Introduction to Wireless Signal Propagation

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-18/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- 1. Reflection, Diffraction, Scattering
- 2. Fading, Shadowing, multipath
- 3. Fresnel Zones
- 4. Multi-Antenna Systems, Beam forming, MIMO
- 5. OFDM

Note: This is the 2nd in a series of 2 lectures on wireless physical layer. Modulation, coding, Shannon's theorem, etc were discussed in the other lecture.

Washington University in St. Louis

Wireless Radio Channel

- □ Path loss: Depends upon distance and frequency
- Noise
- □ Shadowing: Obstructions
- □ Frequency Dispersion (Doppler Spread) due to motion
- □ Interference
- □ Multipath: Multiple reflected waves
- □ Inter-symbol interference (ISI) due to dispersion

4 - 3

Antenna

- □ Transmitter converts electrical energy to electromagnetic waves
- □ Receiver converts electromagnetic waves to electrical energy
- □ Same antenna is used for transmission and reception
- Omni-Directional: Power radiated in all directions
- Directional: Most power in the desired direction
- □ Isotropic antenna: Radiates in all directions equally
- Antenna Gain = Power at particular point/Power with Isotropic Expressed in dBi

Omni-Directional

Washington University in St. Louis

 $P_r = P_t G_t G_r (\lambda/4\pi d)^2$

Directional

http://www.cse.wustl.edu/~jain/cse574-18/

©2018 Raj Jain

4-4

Reflection, Diffraction and Scattering (Cont)

Reflection: Surface large relative to wavelength of signal

- May have phase shift from original
- May cancel out original or increase it
- **Diffraction**: Edge of impenetrable body that is large relative to λ
 - May receive signal even if no line of sight (LOS) to transmitter

□ Scattering

- > Obstacle size on order of wavelength. Lamp posts etc.
- □ If LOS, diffracted and scattered signals not significant
 - > Reflected signals may be
- If no LOS, diffraction and scattering are primary means of reception

Washington University in St. Louis

- Power profile of the received signal can be obtained by convolving the power profile of the transmitted signal with the impulse response of the channel.
- □ Convolution in time = multiplication in frequency
- □ Signal *x*, after propagation through the channel *H* becomes *y*: y(f)=H(f)x(f)+n(f)
- □ Here H(f) is **channel response**, and n(f) is the noise. Note that *x*, *y*, *H*, and *n* are all functions of the signal frequency *f*. Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse574-18/</u> ©2018 Rai Jain

Path Loss

Power is distributed equally to spherical area 4π d²
 The received power depends upon the wavelength
 If the Receiver collects power from area A_R:

$$P_R = P_T G_T \frac{1}{4\pi d^2} A_R$$

Receiving Antenna Gain

$$G_R = \frac{4\pi}{\lambda^2} A_R$$

$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$$

□ This is known as **Frii's Law**. Attenuation in free space increases with frequency.

⁴⁻¹⁰

d⁻⁴ Power Law

Using a two-ray model

$$P_R = P_T G_T G_R \left(\frac{h_t h_r}{d^2}\right)^2$$

- □ Here, h_T and h_R are heights of transmit and receive antennas
- □ It is valid for distances larger than

$$d_{\rm break} = 4h_T h_R / \lambda$$

- Note that the received power becomes independent of the frequency.
- Measured results show n=1.5 to 5.5. Typically 4.

Small Scale Fading

□ The signal amplitude can change by moving a few inches ⇒ Small scale fading

4-15

- Draw an ellipsoid with BS and MS as Foci
- □ All points on ellipsoid have the same BS-MS run length
- □ Fresnel ellipsoids = Ellipsoids for which run length = $LoS + i\lambda/2$
- □ At the Fresnel ellipsoids results in a phase shift of i\pi
- Radius of the *i*th ellipsoid at distance d_T from the transmitter and d_R from the receiver is $\sqrt{1\lambda d_T d_R}$

$$\sqrt{\frac{1\lambda d_T d_R}{d_T + d_R}}$$

Free space (d²) law is followed up to the distance at which the first Fresnel Ellipsoid touches the ground

Multi-Antenna Systems

- **Receiver** Diversity
- **Transmitter Diversity**
- Beam forming
- MIMO

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

- User multiple receive antenna
- Selection combining: Select antenna with highest SNR
- Threshold combining: Select the first antenna with SNR above a threshold
- Maximal Ratio Combining: Phase is adjusted so that all signals have the same phase. Then weighted sum is used to maximize SNR Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse574-18/
 ©2018 Rai Jain

