Introduction to Cellular Networks: 1G/2G/3G

Urban zone

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-18/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- 1. Cellular Telephony
- 2. Cellular Frequency Reuse
- 3. 2G: GSM
- 4. 2.5G: GPRS, EDGE
- 5. 3G: W-CDMA
- 6. 3.5G: High-Speed Packet Access (HSPA)

Note: 3.9G/4G technologies LTE and LTE Advanced discussed in future lectures of this class.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Cellular Network Beginnings

- AT&T Bell Labs designed a cellular structure to reuse frequency. No two adjacent cells use the same frequency.
- □ 1977: FCC authorized two commercial deployments
 - > Chicago: Illinois Bell
 - > Washington, DC: American Radio telephone Service
 - > Both services started 1983

Ref: P. Bedell, "Cellular Networks: Design and Operation, A real World Perspective," Outskirts Press, 2014, ISBN:9781478732082Washington University in St. Louishttp://www.cse.wustl.edu/~jain/cse574-18/©2018 Raj Jain

Initial Cellular System in US

□ US was divided into

 > 306 metropolitan service areas (MSAs) 75% of US population, 20% of area Densely populated ⇒ Small cell size

- > 428 rural service areas (RSAs) Less populated ⇒ Larger cell size
- □ Each area was originally allowed two competing carriers: A, B
 - > Bell (B)
 - > Alternative (A)
- 832 channel-pairs in each area. 416 pairs per carrier.
 45 MHz between transmit and receive frequencies
 30 kHz per channel
 - 1:7 Frequency reuse with hexagonal cells
- □ Too many applicants \Rightarrow FCC started a lottery system
- □ At least one system in every market by 1990

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Cell Sites

On towers, roof tops, water tanks, utility poles, ...

- Good source of income for utility companies, cities, schools, churches, hotels, …
- > With a base station for electronics
- NIMBY (Not in my back yard)
 ⇒ Mostly hidden, shared towers

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

16-5

Macro, Micro, Pico, Femto Cells

- □ Macro: Sections of a city, more than 1 km radius
- □ Micro: Neighborhoods, less than 1 km
- □ Pico: Busy public areas: Malls, airports, ..., 200 m
- □ Femto: Inside a home, 10 m

16-8

Characterizing Frequency Reuse

- D = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- $\square R = radius of a cell$
- □ d = distance between centers of adjacent cells (d = $R\sqrt{3}$)
- \Box N = number of cells in repetitious pattern (**Cluster**)
 - Reuse factor
 - > Each cell in pattern uses unique band of frequencies
- □ Hexagonal cell pattern, following values of N possible

> $N = I^2 + J^2 + (I \times J)$, I, J = 0, 1, 2, 3, ...

- Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, …
- □ Reuse Ratio = Distance/Radius = $D/R = \sqrt{3N}$

 $\square D/d = \sqrt{N}$

Ref: C. Siva Ram Murthy; B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols," Prentice Hall, 2004,ISBN: 013147023X, 880 pp., Safari Book, Section 3.2.Washington University in St. LouisC2018 Raj Jain

Frequency Reuse Example

What would be the minimum distance between the centers of two cells with the same band of frequencies if cell radius is 1 km and the reuse factor is 12?

$$D/R = \sqrt{3N}$$
$$D = (3 \times 12)^{1/2} \times 1 \text{ km}$$
$$= 6 \text{ km}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Homework 16A

The distance between cell centers with the same frequency band is required to be more than 6 km. What is the cell radius for the cluster size of 12.

Frequency Reuse Notation

- □ N×S×K frequency reuse pattern
- □ N=Number of cells per cluster
- \Box S= Number of sectors in a cell
- \Box K = Number of frequency allocations per cell

Frequency Reuse Notation (Cont)

1x3x1

3x1x1

3x3x1

3x3x3

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Fractional Frequency Reuse

- □ Users close to the BS use all frequency subchannels
- Users at the cell boundary use only a fraction of available subchannels

