Wireless Protocols for IoT Part III: Zigbee

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse574-22/

- 1. Zigbee Features, Versions, Device Types, Topologies
- 2. Zigbee Protocol Architecture
- 3. Zigbee Application, Zigbee Application Support Layer
- 4. Network Layer, Routing: AODV, DSR
- 5. Zigbee Smart Energy V2

Note: This is the 3rd lecture in series of class lectures on IoT. Bluetooth, Bluetooth Smart, IEEE 802.15.4 were covered in the previous lectures..

Zigbee PRO Features

- □ Zigbee PRO: Published in 2007.
- Stochastic addressing: A device is assigned a random address and announced. Mechanism for address conflict resolution. Parents don't need to maintain assigned address table.
- □ Link Management: Each node maintains quality of links to neighbors. Link quality is used as link cost in routing.
- □ Frequency Agility: Nodes experience interference report to channel manager (e.g., trust center), which then selects another channel
- □ Multicast
- Many-to-One Routing: To concentrator
- Asymmetric Link: Each node has different transmit power and sensitivity. Paths may be asymmetric.
- □ **Fragmentation** and Reassembly

Student Questions

Zigbee Overview

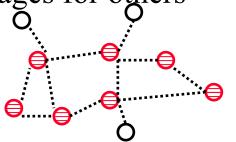
- □ Industrial monitoring and control applications requiring small amounts of data, turned off most of the time (<1% duty cycle), e.g., wireless light switches, meter reading, patient monitoring
- □ First standard was published in 2004
- □ Ultra-low power, low-data rate, multi-year battery life
- Power management to ensure low power consumption.
- □ Less Complex. 32kB protocol stack vs 250kB for Bluetooth
- **Range**: 1 to 100 m, up to 65000 nodes.
- □ Tri-Band:
 - > 16 Channels at 250 kbps in 2.4GHz ISM
 - > 10 Channels at 40 kb/s in 915 MHz ISM band (Americas)
 - > One Channel at 20 kb/s in European 868 MHz band
 - > 920 MHz in Japan

Student Questions

Zigbee Overview (Cont)

■ IEEE 802.15.4 MAC and PHY (Except for Zigbee Smart Energy 2.0) Higher layer and interoperability by Zigbee Alliance

 \square Up to 254 devices or <u>64516</u> (~2¹⁶) simpler nodes

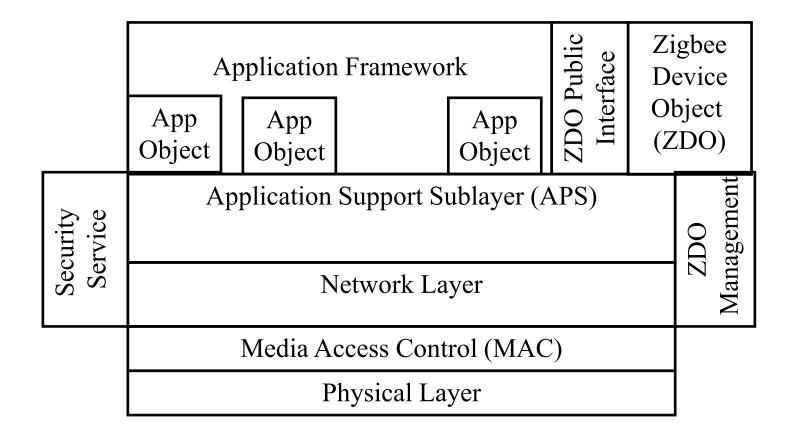

- Named after zigzag dance of the honeybees
 Direction of the dance indicates the location of food
- Multi-hop ad-hoc mesh network

Multi-Hop Routing: message to non-adjacent nodes

Ad-hoc Topology: No fixed topology. Nodes discover each other

Mesh Routing: End-nodes help route messages for others

Mesh Topology: Loops possible


Ref: Zigbee Alliance, http://www.Zigbee.org

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Zigbee Protocol Architecture

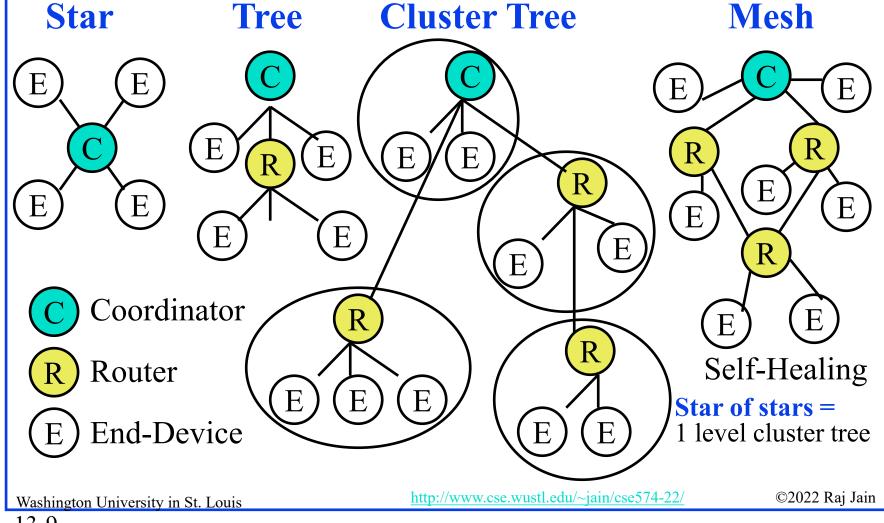
Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

