
# IEEE 802.11 Wireless LANs Part I: Basics



Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this class lecture are available at: <u>http://www.cse.wustl.edu/~jain/cse574-18/</u>

Washington University in St. Louis

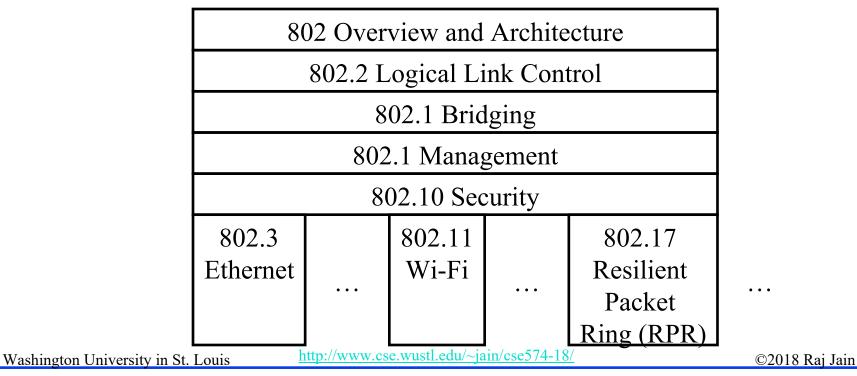
http://www.cse.wustl.edu/~jain/cse574-18/



- 1. IEEE 802.11 Features
- 2. IEEE 802.11 Physical Layers
- 3. IEEE 802.11 MAC
- 4. IEEE 802.11 Architecture
- 5. Frame Format
- 6. Power Management

Note: This is 1<sup>st</sup> of 2 lectures on Wi-Fi. The 2<sup>nd</sup> lecture covers recent developments such as high-throughput Wi-Fi, white spaces, etc. Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse574-18/</u> ©2018 Rai Jain

5-2


## **IEEE 802.11 vs. Wi-Fi**

- □ IEEE 802.11 is a standard
- □ Wi-Fi = "Wireless Fidelity" is a trademark
- Fidelity = Compatibility between wireless equipment from different manufacturers
- Wi-Fi Alliance is a non-profit organization that does the compatibility testing (WiFi.org)
- 802.11 has many options and it is possible for two equipment based on 802.11 to be incompatible.
- All equipment with "Wi-Fi" logo have selected options such that they will interoperate.

Washington University in St. Louis

### **IEEE Standards Numbering System**

- □ IEEE 802.\* and IEEE 802.1\* standards (e.g., IEEE 802.1Q-2011) apply to all IEEE 802 technologies:
  - ► IEEE 802.3 Ethernet
  - ≻ IEEE 802.11 Wi-Fi
  - ▹ IEEE 802.16 WiMAX



## **IEEE Standards Numbering (Cont)**

- IEEE 802.11\* (e.g., 802.11i) standards apply to all Wi-Fi devices but may not apply to ZigBee devices which are based on 802.15,
- □ Standards with all upper case letters are base standards, e.g., IEEE 802.1AB-2009
- Standards with lower case are additions/extensions/revisions.
   Merged with the base standard in its next revision.
   e.g., IEEE 802.1w-2001 was merged with IEEE 802.1D-2004
- □ Standards used to be numbered, sequentially, e.g., IEEE 802.1a, ..., 802.1z, 802.1aa, 802.1ab, ...
- Recently they started showing base standards in the additions, e.g., IEEE 802.1Qau-2010

