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Abstract 
In this paper, I survey Ethernet's use in AI model training and distributed deep learning 
environments. Due to its broad applicability, Ethernet's architectural limitations initially made it 
ill-suited for any AI workload. However, incremental improvements have done much to bridge 
the gap between Ethernet and proprietary interconnect solutions. In addition to highlighting 
Ethernet's new-found promise, I call attention to areas where challenges remain. 
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Introduction 
The past decade has witnessed significant advancements in machine learning models and 
distributed deep learning frameworks. However, these leaps have come at the cost of previously 
unfathomable computational demands. Training such models successfully necessitates network 
infrastructures that can transfer large amounts of data with minimal latency. Ethernet, the most 
widely adopted network technology, has evolved to address these requirements.  

This paper aims to explore how Ethernet has adapted to meet these demands of AI model 
training. The introduction of technologies such as Remote Direct Memory Access over 
Converged Ethernet (RoCE), high-speed hardware developments, and error correction 
mechanisms have enabled Ethernet to become a viable option for AI workloads. In the next 
section, I explore a set of contributions that address Ethernet's most fundamental performance 
constraints.  

2. Evolution of Ethernet for Scalable AI 
Training 
2.1 Introduction 
Ethernet was initially designed as a general-purpose networking solution. As such, it has seen 
broad adoption across a myriad of networking fields, serving as the de-facto network standard. 
Unfortunately, this kind of versatility means Ethernet is not inherently suited to the demands of 
training AI models. The most debilitating of these limitations include- but are not limited to- 
high bandwidth and low latency [3]. Because of this, specialized network architectures like 
InfiniBand have historically dominated the AI/ML landscape [10]. While these fabrics offer high-
bandwidth and low-latency, their incredibly specialized nature makes it impossible to scale in a 
cost-effective way [10]. As demand for AI/ML solutions increases, this deficit will prove 
insurmountable: performance without scalability simply won't suffice [10][11].  

In this section, we will examine three iterations on Ethernet architecture that improve bandwidth 
and latency through particular technologies- some commercially available, some still 
experimental- while maintaining Ethernet's existing cost-effectiveness.  

2.2 Early Approaches and Challenges 
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The earliest AI clusters relied heavily on GPUs that exchanged training data along proprietary 
interconnects. Depending on the provider, the difficulty in scaling these early systems ranged 
from expensive to near-impossible [10]. Certain network architectures, InfiniBand in particular, 
offered more scalability than their high-performance competitors. Still, when juxtaposing 
flexibility and available support, the single-source nature of solutions like InfiniBand can't hold a 
candle to Ethernet [3][10].  

Ethernet's shortcomings with bandwidth and latency are largely hardware-based; they simply 
don't support the high-speed data transfer necessary for ML workloads. Beyond that, there are 
substantial problems in the physical layer-especially with error handling and power 
consumption-that further exacerbate the issue [11]. However, by addressing these limitations, 
Ethernet can become a viable AI network option [11].  

2.3 Evolution of Solutions 
Ethernet's evolution into a competitive AI network fabric was not the result of any one 
"breakthrough." Rather, it was a series of targeted innovations that addressed the aforementioned 
limitations: error handling, power consumption, high latency, limited bandwidth, and overall 
challenges in the physical layer. There exists an exhaustive body of research, both in industry 
and academia, devoted to rectifying Ethernet's "broader" limitations in the AI space. In this 
section, the focus will be on what I consider to be the three most important milestones: Habana 
Labs Gaudi processors, Cisco's High-Speed Ethernet Hardware and Standards, and Ultra 
Ethernet Consortium's Physical and Transport layer refinements [3][10][11]. The solutions will be 
covered in chronological order.  

2.3.1 Habana Labs Gaudi Processors and On-Chip RoCE (2020) 

Habana Labs was the first group to successfully integrate Remote Direct Memory Access 
(RDMA) over Converged Ethernet (RoCE) directly into a processor's architecture [10]. RDMA is 
a networking technology that allows data to be transferred directly between the memory of two 
machines without involving their CPUs, eliminating bottlenecks typically caused by CPU 
intervention. RoCE extends this approach by allowing RDMA to operate over standard Ethernet, 
combining RDMA's high-speed, low-latency benefits with Ethernet's cost-effectiveness [10].  

