
Wireless Networking in White Spaces

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

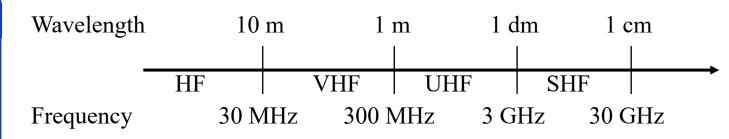
Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-20/

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

- 1. Television Channels
- 2. Software Defined and Cognitive Radios
- 3. Spectral White Spaces
- 4. FCC Rules for White Spaces
- 5. Wireless Standards for White Spaces: 802.11af, 802.19.1, PAWS


Note: IEEE 802.22 Regional Area Network and 802.15.4m Personal Area Network are not covered here but are available in the previous offerings of this course.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Over-the-Air Television Channels

- Television channels use Very High Frequency (VHF) and Ultra High Frequency (UHF) bands
- Each channel uses 6 MHz in USA, 8 MHz in Europe, and 7 MHz at some places
 Padia Astro

Radio Astronomy FM Radio Channel 37 38 82 83 14 15 54 60 66 72 76 82 88 174 180 204 210 216 470 476 608 614 620 884 890 Freq. VHF Channels — \leftarrow UHF Channels \rightarrow At least one channel is skipped between two analog stations in neighboring areas to avoid interference http://www.cse.wustl.edu/~jain/cse574-20/ ©2020 Raj Jain Washington University in St. Louis

Digital Television

- □ Converting pixels to bits
 - \Rightarrow Can easily encrypt, multiplex, mix with data
- Change Standard Definition (SD), High Definition (HD)
- Do not need empty channels between neighbors
- □ Need about 19 Mbps \Rightarrow Can transmit 6-8 channels in 6-8 MHz.
- □ US FCC stopped analog transmissions on June 12, 2009
- $\Box A lot of TV spectrum became available \Rightarrow$ **Digital Dividend**
- □ Big demand for this "new" spectrum in **700 MHz band**:
 - > Cellular, Emergency Services, ISM, every one wants it
 - Government raised \$19.5 billion from auction to cellular companies and saved some for unlicensed use

Student Questions

How does satellite TV play into this?
 Satellites use a very different set of frequencies 19 GHz band.

http://www.cse.wustl.edu/~jain/cse574-20/

Software Defined Radio

- Analog radio circuits are specific to frequency, channel width, data rate, modulation (AM, FM), multiplexing (FDMA, TDMA, CDMA, OFDMA)
- ❑ Need multi-mode radios: Multiband, multi-channel, multicarrier, multi-mode (AM, FM, CDMA), Multi-rate (samples per second) ⇒ Possible using digital computation
- Generally using Digital Signal Processing (DSP) or field programmable gate arrays (FPGAs)
- Signal is digitized as close to the antenna as possible.
 Logic reconfigured on demand.
- Software reconfigurable radio
- Flexibility, Upgradability, Lower cost (digital), Lower power consumption.
- □ Software Defined Antenna: Small pixel

elements reconfigured by software for desired band.

9-5

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

FPGA

GNU Radio

- Open-source software defined radio toolkit
- □ Uses Python and C++ on Linux
- □ Performance critical signal processing in C++
- Universal Software Radio Peripheral (USRP): General purpose computer for SDRs.
 - Host CPU for waveform specific processing, like modulation, demodulation
 - > High-Speed operations in Field Programmable Gate Arrays (FPGAs)

9-6

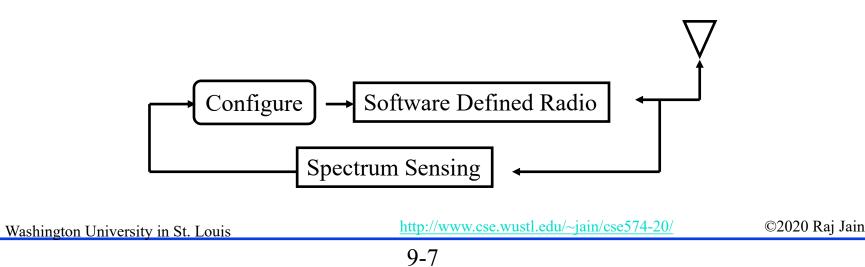
 Ref: GNU Radio, http://gnuradio.org/redmine/,

 http://en.wikipedia.org/wiki/GNU_Radio

 http://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral

 Ettus Research, "USRP Bus Series Products," http://www.ettus.com/product/category/USRP-Bu

