Networking Layer Protocols for Internet of Things: 6LoWPAN and RPL

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse574-22/

- □ 6LowPAN
 - > Adaptation Layer
 - > Address Formation
 - > Compression
- RPL
 - > RPL Concepts
 - > RPL Control Messages
 - > RPL Data Forwarding

Note: This is part 3 of a series of class lectures on IoT.

Recent Protocols for IoT

Session	MQTT, SMQTT, CoRE, DDS, AMQP, XMPP, CoAP, IEC, IEEE 1888,
Network	Encapsulation: 6LowPAN, 6TiSCH, 6Lo, Thread Routing: RPL, CORPL, CARP
Datalink	Wi-Fi, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3G/LTE, NFC, Weightless, HomePlug GP, 802.11ah, 802.15.4e, G.9959, WirelessHART, DASH7, ANT+, LTE-A, LoRaWAN, ISA100.11a, DigiMesh, WiMAX,

Security

IEEE 1888.3, TCG, Oath 2.0, SMACK, SASL, EDSA, ace, DTLS, Dice, ...

Management

IEEE 1905, IEEE 1451, IEEE 1377, IEEE P1828, IEEE P1856

Student Questions

Ref: Tara Salman, Raj Jain, "A Survey of Protocols and Standards for Internet of Things," Advanced Computing and Communications, Vol. 1, No. 1, March 2017, http://www.cse.wustl.edu/~jain/papers/iot_accs.htm

IEEE 802.15.4

- Wireless Personal Area Network (WPAN)
- □ Allows mesh networking.

 Full-function nodes can forward packets to other nodes.
- A PAN coordinator (like Wi-Fi Access Point) allows nodes to join the network.
- Nodes have 64-bit addresses
- □ Coordinator assigns 16-bit short address for use during the association
- Maximum frame size is 127 bytes

Student Questions

Washington University in St. Louis

EUI64 Addresses

□ Ethernet addresses: 48-bit MAC

Unicast Multicast		Organizationally Unique ID (OUI)	
1b	1b	22b	24b

□ IEEE 802.15.4 Addresses: 64-bit Extended Unique Id (EUI)

Unicast	Universal	Organizationally	Manufacturer
Multicast	Local	Unique ID (OUI)	Assigned
1b	1b	22b	40b

■ Local bit was incorrectly assigned. L=1 ⇒ Local
But all-broadcast address = all 1's is not local.

IETF RFC4291 changed the meaning so that L=0 ⇒ Local
The 2nd bit is now called the Universal bit (U-bit)

⇒ U-bit formatted EUI64 addresses

6LowPAN

- □ IPv6 over Low Power Wireless Personal Area Networks
- How to transmit IPv6 datagrams (elephants) over low-power IoT devices (mice)?

- **■** Issues:
- 1. IPv6 address formation: 128-bit IPv6 from 64-bit EUI64
- 2. Maximum Transmission Unit (MTU): IPv6 at least 1280 bytes vs. IEEE 802.15.4 standard packet size is 127 bytes

802.15.4 Header	Security Option	Payload
25B	21B	81B

- **3.** Address Resolution: 128b or 16B IPv6 addresses. 802.15.4 devices use 64-bit (no network prefix) or 16-bit addresses
- **4. Optional mesh routing in the datalink layer**⇒ Need destination and intermediate addresses.

Student Questions

Ref: G. Montenegro, et al., "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," RFC 4944, Sep 2007, https://www.nea.gov.netl.aday/siain/aga5574.22/

6LowPAN Adaptation Layer

5. MAC-level retransmissions versus end-to-end:

- > Optional hop-by-hop ack feature of 802.15.4 is used, but the max number of retransmissions is kept low (to avoid overlapping L2 and L4 retransmissions)
- 6. Extension Headers: 8b or less Shannon-coded dispatch
 - \Rightarrow header type
 - \triangleright 10₂: Mesh addressing header (2-bit dispatch)
 - \triangleright 11x00₂: Destination Processing Fragment header (5-bit)
 - > 01010000₂: Hop-by-hop LowPAN Broadcast header (8-bit)

7. IPv6 and UDP header compression

Ref: O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2013, 344 pp., ISBN: 9781119994350 (Safari Book)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

IPv6 Address Formation

- □ Link-Local IPv6 address = FE80::U-bit formatted EUI64
- **■** Example:
 - > EUI64 Local Address = 40::1 = 0100 0000::0000 0001
 - > U-bit formatted EUI64 = 0::1
 - > IPv6 Link-local address = FE80::1 = 1111 1110 1000 0000::1
- □ IEEE 802.15.4 allows nodes to have 16-bit short addresses, and each PAN has a 16-bit PAN ID.