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

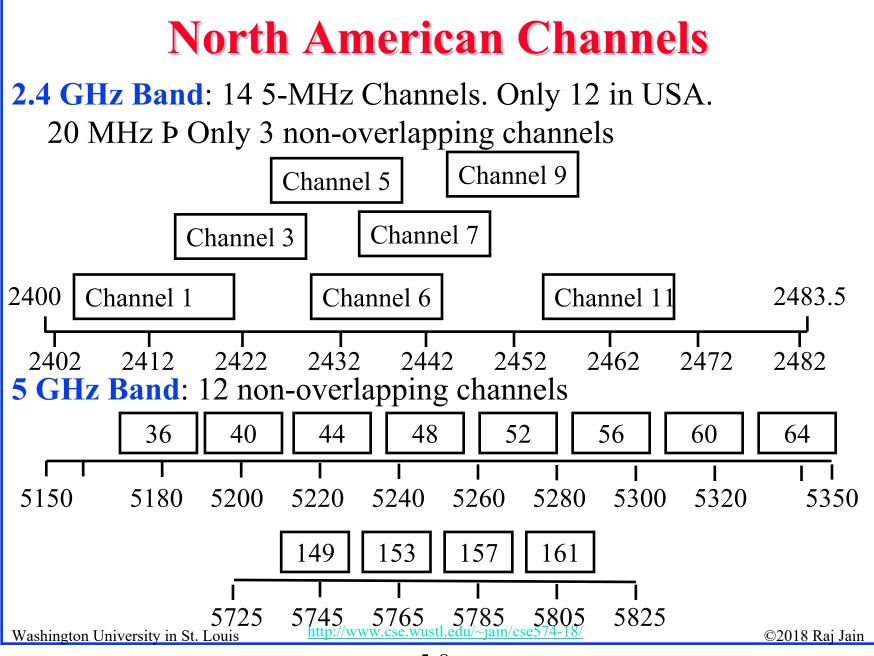
#### **IEEE 802.11 Features**

- Original IEEE 802.11-1997 was at 1 and 2 Mbps.
   Newer versions at 11 Mbps, 54 Mbps, 108 Mbps, 200 Mbps,...
- □ All versions use "License-exempt" spectrum
- Need ways to share spectrum among multiple users and multiple LANs \U00c4 Spread Spectrum (CDMA)
- **Three Phys:** 
  - Direct Sequence (DS) spread spectrum using ISM band
  - Frequency Hopping (FH) spread spectrum using ISM band
  - Diffused Infrared (850-900 nm) bands
- Supports multiple priorities
- □ Supports time-critical and data traffic
- Power management allows a node to doze off

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

#### **ISM Bands**


#### □ Industrial, Scientific, and Medical bands. License exempt

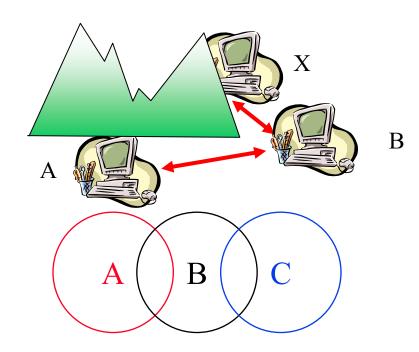
| From        | То          | Bandwidth | Availability                 |
|-------------|-------------|-----------|------------------------------|
| 6.765 MHz   | 6.795 MHz   | 30 kHz    |                              |
| 13.553 MHz  | 13.567 MHz  | 14 kHz    | Worldwide                    |
| 26.957 MHz  | 27.283 MHz  | 326 kHz   | Worldwide                    |
| 40.660 MHz  | 40.700 MHz  | 40 kHz    | Worldwide                    |
| 433.050 MHz | 434.790 MHz | 1.74 MHz  | Europe, Africa, Middle east, |
|             |             |           | Former Soviet Union          |
| 902.000 MHz | 928.000 MHz | 26 MHz    | America, Greenland           |
| 2.400 GHz   | 2.500 GHz   | 100 MHz   | Worldwide                    |
| 5.725 GHz   | 5.875 GHz   | 150 MHz   | Worldwide                    |
| 24.000 GHz  | 24.250 GHz  | 250 MHz   | Worldwide                    |
| 61.000 GHz  | 61.500 GHz  | 500 MHz   |                              |
| 122.000 GHz | 123.000 GHz | 1 GHz     |                              |
| 244 GHz     | 246 GHz     | 2 GHz     |                              |