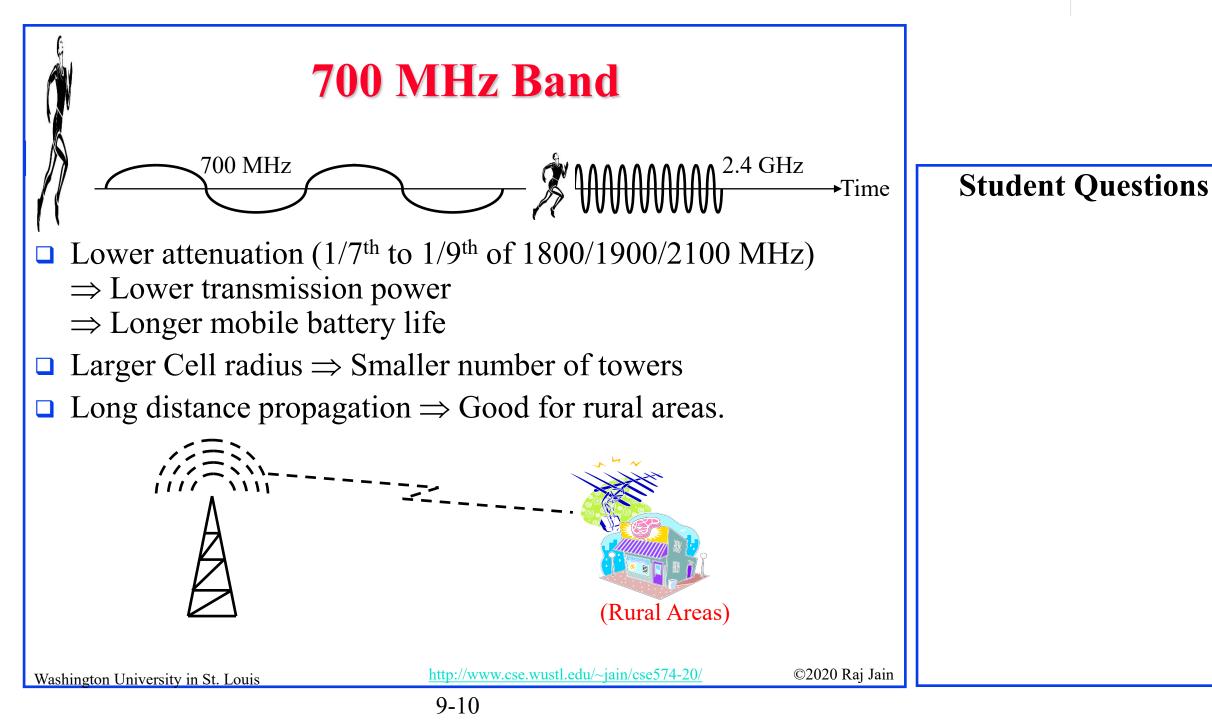
 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse574-20/


Student Questions

©2020 Raj Jain

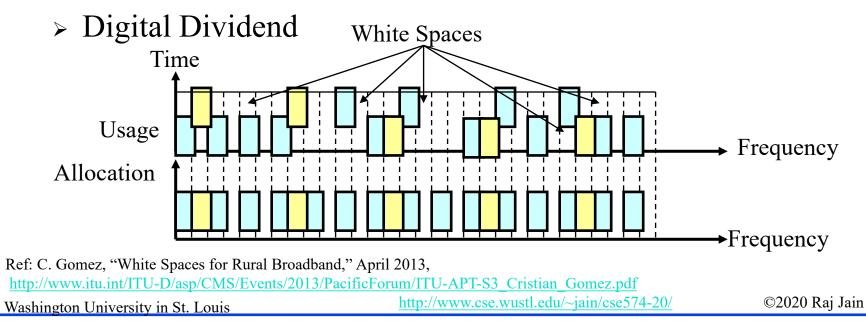
Cognitive Radio

- □ Cognition = Perception = Sense
- Cognitive Radio: A radio that can sense the radio environment, select the proper frequency, bandwidth, power, modulation to avoid interference.
- □ Continue to sense and reconfigure when necessary
- Allows using even licensed spectrum when no one is using it Reduces waste of unused spectrum
 - \Rightarrow FCC allowed such operation in certain bands


- If the transmitter is operating with cognitive radio, how does the receiver know which radio spectrum to listen to?
 The AP sends out periodic announcements on the frequency it has selected. The receivers look for beacons. The AP also announces a switch over on the old frequency if switching over.
- How does the radio receiver know which frequency the broadcast is being done on, if the sender can pick any frequency?
 Same question as above.