 1st bit of Short address and PAN ID is Unicast/Multicast The 2nd bit of Short Address and PAN ID is Local/Universal. You can broadcast to all members of a PAN or all PANs.
- □ IPv6 Link Local Address = FE80 :: PAN ID : Short Address Use 0 if PAN ID is unknown.

 2nd bit of PAN ID should always be zero since it is always local.

 2nd most significant = 6th bit from right)

Homework 14A

- What is the IPv6 Link-Local address for an IEEE 802.15.4 node whose EUI64 address in hex is 0000::0002. Indicate your final answer in hex without using ::
- □ EUI64 in Binary =
- U-bit EUI64 Binary =
- □ U-bit EUI64 Hex =
- □ IPv6 Link Local Address =

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

Mesh Addressing Header

- □ Dispatch = 10_2 (2 bits) \Rightarrow Mesh Addressing Header
- MAC header contains only originator and final addresses.

 Each FFD node on the path looks up the final address in its routing table ⇒ Mesh routing, not path routing. The transmitter and receiver addresses are upfront in the IEEE 802.15 header.
- □ A 4-bit hops-left field is decremented at each hop

 $V=0 \Rightarrow$ Originator address is EUI64, $V=1 \Rightarrow 16bit$

 $F=0 \Rightarrow$ Final address is EUI64, $F=1 \Rightarrow$ 16-bit

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Student Questions

Washington University in St. Louis

6LowPAN Broadcast Header

- □ For Mesh broadcast/multicast
- A new sequence number is put in every broadcast message by the originator

Dispatch Sequence 01010000₂ Number 8b 8b

6LowPAN Fragment Header

- □ Dispatch = 11x00 (5 bits) \Rightarrow Fragment Header
- □ Full packet size in the first fragment's fragment header
- □ Datagram tag = sequence number
 - ⇒ Fragments of the same packet
- ☐ Fragment Offset in multiples of 8 bytes

Other Fragments:

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

IP+UDP Header Compression: Stateless

- □ Called **HC1-HC2 compression** (not recommended)
- □ IP version field is omitted
- □ Flow label field if zero is omitted and C=1
- \Box Only 4b UDP ports are sent if between 61616-61631 (F0Bx)
- □ UDP length field is omitted. IP addresses are compressed.

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Washington University in St. Louis

Context Based Compression

- □ HC1 works only with link-local addresses
- Need globally routable IPv6 addresses for outside nodes
- □ IPHC uses a 3b dispatch code and a 13-bit base header

)11	11	1 111	Limit	CID	Si IC	S7 HVI	141	Dire	DINVI		Ber	IPv6 fields
3	b	2b	1b	2b\	1b	\1b	2b	1b	<u>lb</u>	2b	<u>4b</u>	4b	,
	affic ass,	Source Adr Compression Multicast Destination											
Flo Lal)W	uses Predefined hop lin LowPAN_NHC uncompressed (00							SAC	SAM DAM		ress	
La	001	1, 64, 255							0	00	No c	ompres	sion
0	$0 \mid E$	CN+	DSC	CP+4b p	ad+				0	01	First	64-bits	omitted
	2	0b F1	low 1	abel (4	Bytes)			0	10	First	112 bit	ts omitted
0	1 E	ECN +2b pad + 12b Flow							0	11	128	bits om	itted. Get from L2
		label (2 Bytes), DSCP omitted							1	00	Unst	pecified	Address ::
1		ECN+DSCP (1B), Flow label omitted							1	01	First	64 bits	from context
-		• • • •							1	10	First	112 bit	ts from context
	11 ECN+DSCP+Flow label omitted								1	11	128	bits fro	m context and L2

Disp TF NH Hop CID SAC SAM M DAC DAM SCI DCI Uncompressed

Student Questions

Ref: O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2013, 344 pp., ISBN: 9781119994350 (Safari Book)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Context Based Compression (Cont)

- ☐ If the next header uses LowPAN_NHC
 - > For IPv6 base extension headers:

1110	IPv6 Ext Hdr ID (EID)	NH	_	Next Hdr
4b	3b	1b		

EID	Header
0	IPv6 Hop-by-Hop Options
1	IPv6 Routing
2	IPv6 Fragment
3	IPv6 Destination Options
4	IPv6 Mobility Header
5	Reserved
6	Reserved
7	IPv6 Header

0 = Uncompressed 1 = LowPAN_NHC encoded

LowPAN NHC UDP Header:

11110	С	P
5b	1b	2b
Checksum	om	itted

00	All 16-bits in line
01	1 st 8-bits of dest port omitted
10	1 st 8-bits of src port omitted
11	1 st 12-bits of src & dest omitted

Ref: J. Hui and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks," IETF RFC 6282, Sep 2011, http://tools.ietf.org/pdf/rfc6282

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

6LowPAN: Summary

□ 3 New Headers:

- > Mesh addressing: Intermediate addresses
- > Hop-by-Hop: Mesh broadcasts
- > Destination processing: Fragmentation
- □ Address Formation: 128-bit addresses by prefixing FE80::
- ☐ Header compression:
 - > HC1+HC2 header for link-local IPv6 addresses
 - > IPHC compression for all IPv6 addresses

Routing Protocol for Low-Power and Lossy Networks (RPL)

- Developed by IETF Routing over Low-Power and Lossy Networks (ROLL) working group
- Low-Power and Lossy Networks (LLN) Routers have processing, memory, and energy constraints.
 - ⇒ Can't use OSPF, OLSR, RIP, AODV, DSR, etc.
- □ LLN links have high loss rates, low data rates, and instability ⇒ expensive bits dynamically formed topology
- □ Covers both wireless and wired networks Requires **bidirectional** links. It may be a symmetric/asymmetric data rate.
- □ Ideal for n-to-1 (data sink) communications, e.g., meter reading
 - 1-to-n (multicast) and 1-to-1 possible with some extra work.
- Multiple LLN instances on the same physical networks

Ref: T. Winder, Ed., et al., "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550, Mar 2012, https://datatracker.ietf.org/doc/rfc6550/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

RPL Concepts

- □ Directed Acyclic Graph (DAG): No cycles
- **Root**: No outgoing edge
- **Destination-Oriented DAG (DODAG):** Single root
- □ Up: Towards the root
- **Down**: Away from root
- Objective Function: Minimize energy, latency, ...
- Rank: Distance from the root using specified objective
- Rank=1 **RPL Instance**: One or more DODAGs. Rank=2 A node may belong to multiple RPL instances.
- **DODAG ID**: IPv6 Adr of the root
- **DODAG Version**: Current version of the DODAG. Every time a new DODAG is computed with the same root, its version incremented.

http://www.cse.wustl.edu/~jain/cse574-22/

DAG

DODAG

Root

RPL Concepts (Cont)

- □ Goal: Reachability goal, e.g., connected to a database
- □ **Grounded**: Root can satisfy the goal
- Floating: Not grounded. Only in-DODAG communication.
- □ Parent: Immediate successor towards the root
- □ Sub-DODAG: Sub tree rooted at this node
- **Storing**: Nodes keep routing tables for sub-DODAG
- Non-Storing: Nodes know only parent. Do not keep a routing table.

RPL Control Messages

1. **DODAG Information Object (DIO)**:

- Downward RPL instance multicasts
- Allows other nodes to discover an RPL instance and join it

Link-Local multicast request for DIO (neighbor discovery).

Do you know of any DODAGs?

3. Destination Advertisement Object (DAO):

- > From child to parent or root.
- Can I join you as a child on DODAG #x?
- 4. DAO Ack: Yes, you can! Or Sorry, you cant!
- 5. Consistency Check: Challenge/response messages for security

DIS DIO DAO DAO-Ack

... DIS

Old

New

New

Student Questions

Ref: S. Kuryla, "RPL:IPv6 Routing Protocol for Low Power and Lossy Networks,"

http://cnds.eecs.jacobs-university.de/courses/nds-2010/kuryla-rpl.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-22/

DODAG Formation Example

- A multicasts DIOs that it's a member of DODAG ID itself with Rank 0.
- B, C, D, and E hear and determine that their rank (distance) is 1, 1, 3, 4, respectively, from A
- B, C, D, E send DAOs to A.
- A accepts all
- B and C multicast DIOs
- D hears those and determines that its distance from B and C is 1, 2
- E hears both B, and C and determines that its distance from B and C is 2, 1
- D sends a DAO to B E sends a DAO to C
- B sends a DAO-Ack to D C sends a DAO-Ack to E