Ref: http://en.wikipedia.org/wiki/ISM\_band

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

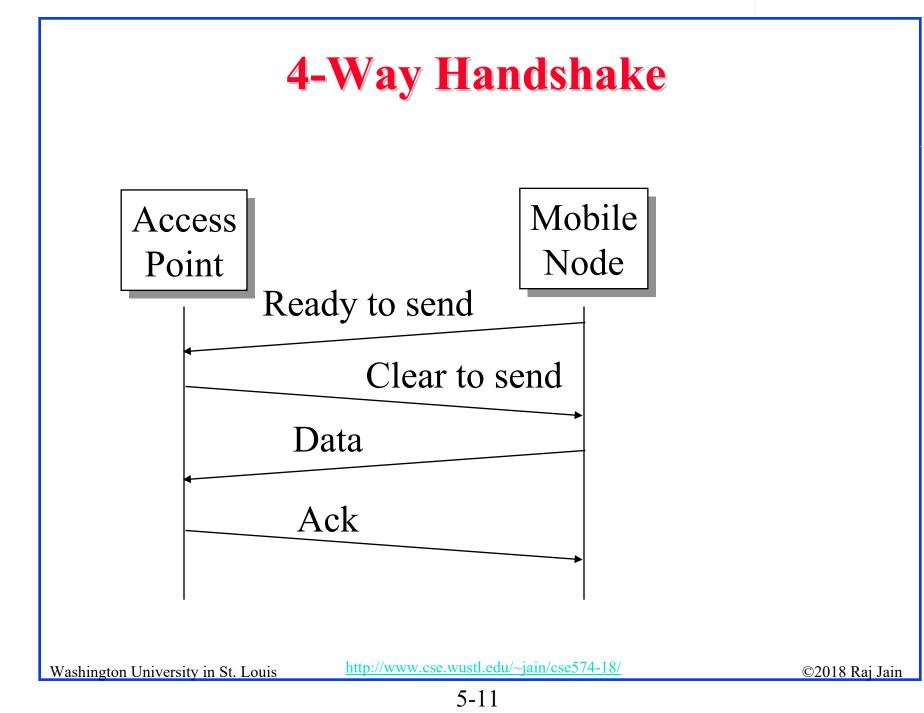



<sup>5-8</sup> 

## **IEEE 802.11 Physical Layers**

- □ Issued in several stages
- □ First version in 1997: IEEE 802.11
  - > Includes MAC layer and three physical layer specifications
  - > Two in 2.4-GHz band and one infrared
  - > All operating at 1 and 2 Mbps
  - > No longer used
- **Two additional amendments in 1999:** 
  - IEEE 802.11a-1999: 5-GHz band, 54 Mbps/20 MHz, OFDM
  - > IEEE 802.11b-1999: 2.4 GHz band, 11 Mbps/22 MHz
- □ Fourth amendment:
  - IEEE 802.11g-2003 : 2.4 GHz band, 54 Mbps/20 MHz, OFDM

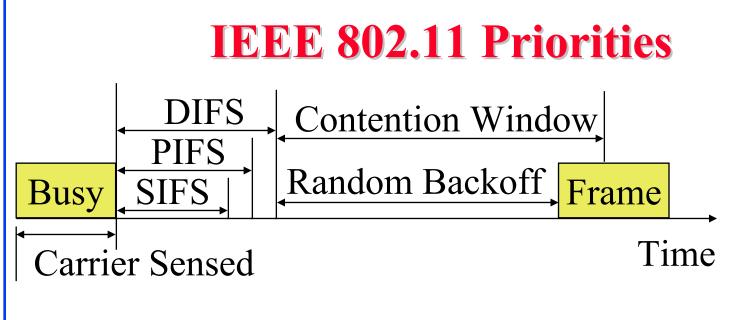
Washington University in St. Louis


#### **Hidden Node Problem**



- □ A can hear B, B can hear C, but C cannot hear A.
- □ C may start transmitting while A is also transmitting
   ⇒ A and C can't detect collision.
- CSMA/CD is not possible
   ⇒ Only the receiver can help avoid collisions