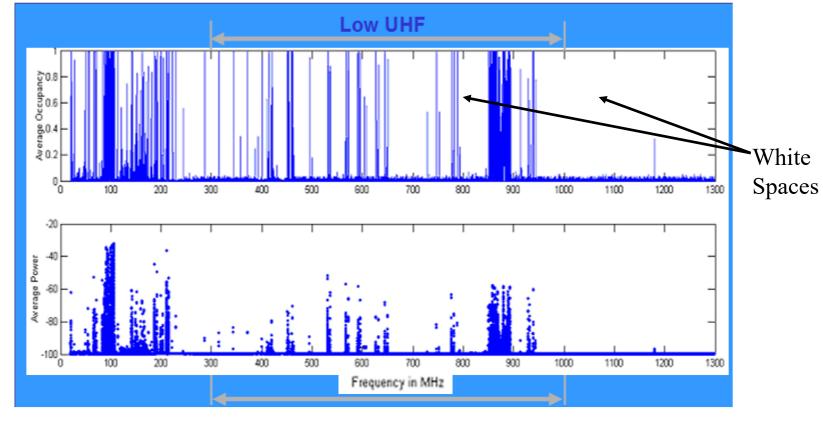
Effect of Frequency

- Higher Frequencies have higher attenuation,
 e.g., 18 GHz has 20 dB/m more than 1.8 GHz
- □ Higher frequencies need smaller antenna Antenna ≥ Wavelength/2, 800 MHz \Rightarrow 6"
- Higher frequencies are affected more by weather Higher than 10 GHz affected by rainfall
 60 GHz affected by absorption of oxygen molecules
- □ Higher frequencies have more bandwidth and higher data rate
- Higher frequencies allow more frequency reuse
 They attenuate close to cell boundaries. Low frequencies propagate far.


Effect of Frequency (Cont)

- □ Lower frequencies have longer reach
- ❑ Lower frequencies require larger antenna and antenna spacing
 ⇒ MIMO difficult particularly on mobile devices
- □ Lower frequencies \Rightarrow Smaller channel width \Rightarrow Need aggressive MCS, e.g., 256-QAM
- Doppler shift = vf/c = Velocity ×Frequency/(speed of light)
 ⇒ Lower Doppler spread at lower frequencies
- □ Mobility \Rightarrow Below 10 GHz

Spectral White Spaces


- Any spectrum at a given area at a given time available for use on a non-interfering basis:
 - > Unallocated spectrum
 - > Allocated but under-utilized
 - Channels not used to avoid interferences in adjacent cells

9-11

Spectrum Usage Example

(Test conducted with antenna at a height of 22.1 metres above the ground in the rural sector west of Ottawa, Canada)

 Ref: C. Stevenson, et al., "Tutorial on the P802.22.2 PAR for: Recommended Practice for the Installation and Deployment of IEEE 802.22 Systems" <u>http://www.ieee802.org/802_tutorials/06-July/Rec-Practice_802.22_Tutorial.ppt</u>

 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/cse574-20/</u>

FCC Rules for White Spaces

□ Two types of devices: Fixed, Portable

□ Fixed Devices:

- > Must include geo-location (i.e., GPS) with 50m accuracy.
- Must verify location periodically. Spectrum sensing <u>not</u> required.
- Get Channel availability daily using national databases (operated by third parties)
- > Must register with the database. Get grant for up to 48 hrs. ((...)

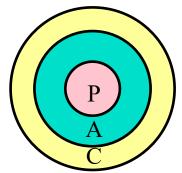
HAGL

HAAT

- ▹ White spaces in channels 2, 5-36, 38-51 available
- > White spaces in channels 3, 4, 37 for backhaul
- > Two channels in every area reserved for wireless microp \overline{ho} nes
- Outdoor antenna max 30m height above ground level (HAGL) and 250 m height above average terrain (HAAT)

Ref: FCC, "Unlicensed Operation in the TV Broadcast Bands," ET Docket No. 04-186, and 02-380 Third Memorandum Opinionand Order, April 4, 2012, available at http://transition.fcc.gov/Daily_Releases/Daily_Business/2012/db0405/FCC-12-36A1.pdfWashington University in St. Louishttp://www.cse.wustl.edu/~jain/cse574-20/

Student Questions


So white spaces are spaces which are not used for long periods of time (which is why you can get a 48 hour grant)? On the last slide it seemed like this happened at a second-by-second or minute-by-minute basis.
 These are channels which are scheduled.
 E.g., a TV channel may not broadcast in night.

What is "spectrum sensing" and why is it not required on fixed devices?
 Spectrum sensing is when you try to find an unused channel by listening to the signals in that channel. Fixed devices operate by the database and not sensing.

9-13

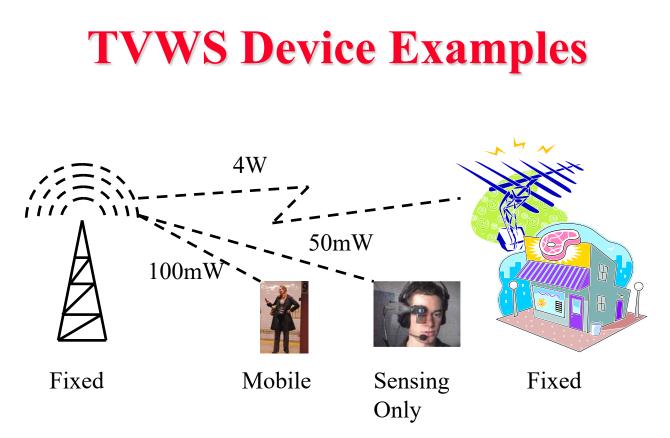
FCC Rules (Cont)

- Devices: w GPS (Mode II), w/o GPS (Mode I)
 - > Mode II devices register with the database
 - > Mode I devices: Not required to register with FCC
 - Must obtain channel availability from Mode II or <u>fixed</u> <u>at HAAT less than 106 m</u>.
 - Must receive a Channel Verification Signal from Mode II or fixed device
- Distance from protected contour:
 - > 4-31 km in co-channel, and 0.4-2.4 km in adjacent channel depending upon the HAAT.