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

16-15

Cellular Telephony Generations NA 3GPP2 1xEV 1xEV AMPS CDMA2000 UM cdmaOne -DO -DV NA-TDMA 3GPP2 D-AMPS **Evolved EDGE** Europe TACS GSM GPRS WCDMA HSPA+ LTE-Adv EDGE LTE **3GPP** China **TD-SCDMA** Mobile WiMAX WiMAX2 Networking Industry Analog Digital **CDMA OFDMA+ MIMO** FDMA TDMA **CDMA** Voice Voice Voice+Data Voice+Data Voice+HS Data All-IP 1G2G2.5G 3G 3.5G 4Ghttp://www.cse.wustl.edu/~jain/cse574-18/ Washington University in St. Louis ©2018 Rai Jain

Cellular Generations (Cont)

□ 1G: Analog Voice. FDMA. 1980s

- > AMPS: Advanced Mobile Phone System
- > TACS: Total Access Communications System

General Content of Co

- > cdmaOne: Qualcomm. International Standard IS-95.
- > NA-TDMA
- > Digital AMPS (D-AMPS)
- GSM: Global System for Mobile Communications
- **2.5G: Voice + Data. 1995.**
 - > 1xEV-DO: Evolution Data Optimized
 - > 1xEV-DV: Evolution Data and Voice
 - General Packet Radio Service (GPRS)
 - Enhanced Data Rate for GSM Evolution (EDGE)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Cellular Generations (Cont)

□ 3G: Voice + High-speed data. All CDMA. 2000.

- > CDMA2000: Qualcomm. International Standard IS-2000.
- > W-CDMA: Wideband CDMA
- > TD-SCDMA: Time Division Synchronous Code Division Multiple Access (Chinese 3G)
- > 384 kbps to 2 Mbps
- □ 3.5G: Voice + Higher-speed data
 - > EDGE Evolution
 - > High-Speed Packet Access (HSPA)
 - > Evolved HSPA (HSPA+)
 - > Ultra Mobile Broadband (UMB)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Cellular Generations (Cont)

□ Two Tracks for 1G/2G/3G:

- Europe 3GPP (3rd Generation Partnership Project)
- North America 3GPP2
- □ 3.9G: High-Speed Data. VOIP. OFDMA.
 - WiMAX 16e (Worldwide Interoperability for Microwave Access)
 - Long Term Evolution (LTE)

□ 4G: Very High-Speed Data. 2013.

- > WiMAX 16m or WiMAX2
- LTE-Advanced
- ➤ 100 Mbps 1 Gbps
- □ 5G: Ultra High-Speed Data. 2020.
 - > IP based

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

3.9G vs. 4G

- G = International Mobile Communications 2000 (IMT-2000) = W-CDMA, CDMA2000
- $\Box 4G = IMT-Advanced$
 - = LTE-Advanced, IEEE 802.16m
- WiMAX forum officially declared WiMAX to be 3G technology so that they can use spectrum allocated to 3G.
- WiMAX, LTE are at most 3.9G or "near-4G" Some telecom companies are selling them as 4G

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

GSM

- Global System for Mobile Communications
- □ Implemented in 90% of cell phones world-wide.
- 1990 Technology using Time-Division Multiple Access (TDMA) in stead of Frequency Division Multiple Access (FDMA) used in 1G
- □ 850/900/1800/1900 MHz (quad-band)
- Subscriber Identity Module (SIM) card contained user data. User could use any phone with his/her SIM card

¹⁶⁻²¹

¹⁶⁻²²

Cellular Architecture (Cont)

- □ One Base transceiver station (BTS) per cell.
- One Base Station Controller (BSC) can control multiple BTSes.
 - > Allocates radio channels among BTSs.
 - Manages call handoffs between BTSs.
 - Controls handset power levels
- Mobile Switching Center (MSC) connects to PSTN and switches calls between BSCs. Provides mobile registration, location, authentication. Contains Equipment Identity Register.

Cellular Architecture (Cont)

- Home Location Register (HLR) and Visitor Location Register (VLR) provide call routing and roaming
- □ VLR+HLR+MSC functions are generally in one equipment
- Equipment Identity Register (EIR) contains a list of all valid mobiles.
- Authentication Center (AuC) stores the secret keys of all SIM cards.
- Each handset has a International Mobile Equipment Identity (IMEI) number.