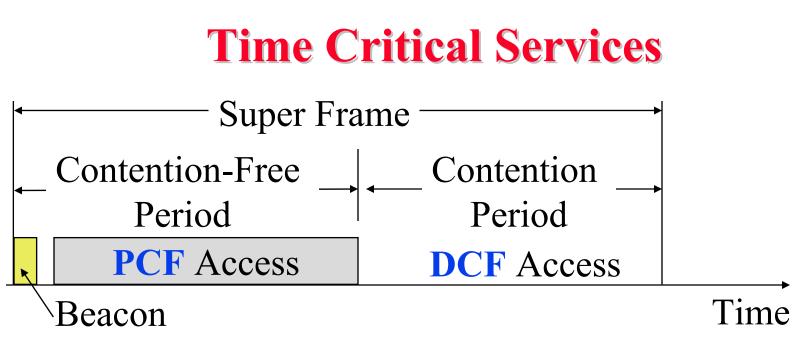
Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse574-18/



## **IEEE 802.11 MAC**

- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
- □ Listen before you talk. If the medium is busy, the transmitter backs off for a random period.
- Avoids collision by sending a short message: Ready to send (RTS) RTS contains dest. address and <u>duration</u> of message. Tells everyone to backoff for the duration.
- Destination sends: Clear to send (CTS)
   Other stations set their network allocation vector (NAV) and wait for that duration
- $\Box$  Can not detect collision  $\Rightarrow$  Each packet is acked.
- □ MAC-level retransmission if not acked.


Washington University in St. Louis



- □ Initial interframe space (IFS)
- Highest priority frames, e.g., Acks, use short IFS (SIFS)
- Medium priority time-critical frames use "Point Coordination Function IFS" (PIFS)
- Asynchronous data frames use "Distributed coordination function IFS" (DIFS)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/



- Timer critical services use Point Coordination Function
- □ The point coordinator allows only one station to access
- Coordinator sends a beacon frame to all stations.
   Then uses a polling frame to allow a particular station to have contention-free access
- □ Contention Free Period (CFP) varies with the load.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

## **IEEE 802.11 DCF Backoff**

- □ MAC works with a single FIFO Queue
- □ Three variables:
  - Contention Window (CW)
  - Backoff count (BO)
  - > Network Allocation Vector (NAV)
- If a frame (RTS, CTS, Data, Ack) is heard, NAV is set to the duration in that frame. Stations sense the media after NAV expires.
- □ If the medium is idle for DIFS, and backoff (BO) is not already active, the station draws a random BO in [0, CW] and sets the backoff timer.
- □ If the medium becomes busy during backoff, the timer is stopped and a new NAV is set. After NAV, back off continues.

Washington University in St. Louis

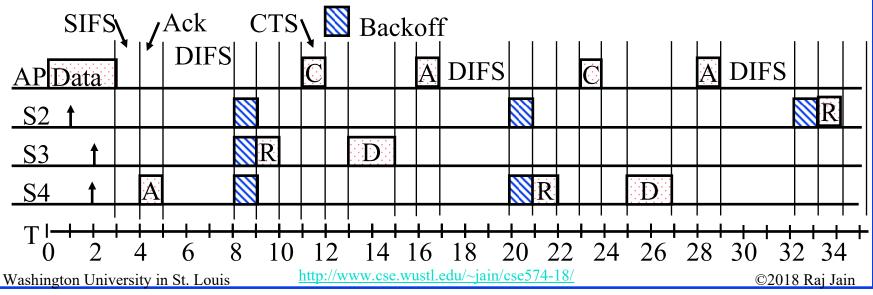
http://www.cse.wustl.edu/~jain/cse574-18/

# **IEEE 802.11 DCF Backoff (Cont)** □ Initially and after each successful transmission: $CW = CW_{min}$ □ After each unsuccessful attempt $CW = min\{2CW + 1, CW_{max}\}$ **Example**: CWmin=3, CWmax=127 3, 7, 15, 31, 63, 127, 127, 127, ...