- > Higher antenna \Rightarrow Longer separation to avoid interference
- Contours: Protected, Co-channel, Adjacent Channel

http://www.cse.wustl.edu/~jain/cse574-20/

Student Questions


Can you re-explain the diagram and what each contour is?
 There are three contours shown here as circles (but may be odd shaped in reality):
 P: Protected – Your Channel
 A: Adjacent – No man's land
 C: Co-Channel – Other transmitter's channel

FCC Emission Limits

Туре	Power Limit	PSD Limit	Adjacent Channel
	(6 MHz)	(100 kHz)	PSD Limit (100 kHz)
Fixed	30 dBm (1W)	12.6dBm	-42.8 dBm
Portable (in Adjacent	16 dBm (40mW)	-1.4dBm	-56.8 dBm
Channel)			
Sensing only	17 dBm (50 mW)	-0.4dBm	-55.8 dBm
All other	20 dBm (100 mW)	2.6 dBm	-52.8 dBm

- FCC changed the transmit power limit to be specified in "power spectral density (PSD)" 0 per 100 kHz. This way many devices can not collude and transmit in the same channel resulting in total power over that previously specified in 6 MHz.
- The spectral mask was also changed from a^{-55.4} fixed -55 dBr to PSD limit of -55.4 dBm/100 kHz. Too costly to achieve.
 Washington University in St. Louis

 $\frac{55.8 \text{ dBm}}{52.8 \text{ dBm}}$

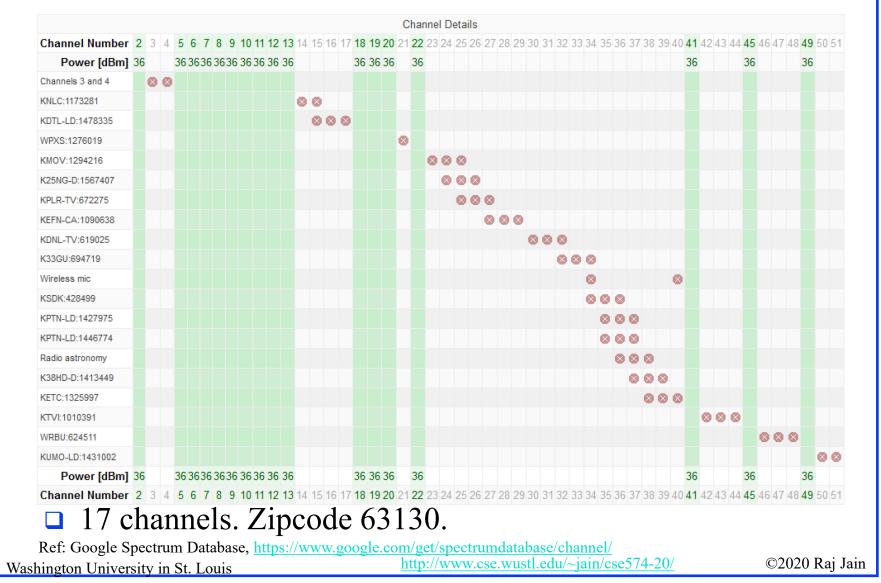
Student Questions

- Can offload bulk cellular data traffic to white spaces (similar to WiFi currently)
- Combined VHF+UHF band is too wide to cover with a single radio frontend and antenna

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

TVWS Databases


- FCC has authorized 10 companies to administer TVWS databases.
 - > Get info from FCC database
 - > Register fixed TVWS devices and wireless microphones
 - Synchronize databases with other companies
 - > Provide channel availability lists to TVWS devices
- □ FCC does not require spectral sensing. No need to stop transmission and sense
 ⇒ Continuous multimedia
- Europe requires devices to check every two hours and allows higher power transmission but requires spectral sensing (closed loop system)

Student Questions

 Why does Europe use spectral sensing if the US doesn't? Is it because they have a more recent implementation?
 They are extra careful but costly.
 Also, may be difficult to synchronize databases due to close national boundaries (not sure).