Washington University in St. Louis

¹⁶⁻²⁵

GSM Radio Link (Cont)

- □ 890-915 MHz uplink, 935-960 MHz downlink
- □ 25 MHz \Rightarrow 125 × 200kHz frequency channels
- Each frequency channel is TDMA with burst (slot) period of 15/26 ms.
- **\Box** Eight burst periods = TDMA frame of 120/26 ms.
- □ One user traffic channel = one burst period per TDMA frame.
- □ 26 TDMA frames ⇒ one Multiframe 24 are used for traffic, 1 for control, and 1 is unused. Slow Associated Control Channel (SACCH) If SACCH does not have sufficient capacity, Fast Associated Control Channel (FACCH) is used by stealing ½ of some bursts.
 □ Stealing bits identify whether the 1/2-slot carries data or control
 □ 200 kHz = 270.8 kbps over 26 slots
 - \Rightarrow 9.6 kbps/user after encryption and FEC overhead

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

GSM Specs

- □ Full rate vocoders ⇒ Voice is sampled at 64 kbps compressed to 16 kbps.
- Subscriber Identify Module (SIM) contains a micro-controller and storage. Contains authentication, encryption, and accounting info. Owners need 4-digit PIN.
- □ SIM cards can contain additional info such as emergency medical info.
- Mobile Assisted Handoff: Mobile sends identities of six candidate base stations for handoff. MSC selects.
- □ Short Message Service (SMS)
 - > Up to 160 characters
 - Sent over control channel
 - > Unicast or broadcast

Cellular System Capacity Example

- A particular cellular system has the following characteristics: cluster size =7, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.
- A. Using FDMA/FDD:
 - 1. How much bandwidth is available per cell using FDD?
 - 2. How many users per cell can be supported using FDMA?
 - 3. What is the cell area?
 - 4. What is the cell radius assuming circular cells?
- B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
 - 1. What is the bandwidth and data rate per channel?
 - 2. How many time slots are needed in a TDMA frame to support the required number of users?
 - 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
 - 4. How many bits are transmitted in each time slot?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Cellular System Capacity (Cont)

- A particular cellular system has the following characteristics: cluster size =7, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.
- □ A. Using FDMA/FDD:
 - 1. How much bandwidth is available per cell using FDD? 49 MHz/7 = 7 MHz/cell

 $FDD \Rightarrow 3.5 \text{ MHz/uplink or downlink}$

- 2. How many users per cell can be supported using FDMA? 10 kbps/user = 10 kHz \Rightarrow 350 users per cell
- 3. What is the cell area?
 - 100 users/sq km \Rightarrow 3.5 Sq km/cell
 - 4. What is the cell radius assuming circular cells?

 $\pi r^2 = 3.5 \implies r = 1.056 \text{ km}$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Cellular System Capacity (Cont)

- B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
 - 1. What is the bandwidth and data rate per channel?

3.5 MHz/35 = 100 kHz/Channel = 100 kbps

2. How many time slots are needed in a TDMA frame to support the required number of users?

10 kbps/user \Rightarrow 10 users/channel

3. If the TDMA frame is 10ms, how long is each user slot in the frame?

10 ms/10 = 1 ms

4. How many bits are transmitted in each time slot?1 ms x 100 kbps = 100 b/slot

Homework 16C

- A particular cellular system has the following characteristics: cluster size =9, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-945 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 2 bps/Hz.
- □ A. Using FDMA/FDD:
 - > 1. How much bandwidth is available per cell using FDD?
 - > 2. How many users per cell can be supported using FDMA?
 - > 3. What is the cell area
 - > 4. What is the cell radius assuming circular cells?
- B. If the available spectrum is divided in to 100 channels and TDMA is employed within each channel:
 - 1. What is the bandwidth and data rate per channel?
 - 2. How many time slots are needed in a TDMA frame to support the required number of users?
 - 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
 - 4. How many bits are transmitted in each time slot?

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

GPRS

- General Packet Radio Service (GPRS). 2.5G Technology
- □ Standard GSM has 8 slots per 200 kHz channel One slot/user \Rightarrow 9.6 kbps data/user
- GPRS allows any number of slots to a user
 - > 4 different codings used depending upon channel condition
 - > 9.6 kbps to 21.4 kbps per slot
 - > 76-171 kbps using all 8 slots.
- GPRS user can hop frequency channels

Gi = GSM User

Gpi = GPRS User t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_2 t_7 Uplink 1 G1 G2 GP2 GP1 G1 G2 Uplink 2 GP1 GP2 G1 GP1 G2 Downlink 1 G2 GP2 GP1 G1 Downlink 2 GP1 GP GP2 http://www.cse.wustl.edu/~jain/cse574-18/ Washington University in St. Louis ©2018 Rai Jain