## **Typical Parameter Values**

- □ For DS PHY: Slot time = 20 us, SIFS = 10 us, CWmin = 31, CWmax = 1023
- □ For FH PHY: Slot time = 50 us, SIFS = 28 us, CWmin = 15, CWmax = 1023
- I1a: Slot time = 9 us, SIFS= 16 us, CWmin= 15, CWmax=1023
- 11b: Slot time = 20 us, SIFS = 10 us, CWmin= 31, CWmax=1023
- Ill 11g: Slot time = 20 us or 9 us, SIFS = 10 us, CWmin= 15 or 31, CWmax=1023
- $\square PIFS = SIFS + 1 \text{ slot time}$
- $\Box DIFS = SIFS + 2 \text{ slot times}$

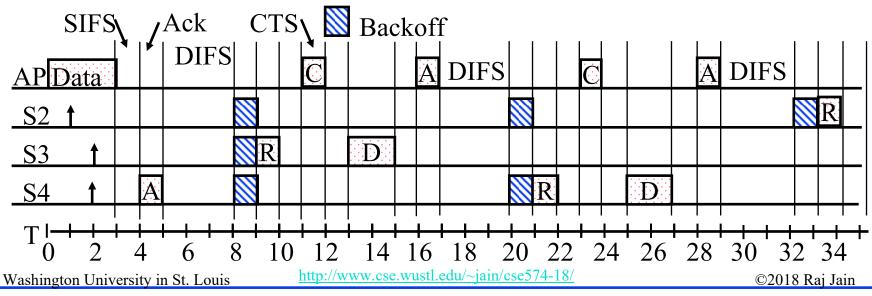
## **Virtual Carrier Sense**


- Every frame has a "Duration ID" which indicates how long the medium will be busy.
  - RTS has duration of RTS + SIF + CTS + SIF + Frame + SIF + Ack
  - CTS has duration of CTS + SIF + Frame + SIF + Ack
  - Frame has a duration of Frame + SIF + ACK
  - > ACK has a duration of ACK
- □ All stations keep a "Network Allocation Vector (NAV)" timer in which they record the duration of the each frame they hear.
- Stations do not need to sense the channel until NAV becomes zero.

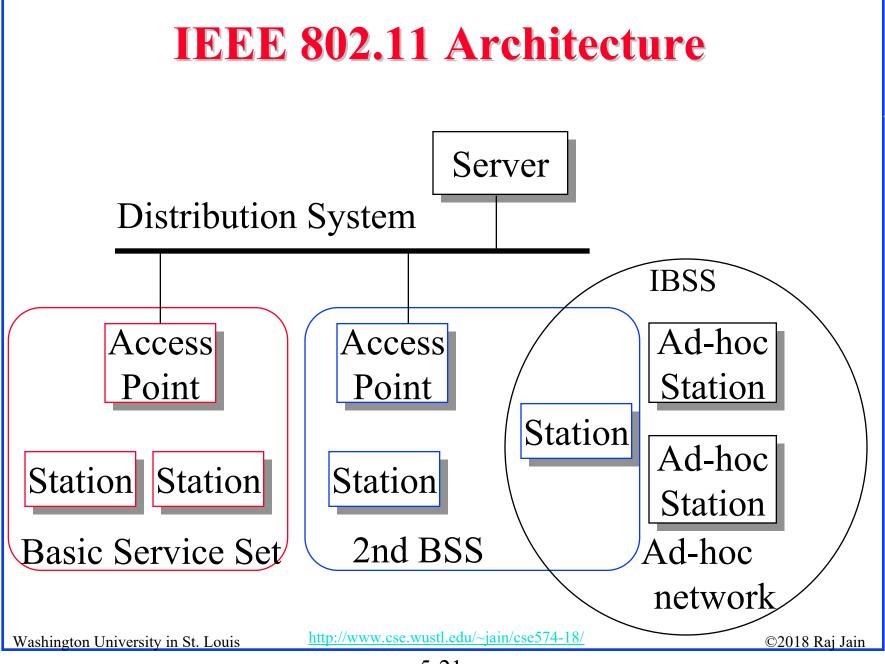
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