2.3.2 Cisco's High-Speed Ethernet Hardware and Standards (2023) 

Cisco further bridged the performance gap between Ethernet and single-source solutions via 
innovations in RoCE, specially designed for ML workloads [3]. Key hardware releases, including 
the Cisco 8111-EH and Nexus 9232E switches, pushed Ethernet performance to new heights, 
achieving record speeds of up to 800 Gbps [3].  

2.3.3 Ultra Ethernet Consortium's Physical and Transport Layer Refinements 
(2024) 

http://www.cse.wustl.edu/%7Ejain/cse574-24/ftp/aiether/index.html


AI Ethernet Fabric Survey Paper 
 

http://www.cse.wustl.edu/~jain/cse574-24/ftp/aiether/index.html  
  

5 

The Ultra Ethernet Consortium (UEC) proposed the Ultra Ethernet Transport (UET) protocol, 
utilizing real-time adaptive error correction to reduce packet loss and improve latency [11]. This 
addressed key challenges in the physical and transport layers, such as temperature stability and 
signal integrity under ultra-high bandwidth conditions [11].  

2.4 Summary and Key Takeaways 
Ethernet has grown into a solid, scalable foundation for AI networking, closing the performance 
gap with proprietary technologies like InfiniBand. Innovations like Gaudi's on-chip RoCE 
integration and Cisco's high-speed Ethernet switches tackled fundamental bandwidth and latency 
issues, while UEC's work on error handling and power efficiency addressed essential reliability 
concerns [3][10][11].  

3 Communication Bottlenecks in Distributed 
AI 
3.1 Introduction 
In this section, I focus on specific communication bottlenecks in distributed AI systems. These 
bottlenecks predominantly arise from the need to synchronize computations and seamlessly 
exchange gradients between nodes in distributed deep learning (DDL) environments [15]. Unlike 
Section 2, which discussed developments bringing Ethernet "up to AI standards" by improving 
basic capabilities, this section addresses bottlenecks encountered in most DDL systems and 
presents Ethernet-based solutions. I will cover five key advancements: Alibaba-PAI workload 
characterization (2019), HAL's scalable architecture (2020), FPGA-based Smart NICs (2022), 
SqueezeNIC (2024), and Meta's RoCE implementation (2024).  

3.2 Initial Architectures and Communication Challenges 
In the years leading up to 2019, it became evident that bandwidth and latency bottlenecks were 
severely affecting distributed training. Alibaba's 2019 analysis of its Platform of Artificial 
Intelligence (PAI) workloads highlighted communication as the dominant constraint for these 
workloads. Gradient exchanges consumed an average of 62% of the total execution time. As a 
slower network fabric, Ethernet, delivering 50-100 GB/s of bandwidth compared to the 600-900 
GB/s offered by GPU-optimized intra-node links like NVLink, was virtually unusable in these 
contexts. [7][15].  

Outside Ethernet, scaling distributed systems also posed significant hurdles. Parameter server-
based architectures (PS/Worker), a staple of early AI systems, relied on centralized parameter 
storage, where workers independently computed gradients before sending them to a central 
server for aggregation and updates. This centralized approach often became a bottleneck under 
high workloads due to communication overhead. In contrast, AllReduce architectures involved 
peer-to-peer communication, where gradients were aggregated across nodes without relying on a 
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central server. As we'll see, this distributed approach significantly reduced bottlenecks, allowing 
for better scalability by evenly distributing communication loads across an entire cluster. 
However, it exposed persistent weaknesses in scaling interconnects and maintaining 
communication performance across nodes [7][15].  

3.3 Evolution of Solutions 
This section will proceed in chronological order, covering each major development, what 
specific bottlenecks were resolved, and what challenges still remain. In the following subsection, 
I offer a brief analysis of 'where this leaves us' in terms of Ethernet capabilities.  

3.3.1 Alibaba-PAI Workload Characterization (2019) 

Alibaba's aforementioned study provided a roadmap for addressing communication bottlenecks 
in DDL by profiling production workloads. The analysis demonstrated that AllReduce 
architectures paired with high-bandwidth interconnects like NVLink achieved up to a 1.7A- 
speedup over PS/Worker configurations. However, as discussed in subsection 3.2, Ethernet 
interconnects remained an incredible bottleneck. [15].  