http://www.cse.wustl.edu/~jain/cse574-20/

White Spaces Near WUSTL

Standards for White Space Wireless

- **IEEE 802.11af-2014**: Wireless Local Area Network
- **IEEE 802.22-2011**: Cognitive Wireless Regional Area Network
- **IEEE 802.15.4m-2011**: Wireless Personal Area Network
- **IEEE 802.19.1**: Coexistence
- **IEEE 1900.4a**: Resource Optimization
- **IETF PAWS**: Database access
- **ETSI BRAN**: European Telecommunications Standards Institute **Broadband Radio Access Networks**
- □ Weightless SIG: Special Interest Group
- □ CEPT ECC SE43: European Conference of Postal and **Telecommunications Administrations Electronics Communications Committee Spectrum Engineering**
- **ITU-WP1B**: International Telecommunication Union Working Party 1B – Spectrum Management Methodologies -iain/cse574-20

Washington University in St. Louis

©2020 Raj Jain

802.11af-2014: White-Fi

- □ A.k.a. Super-Fi (initially incorrectly called super Wi-Fi) Both MAC and PHY different from 802.11⇒ Not WiFi
- □ Draft approved by the Working Group and 802 Executive Committee. Final approved standard expected March 2014.
- □ White-space wireless using cognitive radios up to 5 km
- □ 256-QAM, 5/6, 3 us Guard Interval ⇒ 26.7 Mbps per 6 MHz channel
- Up to 4 channels may be bonded in one or two contiguous blocks
- MIMO operation with up to 4 streams using space-time block code (STBC) or multi-user MIMO
- □ 4 spatial streams × 4 channels \Rightarrow 426.7 Mbps

Student Questions

If White-Fi is not Wi-Fi compliant, would 802.11af ever gain market traction?
 Yet to be seen.

http://www.cse.wustl.edu/~jain/cse574-20/

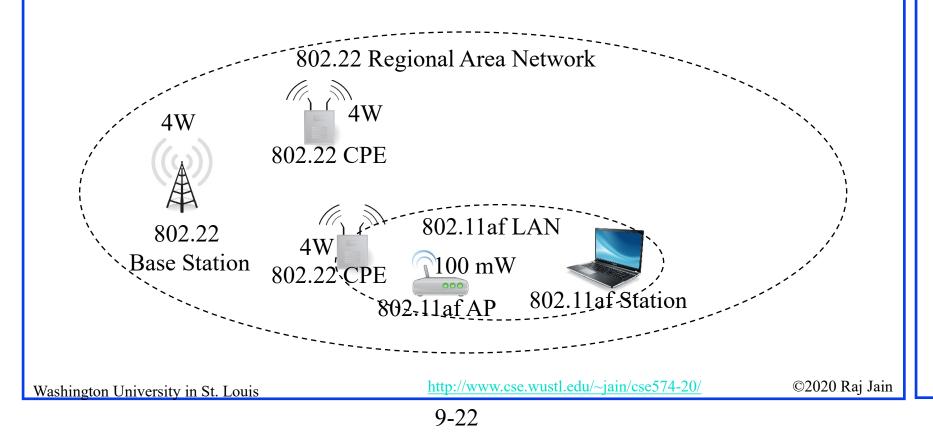
IEEE 802.11af PHY

- Basic Channel Unit (BCU): One TV Channel W = 6 MHz in USA
- □ Single channel mandatory
- □ Channel Bonding: Optional
 - > Contiguous: 2W, 4W
 - > Non-contiguous: W+W, 2W+2W
- MIMO with 4x Space Time Block Coding (STBC) or MU-MIMO with 4x
- OFDM similar to 40 MHz in 802.11n down-clocked by 7.5x to give a 5.33 MHz waveform
 - > 108 Data, 3 DC, 6 pilots, 36 Guard =144 carriers in 6 MHz

Washington University in St. Louis

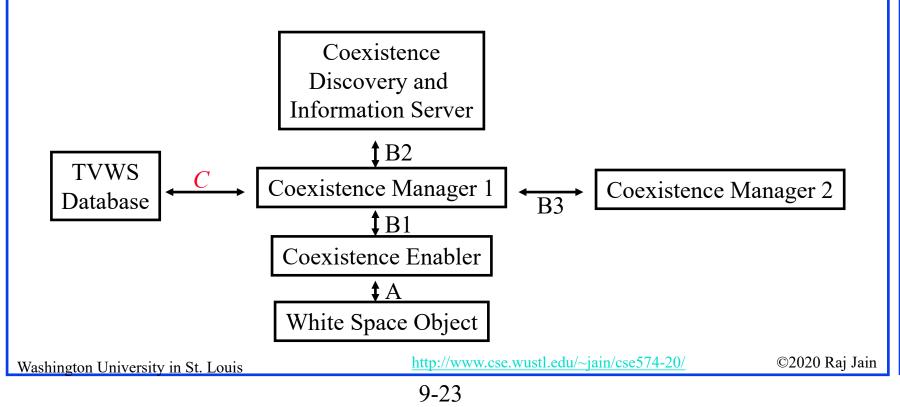
http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain


Student Questions

 □ What is down-clocking? Is it just running 7.5x slower baud rate?
 More subcarriers in smaller frequency band Contraction in frequency
 ⇒ Expansion in time
 ⇒ feels like slower clock

Coexistence Problem


- Exposed Terminal: 802.11af can not transmit because 802.22 keeps the channel busy
- □ Hidden Terminal: 802.11af interferes with 802.22 transmissions

IEEE 802.19.1-2014

□ IEEE 802.19: Radio access technology (RAT) independent methods of coexistence ⇒ 802.11, 802.15, 802.22 can all use one common method for coexistence.