PRO Features (Cont)

- Power Management: Routers and Coordinators use main power. End Devices use batteries.
- Security: Standard and High End-Devices get new security key when they wake up.
- **□ Backward Compatible**:
 - > Pro-devices act as non-routing Zigbee end devices (ZEDs) on legacy Zigbee network.
 - Legacy Zigbee devices act as non-routing Zigbee enddevices on Zigbee Pro Network


Zigbee Device Types

- □ Coordinator: Selects channel, starts the network, assigns short addresses to other nodes, transfers packets to/from other nodes
- Router: Transfers packets to/from other nodes
- □ Full-Function Device: Capable of being coordinator or router
- Reduced-Function Device: Not capable of being a coordinator or a router ⇒ Leaf node
- □ **Zigbee Trust Center (ZTC):** Provides security keys and authentication
- □ Zigbee Gateway: Connects to other networks, e.g., WiFi

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

Zigbee Topologies

Zigbee Protocol Architecture (Cont)

- □ **Application Objects**: e.g., Remote control application. Also referred to as **End-Point** (EP). ∇
- End-Node: End device.

 Each node can have up to 250 application objects.

 Switch EP1 EP6 Light Light
- □ Zigbee Device Object (ZDO): Control and management of application objects. Initializes coordinator, security service, device and service discovery
- □ Application Support Layer (APS): Serves application objects.
- □ Network Layer: Route Discovery, neighbor discovery
- ZDO Management
- Security Service

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

Zigbee Application Layer

- Application layer consists of application objects (aka end points) and Zigbee device objects (ZDOs)
- 256 End Point Addresses:
 - > 240 application objects: Address EP1 through EP240
 - > ZDO is EP0
 - > End Points 241-254 are reserved
 - > EP255 is broadcast
- Each End Point has one application profile, e.g., light on/off profile
- Zigbee forum has defined a number of profiles. Users can develop other profiles
- Attributes: Each profile requires a number of data items. Each data item is called an "attribute" and is assigned an 16-bit "attribute ID" by Zigbee forum

Student Questions

Zigbee Application Layer (Cont)

- □ Clusters: A collection of attributes and commands on them. Each cluster is represented by a 16-bit ID. Commands could be read/write requests or read/write responses
- □ Cluster Library: A collection of clusters. Zigbee forum has defined a number of cluster libraries, e.g., General cluster library contains on/off, level control, alarms, etc.
- **Binding**: Process of establishing a logical relationship (parent, child, ..)
- **ZDO**:
 - > Uses device and service discovery commands to discover details about other devices.
 - > Uses binding commands to bind and unbind end points.
 - > Uses network management commands for network discover, route discovery, link quality indication, join/leave requests

Student Questions

Zigbee Application Profiles

- □ Smart Energy: Electrical, Gas, Water Meter reading
- □ Commercial Building Automation: Smoke Detectors, lights,

. .

- □ Home Automation: Remote control lighting, heating, doors,
- □ Personal, Home, and Hospital Care (PHHC): Monitor blood pressure, heart rate, ...
- **Telecom Applications**: Mobile phones
- Remote Control for Consumer Electronics: In collaboration with Radio Frequency for Consumer Electronics (RF4CE) alliance
- □ Industrial Process Monitoring and Control: temperature, pressure, position (RFID), ...
- Many others

Ref: A. Elahi and A. Gschwender, "Zigbee Wireless Sensor and Control Network," Prentice Hall, 2009, 288 pp., ISBN:0137134851, Safari Book

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Sample Zigbee Products

Lock (Kwikset)

Motion Detector (Bosch)

Light Bulb (Sengled)

Outlet (Samsung)

Hub (Samsung)

Temperature Sensor (Visonic)

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Zigbee Address Assignment

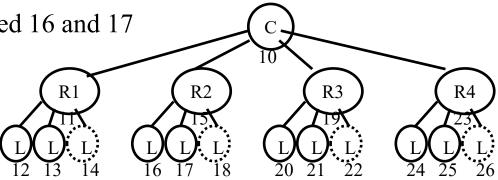
- Each node gets a unique 16-bit address
- □ Two Schemes: Distributed and Stochastic
- □ Distributed Scheme: Good for tree structure
 - > Each child is allocated a sub-range of addresses.
 - Need to limit maximum depth L,
 Maximum number of children per parent C, and Maximum number of routers R
 - \rightarrow Address of the n^{th} child is parent+(n-1)S(d)

$$S(d) = \begin{cases} 1 + C(L - d) & \text{if } R = 1\\ \frac{CR^{L - d - 1} - 1 - C + R}{R - 1} & \text{if } R > 1 \end{cases}$$