### **DCF Example**


- $\Box$  Example: Slot Time = 1, CWmin = 5, DIFS=3, PIFS=2, SIFS=1
- $\Box$  T=1 Station 2 wants to transmit but the media is busy
- $\Box$  T=2 Stations 3 and 4 want to transmit but the media is busy
- $\Box$  T=3 Station 1 finishes transmission.
- □ T=4 Station 1 receives ack for its transmission (SIFS=1) Stations 2, 3, 4 set their NAV to 1.
- □ T=5 Medium becomes free
- □ T=8 DIFS expires. Stations 2, 3, 4 draw backoff count between 0 and 5. The counts are 3, 1, 2




<sup>5-19</sup> 

## **DCF Example (Cont)**

- T=9 Station 3 starts transmitting. Announces a duration of 8 (RTS + SIFS + CTS + SIFS + DATA + SIFS + ACK). Station 2 and 4 pause backoff counter at 2 and 1 resp. and wait till T=17
- □ T=15 Station 3 finishes data transmission
- $\Box$  T=16 Station 3 receives Ack.
- □ T=17 Medium becomes free
- □ T=20 DIFS expires. Station 2 and 4 notice that there was no transmission for DIFS.Stations 2 and 4 start their backoff counter from 2 and 1, respectively.
- □ T=21 Station 4 starts transmitting RTS



5 - 20



<sup>5-21</sup> 

## **IEEE 802.11 Architecture (Cont)**

- □ **Basic Service Area (BSA)** = Cell
- □ Each BSA may have several access points (APs)
- □ Basic Service Set (BSS)
  - = Set of stations associated with one AP
- □ **Distribution System (DS)** wired backbone
- Extended Service Area (ESA) = Multiple BSAs interconnected via a distribution system
- □ Extended Service Set (ESS)
  - = Set of stations in an ESA
- □ Independent Basic Service Set (IBSS): Set of computers in ad-hoc mode. May not be connected to wired backbone.
- Ad-hoc networks coexist and interoperate with infrastructurebased networks

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

#### **Frame Format**

| Fram<br>Contro              | e Dur<br>ol | ration/<br>ID | Adr 1 | Adr  | 2 Adr         | 3 Sec<br>Cont | q<br>trol | Adr 4         | Info | CRC |       |  |  |
|-----------------------------|-------------|---------------|-------|------|---------------|---------------|-----------|---------------|------|-----|-------|--|--|
| 16b 16b 48b 48b 16b 48b 32b |             |               |       |      |               |               |           |               |      |     |       |  |  |
| Prot.                       | Туре        | Sub           | To    | From | More<br>Frag. | Retry         | Po        | wer N         | lore | WEP | Order |  |  |
| ver.<br>2b                  | 2b          | type<br>4b    | 1b    | 1b   | Frag.<br>1b   | 1b            | 11 mg     | $\frac{1}{2}$ | b    | 1b  | 1b    |  |  |