3.3.2 HAL's Scalable Hybrid Architecture (2020) 

To compensate for Ethernet's interconnect issues, certain researchers began looking into hybrid 
network fabrics. The HAL system (short for Hardware Accelerated Learning) was one such 
attempt. HAL used a hybrid approach, integrating Mellanox EDR InfiniBand with NVLink 2.0 to 
enhance inter-node communication, while Gigabit Ethernet was used as a secondary network. 
This combination effectively addressed bandwidth and latency bottlenecks, achieving linear 
scaling on ImageNet training with ResNet-50 across 64 GPUs. The system delivered 100 Gbps 
bandwidth for inter-node communication, significantly reducing latency and reducing training 
times by over 90% compared to non-hybrid systems [8]. This specialization meant that Ethernet 
could devote itself to the kinds of tasks best suited to its general purpose architecture: facilitating 
administrative functions like job scheduling, remote access, and system monitoring. By 
isolationing computational tasks on the high-speed InfiniBand fabric while reserving Ethernet for 
non-performance-critical management operations, scalability and resource utilization was 
maximized [8].  

Public Network 

BMC Manage Node 

FPGA Dev Node 
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HAL Architecture. Diagram recreated from Figure 1 in: Kindratenko, V., Mu, D., Zhan, Y., et al. "HAL: Computer System for 
Scalable Deep Learning," PEARC '20, 2020. https://doi.org/10.1145/3311790.3396649  

3.3.3 FPGA-Based Smart NICs (2022) 
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By offloading compute-intensive tasks like AllReduce operations onto Network Interface Cards 
(NICs), FPGA-based Smart NICs introduced a novel approach to optimizing communication. 
Using Block Floating Point (BFP) compression, these NICs increased bandwidth utilization and 
reduced training iteration times by 40% with minimal accuracy loss. This alleviated 
communication overhead and lowered latency, proving particularly effective in systems with up 
to 32 nodes. However, the researchers admit that performance/scalability beyond 32 nodes is 
uncertain [9].  

3.3.4 SqueezeNIC for In-NIC Compression (2024) 

SqueezeNIC further advanced the concept of offloading by incorporating hardware-accelerated 
compression directly at the NIC level. Capable of line-rate compression at 400 Gbps, it reduced 
computational overhead and improved latency through in-network compression and local 
reduction, resulting in a 21% speedup in training across 16-node systems.However, similar to the 
Smart NICs covered in the previous subsection, scaling beyond 16 nodes while maintaining 
performance is most likely difficult [13].  

3.3.5 RoCE Implementation at Meta Scale (2024) 

Meta's implementation of RoCE scaled AI workloads across thousands of GPUs. Enhanced 
routing mechanisms like Enhanced ECMP (E-ECMP) improved bandwidth utilization and 
congestion management for predictable AI traffic patterns. The use of receiver-driven congestion 
control mitigated latency and packet loss, permitting a 40% gain in routing efficiency. Flowlet 
switching reduced out-of-order packets, addressing the challenges of bursty AI traffic; 
unfortunately, sophisticated congestion control at larger scales is a problem that remains 
unsolved [6].  

Traffic Statistics in Production (128 GPU) 

Collective 

Avg. # 
of QPs 

per 
GPU 

Buffer 
Occupancy per 

Leaf Switch 
(MB) 

AlltoAll(v) 15 65.6 

AllReduce 4 13 

AllGather 4 22.1 

ReduceScatter 4 19.6 

Table of Network Resource Usage and Traffic Patterns for Collective Operations in Meta's 128-GPU Distributed AI Training 
Enviornment. Table recreated from Table 2 in: Gangidi, A., Miao, R., Zheng, S., et al. "RDMA over Ethernet for Distributed AI 

Training at Meta Scale," ACM SIGCOMM '24. https://doi.org/10.1145/3651890.3672233  
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3.4 The State of Ethernet Capabilities 
Ethernet has significantly improved its ability to handle distributed AI workloads, overcoming 
prior limitations in bandwidth and latency. Innovations like FPGA-based Smart NICs, 
SqueezeNIC, and RoCE have enhanced Ethernet's suitability for DDL environments.  

However, challenges remain, especially in scalability compared to specialized interconnects. 
Hybrid solutions, such as HAL's combination of InfiniBand and Ethernet, offer notable 
performance gains. Techniques like SqueezeNIC compression help alleviate bandwidth issues 
but face diminishing returns as systems scale [6].  