Distributed Scheme Example

- □ Max depth L=2, Routers R=4, Children C=3
- □ Coordinator: d=0. Skip

$$S(0) = \frac{CR^{L-d-1} - 1 - C + R}{R - 1} = \frac{3 \times 4^{2-0-1} - 1 - 3 + 4}{4 - 1} = 4$$


Distributed Scheme Example (Cont)

- Assume the address of coordinator is 10 (decimal)
- \triangle Address of R1 = 10+1 = 11
- \triangle Address of R2 = 10+1+S(0) = 11+4=15
- \triangle Address of R3 = 10+1+2*S(0) = 11+8 = 19
- \triangle Address of R3 = 10+1+3*S(0) = 11+12 = 23
- \square Routers R1-R4 compute S(1):

$$S(1) = \frac{CR^{L-d-1} - 1 - C + R}{R - 1} = \frac{3 \times 4^{2-1-1} - 1 - 3 + 4}{4 - 1} = 1$$

□ Children of R1 are assigned 12 and 13

Children of R2 are assigned 16 and 17

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Stochastic Address Assignment

- □ Parent draws a 16 bit random number between 0 and 2¹⁶-1 and assigns it to a new child. A new number is drawn if the result is all-zero (null) or all-one (broadcast). So the assigned address is between 1 and 2¹⁶-2.
- □ Parent then advertises the number to the network
- ☐ If another node has that address an address conflict message is returned and the parent draws another number and repeats
- □ There is no need to pre-limit # of children or depth

Zigbee Routing

- 1. Ad-Hoc On-Demand Distance Vector (AODV)
- 2. Dynamic Source Routing (DSR)
- 3. Tree Hierarchical Routing
- 4. Many-to-one routing

Note: Zigbee does not use DSR. It is presented here for completeness.

AODV

- □ Ad-hoc On-demand Distance Vector Routing
- \bigcirc On-demand \Rightarrow Reactive \Rightarrow Construct a route when needed
- Avoids unnecessary computations if no traffic
- □ Source broadcasts Route-Request (RREQ) command to all its neighbors containing source, destination, broadcast ID
- Each node determines if this is a new request or if this copy has a lower cost. If yes, it makes a "reverse route" entry for the source in its table w previous node as the optimal reverse path.
- The node then checks if it has a route to the destination. If yes, it sends "route-reply" to the source. Otherwise, it forwards the request to all its neighbors except where it came from.
- When the source receives a "route-reply" it selects the lowest cost path and sends the packet
- ☐ If a node cannot forward the packet, it sends a "Route Error" back to the source which will re-initate route discovery.

AODV Routing

- □ Routing Table: Path is not stored. Only next hop.
 - > Entry = <destination, next node, "sequence #" (timestamp)>
- Route Discovery: Flood a route request (RREQ) to all neighbors. Neighbors broadcast to their neighbors

Src	Req	Dest	Src	Dest	Нор
Addr	ID	Addr	Seq#	Seq#	Count

■ Request ID is the RREQ serial number. Used to discard duplicates.

Source sequence # is a clock counter incremented when RREQ is sent.

Destination sequence # is the most recent sequence from the destination that the source has seen. Zero if unknown.

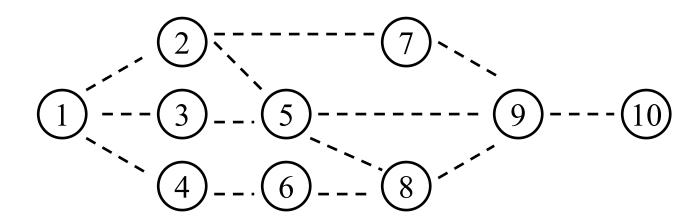
AODV Routing (Cont)

- □ Intermediate nodes can reply to RREQ only if they have a route to destination with higher destination sequence #
- □ Route reply (RREP) comes back "unicast" on the reverse path

Src	Dest	Dest	Нор	Life
Addr	Addr	Seq#	Count	Time

- □ Destination Sequence # is from Destination's counter Lifetime indicates how long the route is valid
- □ Intermediate nodes record node from both RREP and RREQ if it has a lower cost path ⇒ the reverse path
- Backward route to Destination is recorded if sequence number is higher <u>or</u> if sequence number is same and hops are lower
- Old entries are timed out
- AODV supports only symmetric links

©2022 Raj Jain


Student Questions

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-22/

AODV Routing: Example

- Node 1 broadcasts RREQ to 2, 3, 4:

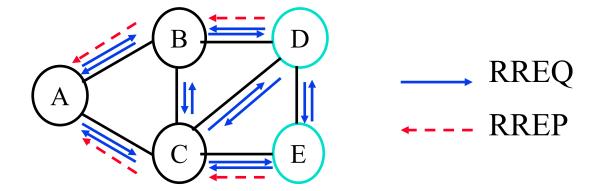
 "Any one has a route to 10 fresher than 1. This is my broadcast #1"
- □ Node 2 broadcasts RREQ to 1, 5, 7
- Node 3 broadcasts RREQ to 1, 5
- □ Node 4 broadcasts RREQ to 1, 6

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

AODV Example (Cont)


Pkt# Pkt#		kt#				Req	Src	Dest			N	ew Ta	able Ent	ry	
1	Out	From	To	Message	ID	Seq#	Seq#	Hops	Action at Receipient	Dest	Seq	Hops	Next		
	1	1	2	RREQ	1	1	1	1	New RREQ. Broadcast	1	1	1	1	← Table entry a	
	2	1	3	RREQ	1	1	1	1	New RREQ. Broadcast	1	1	1	1	for node 1	
	3	1	4	RREQ	1	1	1	1	New RREQ. Broadcast	1	1	1	1	Table entry a	
1	4	2	1	RREQ	1	1	1	2	Duplicate Req ID. Discard					for node 1	
1	5	2	7	RREQ	1	1	1	2	New RREQ. Broadcast	1	1	2	2		
1	6	2	5	RREQ	1	1	1	2	New RREQ. Broadcast	1	1	2	2		
2	7	3	1	RREQ	1	1	1	2	Duplicate ID. Discard						
2	8	3	5	RREQ	1	1	1	2	Duplicate ID. Discard						
3	9	4	1	RREQ	1	1	1	2	Duplicate ID. Discard						
3	10	4	6	RREQ	1	1	1	2	New RREQ. Broadcast	1	1	2	4		
5	11	7	2	RREQ	1	1	1	3	Duplicate ID. Discard						
5	12	7	9	RREQ	1	1	1	3	New RREQ. Broadcast	1	1	3	7		
6	13	5	3	RREQ	1	1	1	3	Duplicate ID. Discard						
6	14	5	2	RREQ	1	1	1	3	Duplicate ID. Discard						
6	15	5	9	RREQ	1	1	1	3	Duplicate ID. Discard						
6	16	5	8	RREQ	1	1	1	3	New RREQ. Broadcast	1	1	3	5		
10	17	6	4	RREQ	1	1	1	3	Duplicate ID. Discard						
10	18	6	8	RREQ	1	1	1	3	Duplicate ID. Discard						
12	19	9	8	RREQ	1	1	1	4	Duplicate ID. Discard						
12	20	9	5	RREQ	1	1	1	4	Duplicate ID. Discard						
12	21	9	7	RREQ	1	1	1	4	Duplicate ID. Discard						
12	22	9	10	RREQ	1	1	1	4	New RREQ. Respond	1	1	4	9		
16	23	8	6	RREQ	1	1	1	4	Duplicate ID. Discard						
16	24	8	5	RREQ	1	1	1	4	Duplicate ID. Discard						
16	25	8	9	RREQ	1	1	1	4	Duplicate ID. Discard						
22	26	10	9	RREP	1	1	6	1	New RREP. Record and forward	10	6	1	10	← Table entry	
26	27	9	7	RREP	1	1	6	2	New RREP. Record and forward	10	6	2	9	for node 10	
27	28	7	2	RREP	1	1	6	3	New RREP. Record and forward	10	6	3	7	← Table entry	
28	29	2	1	RREP	1	1	6	4	New RREP. Record and forward	10	6	4	2	for node 10	

Multicast Route Discovery

- □ Similar to unicast route discovery
- ☐ If a node receives an RREQ but is not a member of the group or does not have the route to any member of the group, it creates a reverse-route entry and broadcasts the request to other neighbors
- ☐ If the node is a member of the group, it sends a RREP message to the source and forwards to other neighbors. Intermediate nodes make a note of this and set up a forward path

Multicast Discovery Example

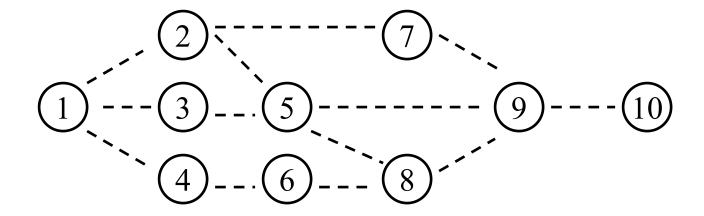
- □ D and E are members. B and C are not.
- □ A concludes that the paths are ABD and ACE