RPL Data Forwarding

- □ Case 1: To the root (n-to-1)
 - > Address to root and give to the parent
- □ Case 2: A to B
 - > 2A: Storing (Everyone keeps a routing table)
 - □ Forward up from A to common parent
 - □ Forward down from common parent to B
 - > 2B: Non-storing (No routing tables except at root)
 - □ Forward up from A to root
 - □ Root puts a source route and forwards down
- □ Case 2: Broadcast from the root (1-to-n)
 - > 2A: Storing (everyone knows their children)
 - □ Broadcast to children
 - > 2B: Non-Storing (Know only parents but not children)
 - □ Root puts a source route for each leaf and forwards

Homework 14B

- A. Which of the following is not a DODAG, and why?
- B. What is the direction of Link A? (Up or Down):
- □ C. Assuming each link has a distance of 1, what is the rank of node B?
- □ D. Show the paths from B to C if the DODAG is non-storing.
- E. Show the paths from D to E if the DODAG is storing.

Washington University in St. Louis

RPL Summary

- 1. An RPL instance consists of one or more DODAGs
- DIOs are broadcast downward,DAOs are requests to join upward.DISs are DIO solicitations.DAO-acks are responses to DAO
- 3. Non-storing nodes do not keep any routing table and send everything upwards toward the root

Student Questions

Summary

- 1. 6LowPAN is designed for IPv6 over IEEE 802.15.4 Frame size and address sizes are primary issues. Header compression is the key mechanism
- 2. RPL is designed primarily for data collection
 No assumption about IEEE 802.15.4 or wireless or frame size
 Routing is the primary issue.
 Forming a spanning tree-like DODAG is the solution

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

Reading List

- O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2013, 344 pp., ISBN: 9781119994350 (Safari Book)
- ☐ G. Montenegro, et al., "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," RFC 4944, Sep 2007, http://tools.ietf.org/pdf/rfc4944
- J. Hui and P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks," IETF RFC 6282, Sep 2011, http://tools.ietf.org/pdf/rfc6282
- □ T. Winder, Ed., et al., "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550, Mar 2012, https://datatracker.ietf.org/doc/rfc6550/
- □ S. Kuryla, "RPL: IPv6 Routing Protocol for Low Power and Lossy Networks,"

 http://cnds.eecs.jacobs-university.de/courses/nds-2010/kuryla-rpl.pdf

Wikipedia Links

- □ http://en.wikipedia.org/wiki/6LoWPAN
- □ http://en.wikipedia.org/wiki/IEEE_802.15.4
- □ http://en.wikipedia.org/wiki/MAC address
- □ http://en.wikipedia.org/wiki/IPv6
- □ http://en.wikipedia.org/wiki/IPv6_address
- □ http://en.wikipedia.org/wiki/Organizationally_unique identifier
- □ http://en.wikipedia.org/wiki/IPv6 packet
- □ http://en.wikipedia.org/wiki/Link-local_address

Student Questions

Washington University in St. Louis

References

- N. Kushalnagar, et al., "IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem Statement, and Goals", IETF RFC 4919, Aug 2007, http://www.rfc-editor.org/rfc/pdfrfc/rfc4919.txt.pdf
- G. Montenegro, N. Kushalnagar, J. Hui, D. Culler, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks," IETF RFC 4944, https://tools.ietf.org/pdf/rfc4944
- J. Hui, Ed., P. Thubert, "Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks," IETF RFC 6282, Sept 2011, https://tools.ietf.org/html/rfc6282
- E. Kim, et al., "Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)," IETF RFC 6568, Apr 2012, http://www.rfc-editor.org/rfc/pdfrfc/rfc6568.txt.pdf
- E. Kim, et al., "Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing," IETF RFC 6606, May 2012, http://www.rfc-editor.org/rfc/pdfrfc/rfc6606.txt.pdf
- Z. Shelby, et al., "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs), IETF RFC 6775, Nov. 2012, http://www.rfc-editor.org/rfc/pdfrfc/rfc6775.txt.pdf

References (Cont)