Meta's RoCE implementation shows the potential of Ethernet when paired with advanced 
congestion control. While performance at massive scales still needs refinement, Ethernet is 
decidedly a viable, though not standalone, solution for distributed AI. For the time being, hybrid 
models lervarging Ethernet alongside specialized interconnects remain crucial for balancing 
performance, scalability, and cost [6][15][13].  

4. AI-Specific Enhancements to Ethernet for 
Lossless Communication 
4.1 Introduction 
Lossless communication is critical for distributed AI workloads as model complexity and size 
continue to increase. Enhancing Ethernet to meet these demands means overcoming limitations 
in flow control, congestion management, and data consistency, especially in dynamic, high-
throughput environments like those for generative AI (GenAI) workloads.  

This section examines two major advancements pushing Ethernet toward lossless communication 
for AI: NetDAM's programmable in-memory computing architecture and Dell's enhanced 
Ethernet fabric for GenAI workloads. These innovations tackle foundational issues like 
congestion and packet loss while laying the groundwork for scalable, predictable AI networking 
performance.  

4.2 Early Approaches and Challenges 
Initial efforts to support lossless Ethernet communication relied on Priority Flow Control (PFC), 
which paused traffic to prevent buffer overflows. However, PFC's reactive nature led to 
inefficiencies, such as head-of-line blocking and packet drops under high demand [4][10]. 
Similarly, RDMA-based Ethernet protocols like RoCEv1 and RoCEv2 struggled with latency 
variability and congestion, particularly under bursty traffic, making them less ideal for 
distributed AI without further enhancements [11][4].  

http://www.cse.wustl.edu/%7Ejain/cse574-24/ftp/aiether/index.html


AI Ethernet Fabric Survey Paper 
 

http://www.cse.wustl.edu/~jain/cse574-24/ftp/aiether/index.html  
  

10 

Memory and congestion issues added complexity. Network-attached memory (NetDAM) 
revealed mismatches between intra-host (e.g., PCIe) and inter-host (e.g., Ethernet) 
communication, with latency, bandwidth, and congestion control as key bottlenecks in high-
performance AI workloads [11[5]].  

4.3 Evolution of Solutions 
This subsection will examine two major advancements specifically designed to enhance Ethernet 
for lossless communication in AI environments: NetDAM's programmable in-memory 
computing architecture, which focuses on improving memory access efficiency, and Dell's 
enhanced Ethernet fabric, which targets congestion management and high-throughput 
requirements for GenAI workloads.  

4.3.1 NetDAM's Programmable In-Memory Computing Architecture (2021) 

NetDAM introduced a programmable in-memory computing architecture to address gaps 
between intra-host and inter-host communication. By attaching programmable memory directly 
to Ethernet controllers, NetDAM unified memory access across PCIe, CXL, and Ethernet[5].  

NetDAM used a packet-based protocol combining instructions and data, allowing read, write, 
and reduce-scatter operations directly in memory. Segment Routing Headers and multipath load 
sharing helped distribute traffic evenly. In addition to mitigating congestion, this approach 
eliminated PCIe overhead, reduced latency, and improved bandwidth utilization for distributed 
AI workloads [5].  

Performance wise, NetDAM achieved an average wire-to-wire memory access latency of 618 
nanoseconds with a jitter of 39 nanoseconds. For distributed operations like MPI Allreduce, 
NetDAM outperformed traditional RDMA systems, completing tasks in as little as 400 
milliseconds [5].  

Ethernet Network 

Inter-host communication 

NetDAM Function Block 

DRAM 

ALUs with programmable logic 
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Ethernet Controller 

PCIe/CXL CHI 

PCIe/CXL 

Intra-host communication 

Unified Memory Access 

← 
→ 

NetDAM Function Block. Figure recreated from Figure 1 in: Fang, K., & Peng, D. (2021). NetDAM: Network Direct 
Attached Memory with Programmable In-Memory Computing ISA. Draft, October 03-05, Shanghai, China. 

https://doi.org/xx  

4.3.2 Dell's Enhanced Ethernet Fabric for GenAI Workloads (2024) 

Dell Technologies expanded Ethernet capabilities with enhancements for GenAI workloads. 
Their design integrated RoCEv2 with advanced flow control, including PFC and Data Center 
Quantized Congestion Notification (DCQCN), balancing performance and congestion prevention 
for low-latency, high-throughput communication [4].  