Route Maintenance in AODV

- Each node keeps a list of active neighbors (replied to a hello within a timeout)
- ☐ If a link in a routing table breaks, all active neighbors are informed by "Route Error (RERR)" messages
- □ RERR is also sent if a packet transmission fails
- □ RERR contains the destination sequence # that failed
- □ When a source receives an RERR, it starts route discovery with that sequence number.
- □ Disadvantage: Intermediate nodes may send more upto-date but still stale routes.
- □ Ref: RFC 3561, July 2003

Student Questions

Dynamic Source Routing (DSR)


- On-Demand (reactive) routing using "Source Route"
- □ Source Route = List of routers along the path in the packet.
- Routing database: Complete route to recent destinations
- Each entry has an expiration period and is timed out
- ☐ If a route is not available, send "route request" to all neighbors

Src	Broadcast	RREQ	Req	Dest	Route
Addr	255255		ID	Addr	Record

- Each neighbor adds itself to the route in the request and forward to all its neighbors (only first receipt). Does not change source address.
- □ If a node knows the route it appends the rest of the route and returns the "route reply (RREP)"
- □ RREP goes back along the recorded path
- □ All nodes record paths in RREP and RREQ. Multiple routes cached.

DSR: Example

- Node 1 sends RREQ to 2, 3, 4: "Any one has a route to 10"
- Nodes 2 send RREQ to 5, 7. Note: RREQ not sent to 1.
- Node 3 sends RREQ to 5
- Node 4 sends RREQ to 6

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

DSR Example (Cont)

Pkt #	Pkt #	From	То	Message	Req			Route Record
In	Out	Node	Node	Type	ID	Hops	Action at Receipient	in Packet
	1	1	2	RREQ	1	1	New RREQ. Record and forward	1-2
	2	1	3	RREQ	1	1	New RREQ. Record and forward.	1-3
	3	1	4	RREQ	1	1	New RREQ. Record and forward.	1-4
1	4	2		RREQ	1	2	New RREQ. Record and forward.	1-2-5
1	5	2	7	RREQ	1		New RREQ. Record and forward.	1-2-7
2	6	3	5	RREQ	1	2	Duplicate ID. Same hops. Record and forward.	1-3-5
3	7	4	6	RREQ	1	2	New RREQ. Record and forward.	1-4-6
4	8	5	8	RREQ	1	3	New RREQ. Record and forward.	1-2-5-8
4	9	5		RREQ	1		New RREQ. Record and forward.	1-2-5-9
5	10	7	9	RREQ	1	3	New RREQ. Same hops. Record and forward.	1-2-7-9
6	11	5	8	RREQ	1	3	Duplicate ID. Longer Path. Discard.	1-3-5-8
6	12	5		RREQ	1		New RREQ. Record and forward.	1-3-5-9
7	13	6	8	RREQ	1	3	New RREQ. Same hops. Record and forward.	1-4-6-8
8	14	8		RREQ	1		Duplicate ID. Longer Path. Discard.	1-2-5-8-6
8	15	8		RREQ	1		Duplicate ID. Longer Path. Discard.	1-2-5-8-9
9	16	9	8	RREQ	1	4	Duplicate ID. Longer Path. Discard.	1-2-5-8-9
9	17	9		RREQ	1		Duplicate ID. Longer Path. Discard.	1-2-5-9-7
9	18	9		RREQ	1		New RREQ. Respond through route 10-9-5-2-1	1-2-5-9-10
10	19	9	10	RREQ	1	4	New RREQ. Respond through route 10-9-7-2-1	1-2-7-9-10
10	20	9	8	RREQ	1		Duplicate ID. Longer Path. Discard.	1-2-7-9-8
10	21	9	5	RREQ	1	4	Duplicate ID. Longer Path. Discard.	1-2-7-9-5
12	22	9	10	RREQ	1	4	New RREQ. Respond through route 10-9-5-3-1	1-3-5-9-10
12	23	9	8	RREQ	1	4	Duplicate ID. Longer Path. Discard.	1-3-5-9-8
12	24	9	7	RREQ	1	4	Duplicate ID. Longer Path. Discard.	1-3-5-9-7
13	25	8	5	RREQ	1	4	Duplicate ID. Longer Path. Discard.	1-4-6-8-5
13	26	8	9	RREQ	1	4	Duplicate ID. Longer Path. Discard.	1-4-6-8-9
18	27	10	9	RREP	1	1	Record and forward along return path	10-9 (1-2-5-9-10)
19	28	10	9	RREP	1	1	Record and forward along return path	10-9 (1-2-7-9-10)
22	29	10	9	RREP	1	1	Record and forward along return path	10-9 (1-3-5-9-10)
27	30	9	5	RREP	1	2	Record and forward along return path	10-9-5 (1-2-5-9-10)
28	31	9	7	RREP	1		Record and forward along return path	10-9-7 (1-2-7-9-10)
29	32	9	5	RREP	1		Record and forward along return path	10-9-5 (1-3-5-9-10)
30	33	5	2	RREP	1	3	Record and forward along return path	10-9-5-2 (1-2-5-9-10)
31	34	7	2	RREP	1	3	Record and forward along return path	10-9-7-2 (1-2-7-9-10)
32	35	5		RREP	1		Record and forward along return path	10-9-5-3 (1-3-5-9-10)
33	36	2	1	RREP	1	4	Record and forward along return path	10-9-5-2-1 (1-2-5-9-10)
34	37	2		RREP	1	4	Record and forward along return path	10-9-7-2-1 (1-2-7-9-10)
35	38	3	1	RREP	1	4	Record and forward along return path	10-9-5-3-1 (1-3-5-9-10)