- "Routing Requirements for Urban Low-Power and Lossy Networks," IETF RFC 5548, May 2009, https://datatracker.ietf.org/doc/rfc5548/
- "Industrial Routing Requirements in Low-Power and Lossy Networks," IETF RFC 5673, Oct 2009, https://datatracker.ietf.org/doc/rfc5673/
- "Home Automation Routing Requirements in Low-Power and Lossy Networks," IETF RFC 5826, Apr 2010, https://datatracker.ietf.org/doc/rfc5826/
- "Building Automation Routing Requirements in Low-Power and Lossy Networks," IETF RFC 5867, Jun 2010, https://datatracker.ietf.org/doc/rfc5867/
- □ "The Trickle Algorithm," IETF RFC 6206, Mar 2011, https://datatracker.ietf.org/doc/rfc6206/
- □ "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks," IETF RFC 6550, Mar 2012, https://datatracker.ietf.org/doc/rfc6550/
- "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks," IETF RFC 6551, Mar 2012, https://datatracker.ietf.org/doc/rfc6551/
- "Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL)," IETF RFC 6552, Mar 2012, https://datatracker.ietf.org/doc/rfc6552/

References (Cont)

- "The Minimum Rank with Hysteresis Objective Function," IETF RFC 6719, Sep 2012, https://datatracker.ietf.org/doc/rfc6719/
- "Reactive Discovery of Point-to-Point Routes in Low-Power and Lossy Networks," IETF RFC 6997, Aug 2013, https://datatracker.ietf.org/doc/rfc6997/
- □ "A Mechanism to Measure the Routing Metrics along a Point-to-Point Route in a Low-Power and Lossy Network," IETF RFC 6998, Aug 2013, https://datatracker.ietf.org/doc/rfc6998/

Acronyms

6LowPAN	IPv6 over L	ow Power	Wireless	Personal	Area Network
OLOWITI			7 1 1 C1 C B B	1 CIBOHai	

- □ AODV Ad-hoc On-demand Distance Vector
- □ AQMP Advanced Queueing Message Protocol
- □ ARC-EM4 Name of a product
- □ ARM Acorn RISC Machine
- □ CC Consistency Check
- □ CID Context ID
- CoAP Constrained Application Protocol
- □ CoRE Constrained Restful Environment
- DA Destination Address
- □ DAC Destination Address Compression
- □ DAG Directed Acyclic Graph
- DAM Destination Address Mode
- DAO DODAG Advertisement Object
- DCI Destination Context ID
- DDS Data Distribution Service

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Washington University in St. Louis