GPRS (Cont)

- Supports intermittent and bursty data transfers
 Point-to-multipoint also supported
- □ Need to add two new elements to GSM networks:
 - Service GPRS support node (SGSN)
 Security, Mobility, Access control for data packet
 - Gateway GPRS support node (GGSN)
 - Connects to external packet switched networks
- Standardized by ETSI

16-34

EDGE

- □ Enhanced Data Rates for GSM Evolution (EDGE)
- Standard GSM uses Gaussian Minimum Shift Keying (GMSK) modulation.
 - Data stream is shaped with a Gaussian filter before frequency modulation
- □ EDGE changes to 8-PSK modulation ⇒ 3 bps/Hz
 □ GPRS+EDGE ⇒ 384 kbps
- □ Need better radio signal quality
- GSM-EDGE Radio Access Network (GERAN)

Washington University in St. Louis

W-CDMA

- Wideband Code Division Multiple Access
- □ European 3G
- Aka Universal Mobile Telecommunications System (UMTS)
- Uses Direct Sequence Spread Spectrum over two 5 MHz FDD channels
- Radio access network is called "UMTS Terrestrial Radio Access Network (UTRAN)"
- Air interface is called "UMTS Terrestrial Radio Access (UTRA)"

High-Speed Packet Access (HSPA)

- □ Evolution (extension) of W-CDMA
- □ High-Speed Downlink **Packet** Access (HSDPA):
 - > Adaptive modulation and coding
 - > Channel dependent scheduling
 - > Higher order modulations, e.g., 16-QAM
- □ High-Speed Uplink Packet Access (HSUPA):
 - > Parallel transmissions from multiple users
- $\square HSPA = HSDPA + HSUPA$
 - > Up to 64-QAM
- HSPA+: Evolution of HSPA. Up to 168 Mbps down, 22 Mbps up using MIMO and multiple carriers

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

¹⁶⁻³⁸

Evolved Packet System (Cont)

- $\Box CS = Circuit Switched$
- $\square EPC = Evolved Packet Core$
- $\square EPS = Evolved Packet System$
- □ GERAN = GSM Enhanced Radio Access Network
- □ GGSN = Gateway GPRS Support Node
- $\Box \quad LTE = Long Term Evolution$
- □ MGW = Media Gateway
- □ MME = Mobility Management Utility
- □ MSC = Mobile Switching Center
- □ P-GW = Packet Gateway
- $\square PS = Packet Switched$
- □ RNC = Radio Network Control
- □ S-GW = Serving Gateway
- □ SGSN = Service GPRS Support Node
- $\square SS7 = Signaling System 7$
- $\square eNB = Evolved NodeB$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- 1. In a cellular cluster of size N, the same distance between cells with same frequencies is $D = R\sqrt{3N}$. Here R is the cell radius.
- 2. 1G was analog voice with FDMA
- 3. 2G was digital voice with TDMA. Most widely implemented 2G is GSM. Data rate was improved by GPRS and EDGE.
- 3G was voice+data with CDMA. Most widely implemented 3G is W-CDMA using two 5 MHz FDD channels.
- 5. Data rate was improved later using HSPA and HSPA+.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Reading List

- Martin Sauter, "From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile Broadband, Revised Second Edition," John Wiley & Sons, August 2014, 456 pp., ISBN:978-1-118-86195-0 (Safari Book).
- C. Siva Ram Murthy; B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols," Prentice Hall, 2004, ISBN: 013147023X, 880 pp., Safari Book.

Wikipedia Links

- http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System
- □ <u>http://en.wikipedia.org/wiki/CDMA</u>
- □ <u>http://en.wikipedia.org/wiki/IS-2000</u>
- □ <u>http://en.wikipedia.org/wiki/IS-95</u>
- □ <u>http://en.wikipedia.org/wiki/W-CDMA</u>
- □ <u>http://en.wikipedia.org/wiki/Evolution-Data_Optimized</u>
- □ <u>http://en.wikipedia.org/wiki/EV-DV#Potential_competing_standards</u>
- □ <u>http://en.wikipedia.org/wiki/GSM</u>
- □ <u>http://en.wikipedia.org/wiki/GPRS</u>
- □ <u>http://en.wikipedia.org/wiki/EDGE</u>
- □ <u>http://en.wikipedia.org/wiki/Evolved_EDGE</u>
- □ <u>http://en.wikipedia.org/wiki/TD-SCDMA</u>
- □ <u>http://en.wikipedia.org/wiki/High_Speed_Packet_Access</u>
- □ <u>http://en.wikipedia.org/wiki/Ultra_Mobile_Broadband</u>
- □ <u>http://en.wikipedia.org/wiki/IMT-2000</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