Dell's architecture included features like cut-through switching, enhanced hashing for traffic 
distribution, and multi-path routing to optimize data flow. A leaf-and-spine topology provided 
scalable, non-blocking communication paths, meeting large-scale AI infrastructure demands [4].  

Performance benchmarks showed significant improvements. By combining PFC and DCQCN, 
Dell's system reduced packet loss and congestion under high-intensity workloads. Cut-through 
switching minimized latency by forwarding packets before full reception, while next-gen silicon 
reduced latency by up to 200 nanoseconds. The leaf-and-spine topology ensured scalability to 
support dynamic infrastructure requirements [4].  

4.4 Current State of Lossless Communication over AI 
Ethernet Fabrics 
To summarize, NetDAM's programmable memory eliminated critical inter-host communication 
bottlenecks, while Dell's enhanced Ethernet fabric managed congestion and ensured consistent 
GenAI performance [11][10]. However, achieving true lossless communication at scale is still a 
work in progress. Challenges like tuning flow control mechanisms, optimizing for workload 
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variability, and simplifying advanced feature deployment remain. Addressing these issues is 
essential for realizing Ethernet's full capabilities in distributed AI, paving the way for discussions 
on fault tolerance and reliability in the next section [4][5].  

5 Fault Tolerance and Reliability in AI 
Networks 
5.1 Introduction 
As AI workloads grow in size and complexity, faults-caused by node failures, degraded network 
links, or service disruptions-can severely impact performance, stall training, or compromise data 
integrity. By addressing these challenges, distributed systems can recover fast, stay 
synchronized, and suffer minimal disruptions.  

This section discusses three critical advances in improving fault tolerance in AI Ethernet 
networks: Habana Labs' scalable AI workload architecture, Alibaba's HPN design for fault-
tolerant LLM training, and CollaSFC's intelligent failure detection system. I present the 
technologies chronologically to show how fault detection in AI Ethernet fabrics has evolved.  

5.2 Early Approaches and Challenges 
As discussed in Sections 2.2 and 3.2, early distributed AI architectures were susceptible to faults 
due to centralized designs creating single points of failure. Node and Top-of-Rack (ToR) failures 
could interrupt synchronous training workflows, as in such systems, all nodes had to be 
operational to maintain progress [10][12].  

Furthermore, the first failure detection mechanisms introduced more problems than they solved. 
They introduced significant overhead as these systems operated in the control plane, thus 
introducing their own delays and resource contention. This lack of responsiveness hindered real-
time fault resolution, further exacerbating disruptions. Early fault detection architectures also 
possessed scalability issues. Most systems failed to handle large-scale AI workloads under high 
loads, where faults could cause anything from performance degradation to total system failure 
[10][12].  

In the following subsections, I describe three significant technologies for fault tolerance 
enhancement in AI networks via Ethernet: Habana Labs' scalable architecture, Alibaba's High-
Performance Network (HPN), and CollaSFC's intelligent failure detection system.  

5.3 Evolution of Solutions 

5.3.1 Habana Labs' Gaudi Processors (2020) 
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As discussed in Section 2.3.1, the Ethernet-based Gaudi processors were the first to integrate 
RoCE directly into the processor architecture. Besides improving bandwidth and latency, such 
integration created a more inherently fault-tolerant design, reducing inter-node communication 
delays and mitigating the vulnerability of single-source hardware solutions [10].  

Including ECC-protected memory and redundant communication paths also contributed to 
reducing faults and ensuring system reliability. The research demonstrated that the processors 
provided nearly linear scalability-even during fault conditions-ensuring minimal disruption of AI 
workloads across multiple racks [10].  

5.3.2 Alibaba HPN for Fault-Tolerant LLM Training (2024) 

In line with hybrid approaches like HAL (described in Section 3.3.2), Alibaba's HPN redefined 
fault tolerance for large-scale LLM training by utilizing a dual-plane, two-tier design that 
eliminated single points of failure. The architecture merged non-stacked dual-ToR setups and 
optimized path selection to enable load balancing and redundancy, ensuring uninterrupted 
operation during network disruptions and minimizing faults [12].  

During execution, the HPN showed excellent fault tolerance, recording zero single-point failures 
over eight months. This reliability mitigated the impact of link failures, reducing downtime in 
GPU clusters and ensuring continuous LLM training. The lack of faults also improved end-to-
end training performance by 14.9% [12].  