■ DECT Digital Enhanced Cordless Telecommunication

DIO DODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acyclic Graph

□ DSCP Differentiated Services Control Point

DSR Dynamic Source Routing

DTLS Datagram Transport Level Security

■ ECN Explicit Congestion Notification

□ EID IPv6 Extension Header ID

■ EUI Extended Unique Id

GP GreenPHY

■ HC Header Compression

□ HC1-HC2 Header Compression 1 and Header Compression 2

□ ICMP IP Control Message Protocol

□ ID Identifier

□ IEEE Institution of Electrical and Electronic Engineers

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

□ IETF Internet Engineering Task Force

□ IID Interface Identifier

□ IoT Internet of Things

□ IP Internet Protocol

□ IPHC IP Header Compression

■ IPv6 Internet Protocol Version 6

□ ISASecure Security certification by

■ LLN Low-Power and Lossy Networks

LoRaWAN Long Range Wide Area Network

■ LTE Long-Term Evolution

■ MAC Media Access Control

■ MTU Maximum Transmission Unit

■ NFC Near Field Communication

■ NH Next Header

□ NHC Next Header Compression

OLSR On-Demand Link State Routing

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

OSPF Open Shortest Path Forwarding

□ PAN Personal Area Network

□ RFC Request for Comments

□ RIP Routing Information Protocol

□ ROLL Routing over Low-Power and Lossy Networks

□ RPL Routing Protocol for Low-Power and Lossy Networks

□ SA Source Address

□ SAC Source Address Compression

□ SAM Source Address Mode

□ SASL Simple Authentication and Security Layer

□ SCI Source Context ID

□ SMACK Simplified Mandatory Access Control Kernel

□ TCG Trusted Computing Group

TCP Transmission Control Protocol

□ TF Traffic Class, Flow Label

□ TinyOS Tiny Operating System

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

UDP
User Datagram Protocol

□ ULE Ultra Low Energy

■ Wi-Fi Wireless Fidelity

□ WirelessHART Wireless Highway Addressable Remote Transducer Protocol

■ WPAN Wireless Personal Area Network

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

Little Endians vs. Big Endians

- \Box Endianness = Byte order in a word
- □ Question 1: How should we write 16,909,060?
 - \rightarrow Answer: $16,909,060 = 1 \times 2^{24} + 2 \times 2^{16} + 3 \times 2^{8} + 4$
- 1 2 3 4
- Question 2: How should we store bytes in a word in the memory?
 - Answer 2A: Byte 0 Byte 1 Byte 2 Byte 3 4 3 2 1
 - > Answer 2B: Byte 3 Byte 2 Byte 1 Byte 0 1 2 3 4
- Two tribes (Machine Architectures):
 - > Big Endians: Most Significant Byte (MSB) first
 - > Little Endians: Least Significant Byte (LSB) first

Ref: Raj Jain, "FDDI Handbook: High Speed Networking with Fiber and Other Media," Addison Wesley, Reading, MA April 1994

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

little endians vs. big endians

- endianness = bit order in a Byte
- \square Question: How should be write 11_{10} ?
- \square Answer: $11_{10} = B_{16} = 1011_2$
- Question 3: How should we store bits in a byte in the memory?
- □ Answer 3A: bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 1 1 0 1 ...
- □ Answer 3B: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 ... 1 0 1 1
 - > big endians: most significant bit (msb) first
 - > little endians: least significant bit (lsb) first

Student Questions

Ref: https://en.wikipedia.org/wiki/Endianness

little endians vs. big endians

- Both tribes lived peacefully until they were "networked"
- □ Networking folks started arguing in IEEE 802 around 1979-80.
- \square Question 4: How should we **transmit** 11_{10} on the wire?
 - Answer 4A: bit 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
 - > Answer 4B: bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
- **□** Agreement:
 - > MSB, msb on the wire. Store as you like in your computer.
- Question 5: How do we write the addresses on paper?
 - > 1sb use dashes: xx-xx-xx-xx-xx
 - > msb use colon: xx:xx:xx:xx:xx
 - ➤ Most people are unaware of this notation and use : and interchangeably and msb is first always.

IPv6

- □ Colon-Hex Notation: Eight 16-bit words FEDC:0000:0000:0000:3243:0000:0000:ABCD
 - > Can skip leading zeros of each word
 - > Can skip one sequence of zero words, e.g.,

FEDC::3243:0000:0000:ABCD

::3243:0000:0000:ABCD

- Network Prefix: First 64-bit are network address, last 64-bit are host address
- □ Local Addresses: Provide plug and play

> Link Local: FE80::xxxx

> Site Local: FEC0::xxxx

Raj **V6 9IPv6),"** Introduction to Computer Networking, Course Lecture, WUSTL 2005, http://www.cse.wustl.edu/~jain/cse473-05/i_eip6.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

IPv6 (Cont)

- □ IPv6 header has no optional fields.
 - > Fields were divided in to groups
 - > One group is required (base header)
 - > Other groups may or may not be present (Extension headers)
 - > All headers have fixed format

Base Header	Extension Header 1	Extension Header <i>n</i>	Data

- Extension Headers: Most extension headers are examined only at the destination
- Examples: Fragmentation Header, Routing Header (path routing), ...

Raj V6 9IPv6)," Introduction to Computer Networking, Course Lecture, WUSTL 2005, http://www.cse.wustl.edu/~jain/cse473-05/i eip6.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Lab 1

A. Download InSSIDer v3.1.2.1 from:

- > http://www.techspot.com/downloads/5936-inssider.html or
- http://www.filecroco.com/download-inssider
- Measure the signal levels of various WiFi networks
- Submit a screen capture
- Note: The version specified above is free and is sufficient for this lab. Higher versions of InSSIDer are either not free or require getting a code after creating a free a/c. The MAC version is currently beta. See: https://www.metageek.com/support/downloads/
- **B. Download Wireshark from:**
 - https://www.wireshark.org/#download
- Run a trace packets on your wireless network
- Submit a screen capture

Student Questions

Scan This to Download These Slides

Raj Jain http://rajjain.com

http://www.cse.wustl.edu/~jain/cse574-22/j_14lpn.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n 1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Student Questions

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/