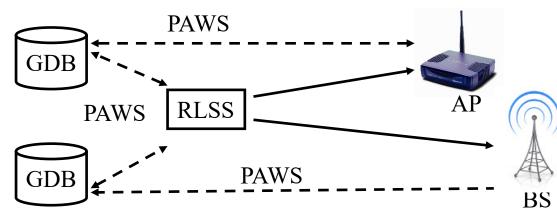
□ IEEE 802.19.1: Coexistence in TV white spaces.

Student Questions

 How is the registration enforced? i.e. how can Coexistence Managers know when a new device is introduced to the system?
 Everyone is required to tell the manager

Where is PAWS in this diagram (Interface C)?Shown now.

IEEE 802.19.1 (Cont)


- □ White Space Object (WSO): A WS device or a network
- Coexistence Enabler (CE): Represents a WSO in the coexistence system
- Coexistence Manager (CM): Makes decisions about configuration of a set of WSOs so that they can coexist
- Coexistence Discovery and Information Server (CDIS): Notifies CMs about potential neighbors of its WSOs.
- Interfaces B, B1, B2, and B3 are specified in IEEE 802.19.1 Interface C is PAWS.
- □ Each WSO registers with a CM
- CM collects data about its members and gets data about other CMs from CDIS.

Student Questions

http://www.cse.wustl.edu/~jain/cse574-20/

Protocol to Access White-Space (PAWS)

- □ IETF working group
- Mechanism to discover white space database
- Protocol to communicate with the database
- □ Interface Agnostic: 802.11af, 802.15.4m, 802.22, ...
- □ Spectrum agnostic: 6 MHz, 7 MHz, 8 MHz, …
- □ Master Device: White-Space Device (WSD) connects to database
- □ Slave Device: WSD that get info from master devices

http://www.cse.wustl.edu/~jain/cse574-20/

Ref: V. Chen, et al, ed. "Protocol to access White-Space (PAWS) Databases," Feb 2014, http://datatracker.ietf.org/doc/draft-ietf-paws-protocol/

Washington University in St. Louis

Student Questions

Can you explain the functions of the GDB and RLSS?
 GDB = Geo Database
 RLSS = Registered Location
 Secure Server
 This allows many local servers
 and fewer national databases.

9-25

©2020 Raj Jain

PAWS (Cont)

- Stations should be able to discover WS Database, its regulatory domain. May be preconfigured similar to DNS or Certification Authorities.
- □ Listing Server: Web page listing all national database servers. Highly static ⇒ Can be cached by master
- □ Master may register with the database (model, serial, owner, ...) of itself and its slaves
- Mutual authentication and authorization using certificates or passwords
- □ Master can then query the database
- □ The database should be able to push updates on channel availability changes
- Ensure security of discovery mechanism, access method, and query/response

Ref: A. Mancuso, Ed., at al, "Protocol to Access White-Space (PQWS) Databases: Use Cases and Requirements," IETF RFC 6953, May 2013, <u>http://tools.ietf.org/pdf/rfc6953</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Student Questions

 So is Whitespace Server some server always running somewhere? Like the top level domain name servers? Who maintains those?
 Yes. Several (8?) companies have received license to operate this service in the USA.

PAWS (Cont)

- Allows WSD to specify geolocation, height, serial number, Certificates, device class, radio access technology (RAT), antenna gain, maximum EIRP, radiation pattern, spectrum mask, owner contact information
- Allows database to specify available spectrum, available area, allowed power levels
- □ Allows WSD to register its selected spectrum for use
- □ Allows privacy to WSD (encryption)

Ref: V. Chen, et al, ed. "Protocol to access White-Space (PAWS) Databases," IETF RFC 7445, May 2015, 90 pp. https://www.rfc-editor.org/rfc/pdfrfc/rfc7545.txt.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

P	AWS Messages		
Database		Master Device	
	Initialization Request		Student Questions
Initialization Response			Student Questions
Registration Request			
Registration Response			
Available Spectrum Query			
Available Spectrum Response			
Available Spectrum Batch Query			
Available Spectrum Batch Response			
Spectrum Use Notify			
Spectrum Use Response			
Device Validation Request			
Device Validation Response			
• Washington University in St. Louis	http://www.cse.wustl.edu/~jain/cse574	4 <u>-20/</u> ©2020 Raj Jain	

PAWS Messages (Cont)