References

- P. Bedell, "Cellular Networks: Design and Operation, A real World Perspective," Outskirts Press, 2014, ISBN:9781478732082 (Good/easy reading but not a Safari book)
- □ 3G Americas, <u>http://www.3gamericas.org</u>
- G Americas," The mobile broadband revolution: 3GPP Release 8 and beyond, HSPA+, SAE/LTE and LTE-Advanced," White paper, February 2009.

Acronyms

- □ 3GPP 3rd Generation Partnership Project
- AMPS Advanced Mobile Phone System
- □ AuC Authentication Center
- **B**S Base Station
- **BSC** Base Station Controller
- **BTS** Base transceiver station
- **CDMA** Code Division Multiple Access
- □ CoW Cell on Wheels
- □ CS Circuit Switched
- **D**C District of Columbia
- DO Data-Only
- DV Data+Voice
- □ EDGE Enhanced Data rate for GSM evolution
- **EIR** Equipment Identity Register
- □ eNB eNodeB
- **EPC** Evolved Packet Core

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

EPS	Evolved Packet System
ETSI	European Telecommunications Standards Institute
EVDO	Evolution to Data only
EVDV	Evolution to Data and voice
FACCH	Fast Associated Control Channel
FDD	Frequency Division Duplexing
FDMA	Frequency Division Multiple Access
FEC	Forward Error Correction
GERAN	GSM Enhanced Radio Access Network
GGSN	Gateway GPRS Support
GMSK	Gaussian Minimum Shift Keying
GP	GPRS user slot
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communications
GW	Gateway
HLR	Home Location Register

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- □ HS High Speed
- HSDPA High-speed Downlink Packet Access
- □ HSPA High-speed Packet Access
- □ HSPA+ Evolved High-speed Packet Access
- □ HSUPA High-Speed Uplink Packet Access
- □ IEEE Institution of Electrical and Electronic Engineers
- □ IMEI International Mobile Equipment Identity
- □ IMT-2000 International Mobile Communications 2000
- □ IMT-Advanced International Mobile Communications Advanced
- □ IP Internet Protocol
- □ IS International Standard
- □ kHz Kilo Hertz
- □ LTE Long-Term Evolution
- □ MGW Media Gateway
- □ MHz Mega Hertz
- MIMO Multiple Input Multiple Output
- MME Mobility Management Utility

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

MS	Mobile Station
MSA	Metropolitan Service Areas
MSC	Mobile Switching Center
NA-TDMA	North America Time Division Multiple Access
NA	North America
NIMBY	Not in my backyard
NodeB	Base Station
OFDMA	Orthogonal Frequency Division Multiple Access
PIN	Personal Identification Number
PS	Packet Switched
PSK	Phase Shift Keying
PSTN	Public Switched Telephone Network
QAM	Quadrature Amplitude Modulation
RNC	Radio Network Control
SACCH	Slow Associated Control Channel

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- SCDMA Synchronous CDMA
- □ SGSN Service GPRS Support Node
- □ SGW Service Gateway
- □ SIM Subscriber Identify Module
- □ SMS Short Message Service
- □ SS7 Signaling System 7
- TACS Total Access Communications System
- **D** TD-SCDMA Time Duplexed Synchronous Code Division Multiple Access
- **TDMA** Time Division Multiple Access
- □ UE User Element
- **UMB** Ultra Mobile Broadband
- UMTS Universal Mobile Telecommunications System
- UTRA UMTS Terrestrial Radio Access
- UTRAN UMTS Terrestrial Radio Access Network
- □ VLR Visitor Location Register
- □ VOIP Voice over IP

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

WCDMA Wideband Code Division Multiple Access
 WiMAX Worldwide Interoperability for Microwave Access

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Scan This to Download These Slides

Raj Jain http://rajjain.com

©2018 Raj Jain

16-50

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013), <u>https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof</u>

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