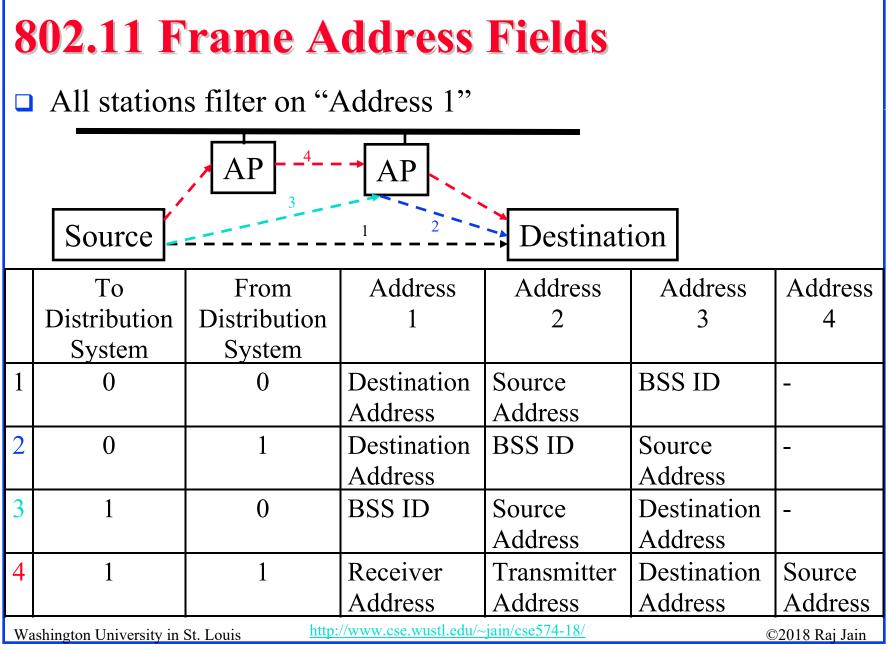
- □ Type: Control, management, or data
- Sub-Type: Association, disassociation, re-association, probe, authentication, de-authentication, CTS, RTS, Ack, ...
- **Retry/retransmission**
- Going to Power Save mode
- □ More buffered data at AP for a station in power save mode
- □ Wireless Equivalent Privacy (Security) info in this frame
- **Strict ordering**

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

## **MAC Frame Fields**

#### **Duration/Connection ID**:


- If used as duration field, indicates time (in us) channel will be allocated for successful transmission of MAC frame. Includes time until the end of Ack
- In some control frames, contains association or connection identifier

#### □ Sequence Control:

- > 4-bit fragment number subfield
  - □ For fragmentation and reassembly
- > 12-bit sequence number
- > Number frames between given transmitter and receiver

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/



# **802.11 Power Management**

 Station tells the base station its mode: Power saving (PS) or active



- □ Mode changed by power mgmt bit in the frame control header.
- □ All packets destined to stations in PS mode are buffered
- AP broadcasts list of stations with buffered packets in its beacon frames: Traffic Indication Map (TIM)
- Subscriber Station (SS) sends a PS-Poll message to AP, which sends one frame. More bit in the header P more frames.
- With 802.11e unscheduled Automatic Power Save Delivery (APSD): SS transmits a data or null frame with power saving bit set to 0. AP transmits all buffered frames for SS.
- □ With Scheduled APSD mode: AP will transmit at prenegotiated time schedule. No need for polling.
- Hybrid APSD mode: PS-poll for some. Scheduled for other categories
  Washington University in St. Louis
  <u>http://www.cse.wustl.edu/~jain/cse574-18/</u>
  ©2018 Rai Jain

5-26



- 1. 802.11 uses Frequency hopping, Direct Sequence CDMA, OFDM
- 2. 802.11 PHYs: 802.11, 802.11a, 802.11b, 802.11g
- 3. Allows both: Ad-Hoc vs. Infrastructure-based
- 4. 802.11 supports single FIFO Q. Uses SIFS, PIFS, DIFS

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

#### **Homework 5**

Two 802.11 stations get frames to transmit at time t=0. The 3<sup>rd</sup> station (AP) has just finished transmitting data for a long packet at t=0 to Station 1. The transmission parameters are: Slot time=1, SIFS=1, DIFS=3, CWmin=5, CWmax=7. Assume that the pseudo-random number generated are 1, 3. The data size for both stations is 3 slots. Draw a transmission diagram. At what time the two packets will get acknowledged assuming no new arrivals.



