[Tang2018] to classify signals by using GANs to augment a training dataset with features learned 
from the original data.  

4.2 aEf Channel Sensing 

The use of GAIs in channel sensing seeks to unify the functions of wireless communication and 
sensing in an approach called Integrated Sensing and Communications (ISAC) 
[Khoramnejad2024]. As a key technology for 6G, ISAC GAI models analyze the propagation 
and scattering of transmitted radio waves, adapting to variations in environment and resource 
allocation [Khoramnejad2024], [Wang2024]. In [Sha2024], VAEs are used for traffic flow 
modeling and real-time decision-making to adapt to changing urban environments. Similarly, in 
[Wang2024], coupled diffusion models to generate network graphs and secure communications 
by abstracting the channel state information (CSI).  

 

5 aEf Security 
Traditional AI techniques fall short in wireless and mobile security applications due to their 
limited ability to adapt to the rapidly changing cybersecurity threat landscape [Zhao2024]. The 
use of GAI at the Physical layer provides the opportunity to exploit their dynamic learning 
capability to address these challenges. In [Zhao2024], the authors discuss several key security 
areas in which GAI models excel and provide recommendations based on the strengths of 
various models. One such area is Joint Source-Channel Coding (JSCC) in which a single code is 
used in the encoding and decoding steps of transmission over a noisy channel [Thai-Hoc2024].  

5.1 aEf Joint Source-Channel Coding 

In [Bourtsoulatze2019], the authors demonstrate DL-based JSCC in an image transmission 
application. Two convolutional neural networks (CNNs) are trained as an autoencoding system 
representing encoding and decoding functions. Image pixels are then mapped directly to 
complex-valued channel inputs rather than transforming pixel valued to bit sequences. Figure 2 
shows a traditional image transmission system (a) compared to the DL-based JSCC system (b) in 
[Bourtsoulatze2019]. Similarly, in [Tung2022], the authors propose DeepJSCC-Q, using Deep 
Neural Network (DNN) GAI models to quantize inputs prior to transmission.  
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Figure 2: A traditional image transmission model (a) v. a DL-based JSCC model (b) 
(reproduced from [Bourtsoulatze2019]).  
 
 
In addition to JSCC, many security applications for GAI in the PHY layer exist. Table 1 shows a 
breakdown of recent literature covering the use of GAIs in PHY layer security. [VanHuynh2024] 
and [Zhao2024] discuss the strengths of GAI models in threat modeling and anti-jamming 
applications, recommending GAN and VAE models, respectively. Ultimately, [Zhao2024] shows 
the robustness of GAN modals in addressing a wide range of security concerns at the PHY 
Layer.  
 

Table 1. GAI in PHY Layer Security (reproduced from [Zhao2024]). 
 GAN VAE DM 

Confidentiality 

• key generation 
• channel 

approximation 

• transceiver 
design 

• JSCC 

•  

Availability • jamming 
detection 

•   

Resilience • spoofing 
detection 

•   

Integrity 

• anomaly 
detection 

• spectrum 
sensing 

• signal 
reconstruction 

• spectrum 
sensing 

• signal 
reconstruction 

• noise 
suppression 
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Authentication 

• RF 
authentication 

• channel state 
authentication 

• channel impulse 
authentication 

•  

 

 

6 aEf Conclusion 
GAI at the PHY layer has been shown to provide many advantages over traditional AI 
techniques. In many cases GAI models excel because of their ability to adapt to new 
environmental data and unknown inputs [VanHuynh2024]. In this work, we've discussed the use 
of GAI in several applications, including SemCom, Channel Sensing, and Security. We've seen 
how VAEs and DDPMs excel in semantic coding and decoding applications, respectively. 
Similarly, GANs have been shown to excel in channel sensing and estimation. Finally, GANs, 
VAEs, and DMs have been shown to have broad application in network security at the PHY 
layer.  
 
The topics of semantic communication, channel estimation, and security are only three 
applications among many well-suited for GAI approaches. Other potential tasks include network 
optimization and resource allocation [VanHuynh2024]. GAI is still a heavily researched area and 
its uses and capabilities will continue to expan in the future. Further work is required to address 
the challenges of complexity and scalability associated with GAI techniques and facilitate their 
wide-spread adoption for PHY layer uses [Thai-Hoc2024].  

 

Acronyms 
• GAI: General Artificial Intelligence 
• PHY: Physical Layer 
• AI: Artificial Intelligence 
• SemCom: Semantic Communications 
• VAE: Variational Auto Encoder 
• DDPM: Denoising Diffusion Probabalistic Model 
• DL: Deep Learning 
• GAN: Generative Adversarial Network 
• ISAC: Integrated Sensing and Communications 
• CSI: Channel State Information 
• JSCC: Joint Source-Channel Coding 
• DNN: Deep Neural Network 
• DM: Diffusion Model 
• CNN: Convolutional Neural Network 
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