- Use multiple antennas to transmit the signal Ample space, power, and processing capacity at the transmitter (but not at the receiver).
- If the channel is known, phase each component and weight it before transmission so that they arrive in phase at the receiver and maximize SNR
- □ If the channel is not known, use space time block codes
 Washington University in St. Louis
 <u>http://www.cse.wustl.edu/~jain/cse574-18/</u>
 ©2018 Rai Jain

- Phased Antenna Arrays: Receive the same signal using multiple antennas
- □ By phase-shifting various received signals and then summing ⇒ Focus on a narrow directional beam
- □ Digital Signal Processing (DSP) is used for signal processing ⇒ Self-aligning

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

MIMO

- Multiple Input Multiple Output
- □ RF chain for each antenna
 - \Rightarrow Simultaneous reception or transmission of multiple streams

802.16e at 2.5 GHz, 10 MHz TDD, D:U=2:1

T:R	1x1	1x2	2x2	2x4	4x2	4x4
b/Hz	1.2	1.8	2.8	4.4	3.7	5.1

Washington University in St. Louis

Multiple Access Methods

Source: Nortel

Washington University in St. Louis

OFDM

- Orthogonal Frequency Division Multiplexing
- □ Ten 100 kHz channels are better than one 1 MHz Channel ⇒ Multi-carrier modulation \square

- □ Frequency band is divided into 256 or more sub-bands. Orthogonal ⇒ Peak of one at null of others
- Each carrier is modulated with a BPSK, QPSK, 16-QAM, 64-QAM etc depending on the noise (Frequency selective fading)
- Used in 802.11a/g, 802.16,
 Digital Video Broadcast handheld (DVB-H) ^{und}
- Easy to implement using FFT/IFFT

http://www.cse.wustl.edu/~jain/cse574-18/

©2018 Raj Jain

Freq

4-23

Advantages of OFDM

- □ Easy to implement using FFT/IFFT
- Computational complexity = O(B log BT) compared to previous O(B²T) for Equalization. Here B is the bandwidth and T is the delay spread.
- Graceful degradation if excess delay
- □ Robustness against frequency selective burst errors
- □ Allows adaptive modulation and coding of subcarriers
- Robust against narrowband interference (affecting only some subcarriers)
- Allows pilot subcarriers for channel estimation

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

OFDM: Design considerations

- Large number of carriers ⇒ Smaller data rate per carrier
 ⇒ Larger symbol duration ⇒ Less inter-symbol interference
- □ Reduced subcarrier spacing ⇒ Increased inter-carrier interference due to Doppler spread in mobile applications
- Easily implemented as Inverse Discrete Fourier Transform (IDFT) of data symbol block
- Fast Fourier Transform (FFT) is a computationally efficient way of computing DFT

OFDMA

- Orthogonal Frequency Division <u>Multiple Access</u>
- □ Each user has a subset of subcarriers for a few slots
- □ OFDM systems use TDMA
- □ OFDMA allows Time+Freq DMA \Rightarrow 2D Scheduling

Scalable OFDMA (SOFDMA)

- □ OFDM symbol duration = f(subcarrier spacing)
- Subcarrier spacing = Frequency bandwidth/Number of subcarriers
- Frequency bandwidth=1.25 MHz, 3.5 MHz, 5 MHz, 10 MHz, 20 MHz, etc.
- Symbol duration affects higher layer operation
 ⇒ Keep symbol duration constant at 102.9 us
 ⇒ Keep subcarrier spacing 10.94 kHz
 ⇒ Number of subcarriers ∞ Frequency bandwidth This is known as scalable OFDMA

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Effect of Frequency (Cont)

- □ Lower frequencies have longer reach
 - \Rightarrow Longer Cell Radius
 - \Rightarrow Good for rural areas
 - \Rightarrow Smaller number of towers
 - \Rightarrow Longer battery life
- ❑ Lower frequencies require larger antenna and antenna spacing
 ⇒ MIMO difficult particularly on mobile devices
- □ Lower frequencies \Rightarrow Smaller channel width \Rightarrow Need aggressive MCS, e.g., 256-QAM
- Doppler shift = vf/c = Velocity ×Frequency/(speed of light)
 ⇒ Lower Doppler spread at lower frequencies
- □ Mobility \Rightarrow Below 10 GHz