## **Reading List**

□ IEEE 802.11 Tutorial,

https://ptolemy.berkeley.edu/projects/ofdm/ergen/docs/ieee.pdf

A Technical Tutorial on the IEEE 802.11 Protocol, <u>http://www.sss-mag.com/pdf/802\_11tut.pdf</u>



## Wikipedia Links

- □ <u>http://en.wikipedia.org/wiki/Wireless\_LAN</u>
- □ <u>http://en.wikipedia.org/wiki/IEEE\_802.11</u>
- □ <u>http://en.wikipedia.org/wiki/Channel\_access\_method</u>
- <u>http://en.wikipedia.org/wiki/Direct-sequence\_spread\_spectrum</u>
- □ <u>http://en.wikipedia.org/wiki/Wi-Fi</u>
- <u>http://en.wikipedia.org/wiki/Distributed\_Coordination\_Function</u>
- □ <u>http://en.wikipedia.org/wiki/Carrier\_sense\_multiple\_access</u>
- http://en.wikipedia.org/wiki/Multiple\_Access\_with\_Collision\_Avoidance\_f or\_Wireless
- □ <u>http://en.wikipedia.org/wiki/Beacon\_frame</u>
- □ <u>http://en.wikipedia.org/wiki/IEEE\_802.11</u>
- □ <u>http://en.wikipedia.org/wiki/IEEE\_802.11 (legacy\_mode)</u>
- □ <u>http://en.wikipedia.org/wiki/IEEE\_802.11\_RTS/CTS</u>
- □ <u>http://en.wikipedia.org/wiki/List\_of\_WLAN\_channels</u>
- □ <u>http://en.wikipedia.org/wiki/Point\_Coordination\_Function</u>
- □ <u>http://en.wikipedia.org/wiki/Service\_set\_(802.11\_network)</u>
- □ <u>http://en.wikipedia.org/wiki/Wi-Fi\_Alliance</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

## Acronyms

- □ Ack Acknowledgement
- □ AP Access Point
- □ APSD Automatic Power Save Delivery
- **BO** Backoff
- **BSA** Basic Service Area
- BSS Basic Service Set
- BSSID Basic Service Set Identifier
- □ CA Collision Avoidance
- □ CD Collision Detection
- **CDMA** Code Division Multiple Access
- **CFP** Contention Free Period
- **CRC** Cyclic Redundancy Check
- **CSMA** Carrier Sense Multiple Access
- □ CTS Clear to Send
- □ CW Congestion Window
- CWmax Maximum Congestion Window

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

## Acronyms (Cont)

- **CWmin** Minimum Congestion Window
- DA Destination Address
- DCF Distributed Coordination Function
- □ DIFS DCF Inter-frame Spacing
- DS Direct Sequence
- **ESA** Extended Service Area
- **ESS** Extended Service Set
- **G** FH Frequency Hopping
- □ FIFO First In First Out
- GHz Giga Hertz
- □ IBSS Independent Basic Service Set
- □ ID Identifier
- □ IEEE Institution of Electrical and Electronics Engineers
- □ IFS Inter-frame spacing
- □ ISM Instrumentation, Scientific and Medical
- LAN Local Area Network

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

## Acronyms (Cont)

- MAC Media Access Control
- □ MHz Mega Hertz
- MIMO Multiple Input Multiple Output
- NAV Network Allocation Vector
- OFDM Orthogonal Frequency Division Multiplexing
- **D** PCF Point Coordination Function
- PHY Physical Layer
- PIFS PCF inter-frame spacing
- □ PS Power saving
- **RA** Receiver Address
- RPR Resilient Packet Ring
- RTS Ready to Send
- □ SA Source Address
- □ SIFS Short Inter-frame Spacing

Washington University in St. Louis

## Acronyms (Cont)

- □ SS Subscriber Station
- □ TA Transmitter's Address
- **TIM** Traffic Indication Map
- □ WEP Wired Equivalent Privacy
- □ Wi-Fi Wireless Fidelity
- UWLANWireless Local Area Network

### **Scan This to Download These Slides**



5-35

## **Related Modules**



CSE567M: Computer Systems Analysis (Spring 2013), https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n\_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e\_10TiDw





Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u





Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

5 - 36