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

Route Maintenance in DSR

- □ If a transmission fails, route error (RERR) is sent to the source. It contains hosts at both ends of the link.
- □ Intermediate nodes remove or truncate all routes with that link.
- □ Source may re-initate the route discovery.
- □ Caching multiple routes results in a faster recovery but the routes may be stale resulting in cache poisoning at other nodes.
- □ Not suitable for high-mobility environments.
- □ Source-route overhead in each packet.
- □ Ref: RFC 4728, February 2007

Student Questions

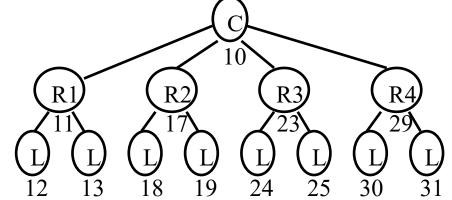
AODV vs. DSR

- ☐ In DSR a single RREQ can result in routes to several destination
- □ In DSR RERR messages are sent to the source not broadcast ⇒ Many nodes are unaware of failure
- □ In DSR, route discovery is delayed until all cached entries have been tried ⇒ Not good for high mobility

Feature	DSR	AODV
Routing Table	Route	Next Hop
Packet	Route	No route
Replies	Multiple	First only
Route	Fast	Slow
Deletion	Local	Global

Student Questions

K. Garg, "Mobile Computing: Theory and Practice," Pearson, 2010, ISBN: 81-3173-166-9, 232 pp., Safari Book.


Washington University in St. Louis

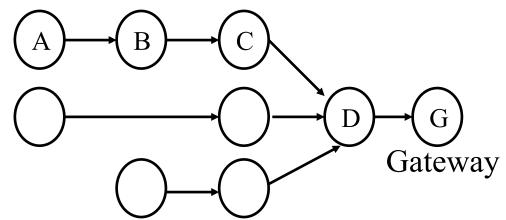
http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Tree Hierarchical Routing

- □ All leaf nodes send the packet to their parent
- Each parent checks the address to see if it is in its subrange.
 - > If yes, it sends to the appropriate child.
 - > If not, it sends to its parent
- □ Example: A12 to A30. A12 \rightarrow R1 \rightarrow Coordinator \rightarrow R4 \rightarrow A30

http://www.cse.wustl.edu/~jain/cse574-22/


©2022 Raj Jain

Student Questions

Washington University in St. Louis

Many-to-One Routing

- □ Used for sensor data collection. All data goes to a concentrator or a gateway
- □ Gateway has a large memory and can hold complete routes to all nodes
- But each node only remembers the next hop towards gateway

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

Zigbee RF4CE

- Radio Frequency for Consumer Electronics (RF4CE) consortium developed a protocol for remote control using wireless (rather than infrared which requires line of sight)
- RF4CE merged with Zigbee and produced Zigbee RF4CE protocol
- Operates on channels 15, 20, and 25 in 2.4 GHz
- Maximum PHY payload is 127 bytes
- Two types of devices: Remotes and Targets (TVs, DVD Player,...)
- □ Status Display: Remote can show the status of the target
- Paging: Can locate remote control using a paging button on the target
- □ Pairing: A remote control works only with certain devices

Zigbee 2030.5

- □ Formerly known as "Zigbee Smart Energy 2"
- Monitor, control, automate the delivery and use of energy and water
- □ Adds plug-in vehicle charging, configuration, and firmware download
- □ Developed in collaboration with other smart grid communication technologies: HomePlug, WiFi, ...
- □ IP based ⇒ Incompatible with previous Zigbee

Zigbee IP

- □ Uses standard IPv6 frame format.
 - ⇒ Allows connecting sensors directly to Internet w/o gateways
- □ Uses 802.15.4 PHY, MAC and ZigBee 2030.5
- □ IPv6 headers are compressed using 6LowPAN
- RPL Routing to discover topology
- □ All Internet protocols: UDP, TCP, HTTP, ... can be used
- Multicast forwarding and Service discovery using multicast DNS (mDNS) and DNS Service Discovery (DNS-SD)
- □ Security using standard protocols: TLS (Transport Layer Security), EAP (Extensible Authentication Protocol), PANA (Protocol for carrying Authentication for Network Access)
- Not compatible with other versions of Zigbee since they use a different network layer frame format
 - ⇒ Need a gateway between Zigbee and Zigbee IP.