5.3.3 CollaSFC Intelligent Failure Detection (2024) 

CollaSFC leveraged In-Network Computing (INC), as introduced in Section 4.3.1, to process 
data directly within network devices, minimizing latency and offloading tasks from centralized 
CPUs. It also utilized Digital Twin (DT) technology, enabling proactive management and fault 
detection, to deliver a state-of-the-art failure detection system for distributed AI networks. By 
hosting lightweight AI models on programmable data planes, CollaSFC localized anomaly 
detection, reducing reliance on the control plane and minimizing communication overhead [7].  

The system achieved an impressive 95.5% accuracy in fault detection with an F1-score of 95%, 
ensuring rapid identification and resolution of failures. Processing latencies ranged between 100 
I1/4s and 250 I1/4s, demonstrating the system's ability to operate in real-time without 
compromising network performance. Additionally, CollaSFC dynamically adjusted decision tree 
depths, balancing computational load with detection accuracy to maintain scalability and 
adaptability in diverse workloads [7].  

5.4 Current State of Fault Tolerance in AI Ethernet 
Technology 
Habana Labs' Gaudi processors, Alibaba's HPN design, and CollaSFC's intelligent failure 
detection have significantly enhanced Ethernet's fault tolerance and reliability for AI workloads. 
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These innovations address traditional vulnerabilities, ensuring high availability, scalability, and 
resilience in distributed AI systems [10][12][7].  

Despite these advancements, challenges remain. Ongoing research areas include scaling fault-
tolerant designs for hyper-scale environments, integrating sophisticated failure detection systems 
into diverse datacenter configurations, and balancing real-time responsiveness with system 
complexity. Addressing these issues will be crucial for building sustainable and efficient AI 
networks, a topic explored in the next section.  

6 Energy Efficiency and Sustainability in AI 
Ethernet Fabrics 
6.1 Introduction 
The energy demands of modern AI workloads are unprecedented, creating a pressing need for 
efficient and sustainable solutions within data centers. High-performance AI Ethernet fabrics, 
while critical for scalability, often contend with challenges such as excessive power 
consumption, inefficient thermal management, and sustainability concerns. Overcoming these 
limitations is essential not only for reducing operational costs but also for mitigating the 
environmental impact of large-scale AI applications.  

This section examines key advancements in energy-efficient Ethernet systems, focusing on 
technologies like Habana Labs' scalable design, efforts to quantify the AI tax, Broadcom's 
power-efficient solutions, UEC's physical layer refinements, and Broadcom's co-packaged optics 
innovations. These advancements are discussed in chronological order, illustrating the evolution 
of energy-efficient designs for AI Ethernet fabrics.  

6.2 Early Approaches and Challenges 
Early AI infrastructures were designed with a focus on raw performance, often neglecting energy 
efficiency. This approach led to unsustainable power usage and rising operational costs. Pre- and 
post-processing tasks, in particular, consumed significant resources without directly contributing 
to AI computations, exacerbating inefficiencies [14].  

Ethernet-connected AI systems also faced system overhead issues. Communication bottlenecks 
and data transfer inefficiencies significantly amplified power consumption, especially in legacy 
architectures where network traffic was not optimized for large-scale workloads [1].  
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Summary of the Specifications of Three AI-optimized Devices Under 
Study: V100, T4, and Stratix 10 NX  

Specification Nvidia V100† Nvidia T4† Intel S10 
NX‡ 

Peak FP32 TOPS 15.7 8.1 3.96 

Peak FP16 TOPS (125) (65) 143* 

Peak INT8 TOPS 62.8 (130) 143 

On-chip Mem. (MB) 16 10 16 

Process Tech. TSMC 12nm TSMC 12nm Intel 14nm 

Die Size (mm2) 815 545 < 500 [43] 

† Perf. in brackets is with tensor cores 
‡ FPGA peak perf. at 600 MHz 

* Using block floating point 
** Register Files for GPUs, M20Ks for FPGA 

Remade from Table 3 in: Adapted from Kumar, A., et al. (2024). "AI Hardware Design Challenges and Opportunities," 
Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture. https://doi.org/10.xxxx  

Thermal management posed another critical challenge. Traditional Ethernet designs struggled to 
dissipate heat effectively as data rates and node densities increased, particularly in dense, high-
performance AI clusters. These issues created barriers to scalability and sustainability [11][12].  