- Listing Request/Response: To/from listing server (not shown)
- □ Initialization: Exchange capability, location, get rules
- Registration: Model, serial, antenna characteristics, owner, etc
- □ Available Spectrum: individual or batch request
- Spectrum Use: register used spectrum, location, antenna etc. Get time limits in response.
- Device Validation: Database may ask masters to authenticated slaves

Student Questions

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Summary

- 1. Analog to Digital conversion of TV channels has freed up spectrum in 700 MHz band \Rightarrow White Space.
- 2. FCC has allowed license-exempt use of some of the white space in TV bands. Requires a cognitive radio.
- 3. IEEE 802.11af White-Fi spec uses 5, 10, 20 MHz channels to give up to 426.7 Mbps using OFDM, MU-MIMO, and 256-QAM.
- 4. IEEE 802.19.1 solves the coexistence problem by coordinating spectrum usage by several networks in the same area.
- 5. PAWS provides the protocol for access to National white space databases.

Reading List

- C. Sum, et al., "Cognitive Communication in TV White Spaces: An Overview of Regulations, Standards, and Technology," IEEE Communications Magazine, July 2013, pp. 138-145, <u>http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6553690</u>
- A. Mancuso, Ed., at al, "Protocol to Access White-Space (PQWS) Databases: Use Cases and Requirements," IETF RFC 6953, May 2013, <u>http://tools.ietf.org/pdf/rfc6953</u>
- V. Chen, et al, ed. "Protocol to access White-Space (PAWS) Databases," Feb 2014, <u>http://datatracker.ietf.org/doc/draft-ietf-paws-protocol/</u>
- M. Sherman, et al., "TV Whitespace Tutorial Intro," March 2009, <u>http://www.ieee802.org/802_tutorials/2009-03/2009-03-</u> <u>10%20TV%20Whitespace%20Tutorial%20r0.pdf</u>
- Telesystem Innovations Inc., "TV White Spaces: Unlicensed Access Spectrum in Sub-700 MHz Band,"

http://frankrayal.files.wordpress.com/2012/04/tv-white-space-whitepaper.pdf

9-31

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

Wikipedia Links

- □ <u>http://en.wikipedia.org/wiki/Software-defined_radio</u>
- □ <u>http://en.wikipedia.org/wiki/Cognitive_radio</u>
- □ <u>http://en.wikipedia.org/wiki/White_spaces_(radio)</u>
- <u>http://en.wikipedia.org/wiki/Super_Wi-Fi</u>
- <u>http://en.wikipedia.org/wiki/IEEE_802.11af</u>
- □ <u>http://en.wikipedia.org/wiki/IEEE_802.19</u>
- <u>http://en.wikipedia.org/wiki/DySPAN</u>
- □ <u>http://en.wikipedia.org/wiki/Software_defined_antenna</u>
- □ <u>http://en.wikipedia.org/wiki/Digital_television_transition</u>
- □ <u>http://en.wikipedia.org/wiki/Television_channels</u>
- <u>http://en.wikipedia.org/wiki/Wireless_Innovation_Forum</u>
- □ <u>http://en.wikipedia.org/wiki/GNU_Radio</u>
- <u>http://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral</u>
- <u>http://en.wikipedia.org/wiki/Ultra_high_frequency</u>
- □ <u>http://en.wikipedia.org/wiki/TV-band_device</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

References

- C. Gomez, "White Spaces for Rural Broadband," April 2013, <u>http://www.itu.int/ITU-D/asp/CMS/Events/2013/PacificForum/ITU-APT-S3_Cristian_Gomez.pdf</u>
- □ <u>http://www.whitespacealliance.org</u>
- FCC, ET Docket 08-260, "Second Report and Order and Memorandum Opinion and Order, in the Matter of Unlicensed Operation in the TV Broadcast Bands Additional Spectrum for Unlicensed Devices Below 900 MHz and in the 3 GHz Band," Nov. 14, 2008.
- □ FCC, Second Memorandum and Order, September 23, 2010, <u>http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-10-174A1.pdf</u>
- □ GNU Radio, <u>http://gnuradio.org/redmine/</u>,
- Ettus Research, "USRP Bus Series Products," <u>https://www.ettus.com/product/category/USRP-Bus-Series</u>
- Google Spectrum Database, <u>https://www.google.com/get/spectrumdatabase/channel/</u>

Student Questions

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

9-33

References (Cont)

- FCC, "Second Memorandum Opinion and Order in the Matter of Unlicensed Operation in the TV Broadcast Bands," ET Docket 10-174, September 23, 2010, <u>http://tinyurl.com/kxpkt68</u>
- FCC, "Unlicensed Operation in the TV Broadcast Bands," ET Docket No. 04-186, and 02-380 Third Memorandum Opinion and Order, April 4, 2012, available at http://transition.foo.gov/Doily_Poloogo/Doily_Pusipage/2012/db0405/ECC

http://transition.fcc.gov/Daily_Releases/Daily_Business/2012/db0405/FCC-12-36A1.pdf