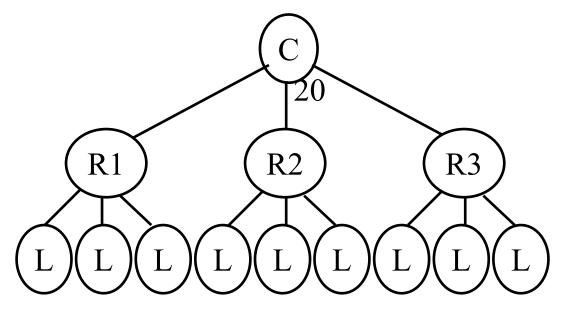
Student Questions

Ref: Zigbee Alliance, "Zigbee IP and 920IP," https://www.zigbee.org/zigbee-for-developers/network-specifications/zigbeeip/
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-22/ ©2022 Raj Jain

Z-Wave

- No relationship to Zigbee but competes with it in many applications and so often confused with it
- □ Search for Zigbee devices on Amazon shows many products that support only Z-Wave not Zigbee
- □ Originally a proprietary protocol developed for remote control. Now used for IoT.
- Now standardized by Z-Wave Alliance
- Uses 915/868 MHz band
- □ Many IoT hubs support Z-Wave along with Zigbee

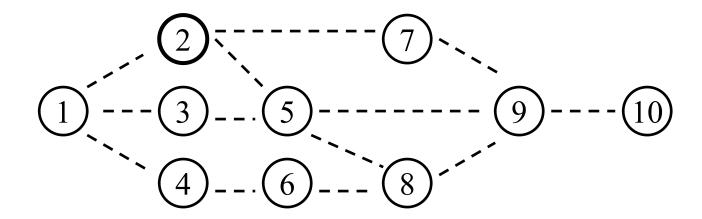
Student Questions


Ref: Wikipedia, "Z-Wave," https://en.wikipedia.org/wiki/Z-Wave Ref: Z-Wave Alliance, https://z-wavealliance.org/

Summary

- 1. Zigbee is an IoT protocol for sensors, industrial automation, remote control using IEEE 802.15.4 PHY and MAC
- Zigbee PRO supports stochastic addressing, many-to-one routing, fragmentation, and mesh topologies.
- 3. A number of application profiles have been defined with control and management provided by ZDOs.
- 4. Application Support layer provides data and command communication between application objects
- 5. Network layer provides addressing and routing. Addressing can be assigned using distributed or stochastic schemes. Routing is via AODV, DSR, Tree Hierarchical, or many-to-one routing.
- 6. Zigbee RF4CE and Zigbee SEP2 are Zigbee protocols designed specifically for remote control and smart grid, respectively.

Homework 13A



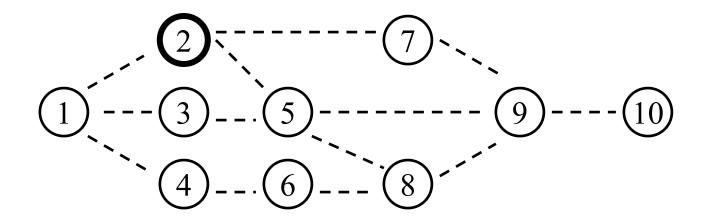
Assuming that IEEE 802.15.4 network is being planned with a maximum of 5 children per node to a depth of 2 levels and maximum 4 routers. Compute sub-ranges to be assigned to each router and the addresses assigned to each node in the network assuming the coordinator has an address of 20.

Homework 13B

■ Write the sequence of messages that will be sent in the following network when node 2 tries to find the path to node 10 in the AODV example.

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/


©2022 Raj Jain

Washington University in St. Louis

Homework 13C

■ Write the sequence of messages that will be sent in the following network when node 2 tries to find the path to node 10 in the DSR example.

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

Reading List

- A. Elahi and A. Gschwender, "Zigbee Wireless Sensor and Control Network," Prentice Hall, 2009, 288 pp., ISBN:0137134851, Safari Book, Chapters 2, 5, 6, 9
- K. Garg, "Mobile Computing: Theory and Practice," Pearson, 2010, ISBN: 81-3173-166-9, 232 pp., Safari Book, Sections 6.5-6.7
- R. Jain, "Networking Protocols for Internet of Things," (6LowPAN and RPL)," http://www.cse.wustl.edu/~jain/cse570-13/m 19lpn.htm

Related Wikipedia Pages

- □ http://en.wikipedia.org/wiki/Zigbee
- http://en.wikipedia.org/wiki/Ad_hoc_On-Demand Distance Vector Routing
- □ http://en.wikipedia.org/wiki/Dynamic_Source_Routing
- □ http://en.wikipedia.org/wiki/Source_routing
- □ http://en.wikipedia.org/wiki/Loose_Source_Routing