6.3 Evolution of Solutions 

6.3.1 Habana Labs Gaudi Processors and Energy Efficiency (2020) 

As previously discussed in Section 2.3.1, Habana Labs' Gaudi processors integrated RDMA over 
Converged Ethernet (RoCE), optimizing high-bandwidth communication and enhancing energy 
efficiency. The inclusion of on-die SRAM and high-bandwidth memory further reduced power 
draw, streamlining data access [10].  

Gaudi processors achieved up to a 40% reduction in Total Cost of Ownership (TCO) by 
eliminating the need for proprietary hardware and optimizing performance for standard Ethernet 
fabrics. These processors offered significant energy efficiency improvements compared to GPU-
based alternatives, particularly in large-scale AI workloads [10].  

6.3.2 Quantifying the AI Tax (2020) 
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As discussed in Section 2.2, early AI systems faced significant inefficiencies, with less than 60% 
of end-to-end latency attributed to actual computations. These inefficiencies, termed the 'AI tax,' 
included pre- and post-processing tasks and communication overheads [14].  

Efforts to quantify and address the AI tax led to innovations like purpose-built edge data centers, 
which reduced TCO by 15% while supporting accelerated AI workloads. Optimizations targeting 
storage and network bandwidth also significantly decreased energy consumption by addressing 
key bottlenecks [14].  

6.3.3 Broadcom's Power-Efficient Ethernet Innovations (2024) 

Building on efforts to overcome bandwidth limitations discussed in Section 3.3.5, Broadcom's 
Tomahawk 5 Ethernet switch, with a 51.2 Tbps capacity, introduced Co-Packaged Optics (CPO) 
to enhance power efficiency. High-performance PCIe Gen 5.0 Ethernet adapters and retimers 
further minimized energy consumption while enabling scalable connectivity for AI systems [2].  

These innovations reduced energy demands in AI clusters while maintaining high throughput. 
Broadcom also demonstrated effective cooling strategies and advances in optical power 
reduction at the OCP Global Summit, setting benchmarks for energy efficiency in Ethernet 
fabrics [2].  

6.3.4 Ultra Ethernet Consortium's Physical Layer Refinements (2024) 

As mentioned in Section 2.3.3, the Ultra Ethernet Consortium refined the physical and transport 
layers, including power management optimizations and adaptive error correction. These 2024 
refinements focused on adaptive signaling to mitigate temperature effects, leveraging silicon 
photonics for energy-efficient data transfers at ultra-high bandwidths [11].  

Error mitigation strategies in the transport layer further reduced energy costs by decreasing 
retries and retransmissions, addressing a key source of inefficiency in distributed AI systems [11].  

6.3.5 Co-Packaged Optics and Sustainability (2024) 

Broadcom's advancements in co-packaged optics and 200G/lane optical modules represented a 
major leap in energy-efficient scaling for next-generation AI clusters. By integrating optical 
components directly into switches, these technologies significantly reduced power consumption 
while supporting the high bandwidth demands of AI workloads [2].  

This innovation positioned Ethernet fabrics as a sustainable solution for handling large-scale AI 
deployments, achieving substantial power savings without compromising performance or 
scalability [2].  

6.4 Current State of the Art 
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Energy-efficient designs like Habana Labs' Gaudi processors, Broadcom's Ethernet switches, and 
the Ultra Ethernet Consortium's physical layer refinements have set new benchmarks for 
sustainability in AI Ethernet fabrics. These advancements address inefficiencies in power 
utilization, thermal management, and communication overhead, enabling significant energy 
savings while maintaining high performance [10][14][1][11][2].  

Despite these successes, challenges persist. Scaling these solutions to hyper-scale environments 
and integrating them into diverse data center architectures require continued innovation. The 
next section explores workload-aware optimization as a path to further enhance energy efficiency 
and performance in AI Ethernet fabrics.  

7 Open Challenges and Future Directions 
7.1 Introduction 
In this paper, we have explored Ethernet's evolution to meet the steep demands of AI workloads. 
addressing challenges in bandwidth, latency, fault tolerance, and energy efficiency. Despite these 
advancements, there remains room for improvement-- specifically, in scaling AI Ethernet fabrics 
and optimizing physical and transport layers. These limitations hinder Ethernet fabrics' ability to 
fully support AI, as the computational cost of these workloads will only increase. In this section, 
I outline key challenges and explore future directions for advancing AI Ethernet fabrics to meet 
these evolving needs.  