- □ Ofcom (UK), "Regulatory requirements for white space devices in the UHF TV band," July 4, 2012, <u>http://www.cept.org/Documents/se-43/6161/</u>
- ETSI EN 301 598, "White Space Devices (WSD); Wireless Access Systems operating in the 470 MHz to 790 MHz frequency band; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive," V1.0.0, July 2013,

http://www.etsi.org/deliver/etsi_en/301500_301599/301598/01.00.00_20/en 301598v010000a.pdf

□ United Kingdom Office of Communications (OfCom) - <u>www.ofcom.org.uk</u>

Student Questions

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

References (Cont)

- R. Abdelhallem Saeed, S. Shellhammer, Eds., "TV White Space Spectrum Technologies: Regulations, Standards, and Applications," CRC Press, Feb 2012, 509 pages, ISBN: 1439848793, Google eBook.
- □ A. Wyglinski, M. Nekovee, and T. Hou, "Cognitive Radio Communications and Networks," Academic Press, 2009, ISBN:0123747150, Safari Book
- □ IEEE 1900.4a-2011,

<u>http://ieeexplore.ieee.org/iel5/6022705/6022706/06022707.pdf?arnumber=6</u> 022707

Acronyms

- □ AM Amplitude Modulation
- □ AP Access Point
- **BCU** Basic Channel Unit
- BRAN Broadband Radio Access Network
- **B** Base Station
- **BSS** Basic Service Set
- **CBS** Cognitive Base Station
- □ CBSMC CBS Measurement Collector
- □ CBSRC CBS Resource Controller
- **CBSRM** CBS Resource Manager
- **CDIS** Coexistence Discovery and Information Server
- **CDMA** Code Division Multiple Access
- □ CE Coexistence Enabler
- CEPT European Conference of Postal and Telecommunications Administrations
- CM Coexistence Manager

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

- **CPE** Customer Premise Equipment
- CPU Central Processing Unit
- □ dB deci-Bel
- □ dBm deci-Bel milli-watt
- □ dBr deci-Bel relative
- DC Direct Current
- DNS Domain Name System
- DSPDigital Signal Processing
- DYSPAN Dynamic Spectrum Access Networks
- ECC Electronics Communications Committee
- EIRP Equivalent Isotropically Radiated Power
- ETSI European Telecommunications Standards Institute
- FCC Federal Communications Commission
- **FDMA** Frequency Division Multiple Access
- **FM** Frequency Modulation

Student Questions

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

- FPGAs Field Programmable Gate Arrays
- **GDB** Geolocation Database
- GHz Giga Hertz
- GNU GNU is Not Unix
- **GPS** Global Positioning System
- □ HAAT Height above average terrain
- □ HAGL Height above ground level
- □ HD High Definition
- □ HF High Frequency
- □ IEEE Institution of Electrical and Electronic Engineers
- □ IETF Internet Engineering Task Force
- □ ISM Instrumentation, Scientific, and Medical
- □ ISP Internet Service Provider
- ITU International Telecommunications Union
- LAN Local Area Network
- MAC Media Access Control

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

- MCS Modulation and Coding Scheme
- □ MHz Mega Hertz
- MIMO Multi-Input Multi-Output
- □ MU Multi-User
- □ mW milli Watt
- NCC Network Channel Control
- NRM Network Reconfiguration Manager
- OFDM Orthogonal Frequency Division Multiplexing
- OFDMA Orthogonal Frequency Division Multiple Access
- OSM Operator Spectrum Manager
- PAR Project Authorization Request
- PAWS Protocol to access White-Space
- PHY Physical Layer
- **QAM** Quadrature Amplitude-Phase Modulation
- **R**&TTE Radio and Terminal Test Equipment

Student Questions

http://www.cse.wustl.edu/~jain/cse574-20/

- RAT Radio Access Technology
- RFCRequest for Comment
- RLSS Registered Location Secure Server
- □ SCC Standards Coordinating Committee
- **SD** Standard Definition
- □ SDR Software Defined Radio
 - Spectrum Engineering
 - Super High Frequency
 - Special Interest Group

Student Questions

Washington University in St. Louis

SE

SHF

SIG

http://www.cse.wustl.edu/~jain/cse574-20/

- □ STBC Space Time Block Coding
- **TDMA** Time Division Multiple Access
- **TV** Television
- **TVWS** Television White Spaces
- □ UHF Ultra High Frequency
- □ UK United Kingdom
- □ US United States
- USRPUniversal Software Radio Peripheral
- □ VHF Very High Frequency
- WiFi Wireless Fidelity
 - Working Party
- □ WS White Space
- □ WSD White-Space Device

Student Questions

Washington University in St. Louis

WP

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

9-41

- □ WSM White Space Manager
- □ WSO White Space Object
- WUSTL Washington University in Saint Louis

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013), https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Student Questions

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures, https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-20/

©2020 Raj Jain

9-44