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

References

- D. A. Gratton, "The Handbook of Personal Area Networking Technologies and Protocols," Cambridge University Press, 2013, 424 pp., ISBN:9780521197267, Safar Book.
- O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2012, 370 pp., ISBN:9781119994350, Safari Book.
- N. Hunn, "Essentials of Short Range Wireless," Cambridge University Press, 2010, 344 pp., ISBN:9780521760690, Safari book.
- 4. D.Gislason, "Zigbee Wireless Networking," Newnes, 2008, 288 pp., ISBN:07506-85972, Safari book.
- 5. S. Farahani, "Zigbee Wireless Network and Transceivers," Newnes, 2008
- J. Gutierrez, E. Gallaway, and R. Barrett, "Low-Rate Wireless Personnel Area Networks," IEEE Press Publication, 2007
- 7. H. Labiod, H. Afifi, C. De Santis, "Wi-Fi, Bluetooth, Zigbee and WiMax," Springer, Jun 2007, 316 pp., ISBN:1402053967.
- 8. I. Guvenc, et al., "Reliable Communications for Short-Range Wireless Systems," Cambridge University Press, March 2011, 426 pp., ISBN: 978-0-521-76317-2, Safari Book

References (Cont)

- □ Zigbee Alliance Technical Documents, http://www.zigbee.org/Products/TechnicalDocumentsDownload/tabid/237/Default.aspx
- □ Zigbee Alliance Whitepapers,

 http://www.zigbee.org/LearnMore/WhitePapers/tabid/257/Defa

 http://www.zigbee.org/

 <a href="http://www.zig
- □ Zigbee Alliance, Zigbee Specification Document 053474r17, 2008
- □ Daintree Network, "Comparing Zigbee Specification Versions," www.daintree.net/resources/spec-matrix.php
- □ "How Does Zigbee Compare with Other Wireless Standards?" <u>www.stg.com/wireless/Zigbee-comp.html</u>

References (Cont)

- □ Zigbee IEEE 802.15.4 Summary, http://www.eecs.berkeley.edu/~csinem/academic/publications/zigbee.pdf
- □ I., Poole, "What exactly is . . . Zigbee?", Volume 2, Issue 4, Pages: 44-45, IEEE Communications Engineer, 2004, http://ieeexplore.ieee.org/iel5/8515/29539/01340336.pdf?tp=&arnumber=1340336&isnumber=29539
- "Zigbee starts to buzz", Volume 50, Issue 11, Pages: 17-17, IEE Review, Nov. 2004
 http://ieeexplore.ieee.org/iel5/2188/30357/01395370.pdf?tp=&arnumber=1395370&isnumber=30357
- □ C. Evans-Pughe, "Bzzzz zzz [Zigbee wireless standard]", Volume 49, Issue 3, Pages: 28-31, IEE Review, March 2003
- □ Craig, William C. "Zigbee: Wireless Control That Simply Works," Zigbee Alliance, 2003

Acronyms

■ AODV Ad-Hoc On-Demand Distance Vector

□ APS Application Support Sublayer

□ APSDE Application Support Sublayer Data Entity

□ APSME Application Support Sublayer Management Entity

□ CSMA/CA Carrier Sense Multiple Access

DNS Domain Name System

DSR Dynamic Source Routing

DVD Digital Video Disc

□ EP End Point

☐ GHz Giga Hertz

□ ID Identifier

□ IEE Institution of Electrical Engineers (UK) now IET

□ IEEE Institution of Electrical and Electronic Engineers

□ IET Institution of Engineering and Technology

□ IoT Internet of Things

□ IP Internet Protocols

Student Questions

http://www.cse.wustl.edu/~jain/cse574-22/

Acronyms (Cont)

□ ISM Instrumentation, Scientific, and Medical

□ kB Kilo byte

■ MAC Media Access Control

MHz
Mega Hertz

NPDU Network Protocol Data Unit

□ NPDU Network Service Data Unit

PHHC Personal, Home, and Hospital Care

□ PHY Physical Layer

□ RF4CE Radio Frequency for Consumer Electronics

□ RFC Request for Comment

RFID Radio Frequency ID

□ RREP Route Reply

□ RREQ Route Request

UWB Ultra Wide-Band

WiFi Wireless Fidelity

Student Questions

Acronyms (Cont)

■ WiMAX Worldwide Interoperability for Microwave Access

■ WWAN Wireless Wide Area Network

Zigbee Device Object

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

ZDO

Scan This to Download These Slides

Raj Jain

http://rajjain.com

http://www.cse.wustl.edu/~jain/cse574-22/j_13zgb.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n 1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e 10TiDw

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-22/

©2022 Raj Jain