7.2 Key Unresolved Challenges 

7.2.1 Physical and Transport Layer Bottlenecks 

Long-distance communication continues to pose significant challenges for Ethernet fabrics. 
While silicon photonics, as discussed in Section 2.3.3, offers ultra-high bandwidth capabilities, it 
also introduces latency penalties due to retries and temperature instability at higher speeds. 
Endpoint tolerance thresholds remain inconsistent at scale, amplifying latency issues in 
distributed AI workloads [11].  

Error propagation and tail latency also persist as major obstacles. Although adaptive transport 
protocols have improved reliability, compounded physical-layer errors still affect overall system 
performance, particularly in high-bandwidth, low-latency environments [11].  

7.2.2 Scalable RDMA-Based Architectures 

As covered in Section 5.3.1, scaling RDMA-based architectures across multi-AI-zone 
deployments still presents serious congestion issues. This is largely due to the fact that cross-
zone training jobs frequently encounter oversubscription, leading to degraded performance due 
to inadequate bandwidth allocation. These performance drops reiterate the need for topology-
aware and workload-specific optimizations [6].  
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Furthermore, while flowlet switching can help manage fluctuating traffic, it introduces its own 
set of unmet challenges. A reduction in congestion can result in out-of-order packets, sufficiently 
bottlenecking latency and throughput. Balancing these trade-offs remains an open research area 
[6].  

7.2.3 Security and Interoperability Concerns 

Generally speaking, composable Ethernet architectures face unresolved security vulnerabilities, 
particularly at programmable switches and transport protocols. Ensuring integrity within these 
components is critical for large-scale AI deployments [11].  

Interoperability with emerging technologies like Compute Express Link (CXL) and NVLink has 
yet to be fully explored. Seamlessly integrating these interconnects into Ethernet fabrics for AI-
specific workloads remains a key challenge [11].  

7.3 Future Directions 

7.3.1 Advancing Physical and Transport Layers 

Future efforts should focus on implementing and benchmarking Ultra Ethernet Transport (UET) 
for latency-sensitive workloads, building on the refinements introduced by the Ultra Ethernet 
Consortium in Section 6.3.4. These tests will validate UET's theoretical advantages and identify 
areas for improvement in long-distance communication [11].  

Enhanced signaling protocols are necessary to optimize endpoint synchronization, reduce latency 
penalties, and improve effective throughput ("goodput") in distributed AI training environments 
[11].  

7.3.2 Expanding Scalable Network Architectures 

Dynamic configuration of congestion control settings, particularly in receiver-driven models, can 
optimize bandwidth utilization in high-contention scenarios. Fine-tuning these parameters will 
improve performance in large-scale deployments with varying workload demands [6].  

Adaptive flowlet switching mechanisms should be refined to reduce out-of-order packets while 
managing operational overheads. This balance is essential for ensuring scalability and reliability 
in complex AI network environments [6].  

7.3.3 Addressing Security and Interoperability 

Establishing robust composable security standards for programmable Ethernet switches is a 
priority. These frameworks must ensure resilience against exploitation in multi-tenant 
environments, safeguarding data and infrastructure integrity [11][6].  
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Cross-compatibility with future technologies such as CXL and NVLink will be critical for 
creating unified, scalable AI Ethernet fabrics. Exploring these integrations will enable seamless 
communication across diverse hardware platforms and optimize resource utilization [11][6].  

7.4 Key Takeaways 
AI Ethernet fabrics have significantly improved scalability, energy efficiency, and workload 
optimization, but unresolved challenges remain in areas such as long-distance communication, 
congestion control, and security. By building on these advancements and addressing unresolved 
issues, Ethernet is poised to become the cornerstone of scalable and sustainable AI networking.  

Acronym Table 

Acronym Full Form 

AI Artificial Intelligence 

RoCE Remote Direct Memory Access over Converged Ethernet 

DDL Distributed Deep Learning 

RDMA Remote Direct Memory Access 

FPGA Field-Programmable Gate Array 

NIC Network Interface Card 

HPN High-Performance Network 
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