Washington University in St. Louis

- 1. Path loss increase at a power of 2 to 5.5 with distance.
- 2. Fading = Changes in power changes in position
- 3. Fresnel zones = Ellipsoid with distance of LoS+ $i\lambda/2$ Any obstruction of the first zone will increase path loss
- 4. Multiple Antennas: Receive diversity, transmit diversity, Smart Antenna, MIMO
- 5. OFDM splits a band in to many orthogonal subcarriers. OFDMA = FDMA + TDMA

Homework 4

- A. Determine the mean received power at a SS. The channel between a base station at 14 m and the subscriber stations at 4m at a distance of 500m. The Transmitter and Receiver antenna gains are 10dB and 5 dB respectively. Use a power exponent of 4. Transmitted power is 30 dBm. Do All calculations using dB.
- B. With a subcarrier spacing of 10 kHz, how many subcarriers will be used in a system with 8 MHz channel bandwidth and what size FFT will be used?
- C. In a scalable OFDMA system, the number of carriers for 10 MHz channel is 1024. How many carriers will be used if the channel was 1.25 MHz, 5 MHz, or 8.75 MHz.

Washington University in St. Louis

Reading List

- Jim Geier, "Radio Wave Fundamentals," Chapter 2 in his book "Designing and Deploying 802.11 Wireless Networks: A Practical Guide to Implementing 802.11n and 802.11ac Wireless Networks, Second Edition," Cisco Press, May 2015, 600 pp., ISBN:1-58714-430-1 (Safari Book), Chapter 2.
- Raj Jain, "Channel Models: A Tutorial," WiMAX Forum AATG, February 2007, first 7 of 21 pages, http://www.cse.wustl.edu/~jain/wimax/channel model tutorial.htm
- □ Jim Geier, "Wireless Networks first-step," Cisco Press, August 2004, 264 pp., ISBN:1-58720-111-9 (Safari Book), Chapter 3.
- Steve Rackley, "Wireless Networking Technology," Newnes, March 2007, 416 pp., ISBN:0-7506-6788-5 (Safari Book), Chapter 4.
- Stephan Jones; Ronald J. Kovac; Frank M. Groom, "Introduction to Communications Technologies, 3rd Edition," CRC Press, July 2015, 364 pp., ISBN:978-1-4987-0295-9 (Safari Book), Chapters 3 and 4.

Wikipedia Links

- □ <u>https://en.wikipedia.org/wiki/Omnidirectional_antenna</u>
- □ <u>https://en.wikipedia.org/wiki/Antenna_gain</u>
- □ <u>https://en.wikipedia.org/wiki/Equivalent_isotropically_radiated_power</u>
- □ <u>https://en.wikipedia.org/wiki/High-gain_antenna</u>
- □ <u>https://en.wikipedia.org/wiki/Signal_reflection</u>
- https://en.wikipedia.org/wiki/Scattering
- □ <u>https://en.wikipedia.org/wiki/Path_loss</u>
- <u>https://en.wikipedia.org/wiki/Free-space_path_loss</u>
- □ <u>https://en.wikipedia.org/wiki/Log-distance_path_loss_model</u>
- □ <u>https://en.wikipedia.org/wiki/Multipath_propagation</u>
- □ <u>https://en.wikipedia.org/wiki/Multipath_interference</u>
- <u>https://en.wikipedia.org/wiki/Intersymbol_interference</u>
- □ <u>https://en.wikipedia.org/wiki/Fading</u>
- □ <u>https://en.wikipedia.org/wiki/Shadow_fading</u>
- https://en.wikipedia.org/wiki/Fresnel_zone

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Wikipedia Links (Cont)

- □ <u>https://en.wikipedia.org/wiki/Antenna_diversity</u>
- □ <u>https://en.wikipedia.org/wiki/Beamforming</u>
- □ <u>https://en.wikipedia.org/wiki/Antenna_array_(electromagnetic)</u>
- □ <u>https://en.wikipedia.org/wiki/Phased_array</u>
- □ <u>https://en.wikipedia.org/wiki/Smart_antenna</u>
- <u>https://en.wikipedia.org/wiki/Multiple-input_multiple-output_communications</u>
- □ <u>https://en.wikipedia.org/wiki/Diversity_combining</u>
- □ <u>https://en.wikipedia.org/wiki/Maximal-ratio_combining</u>
- □ <u>https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing</u>
- <u>https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiple_access</u>

Acronyms

- **BPSK** Binary Phase-Shift Keying
- **BS** Base Station
- □ dB DeciBels
- □ dBi DeciBels Intrinsic
- □ dBm DeciBels milliwatt
- DFT Discrete Fourier Transform
- DMA Direct Memory Access
- DSP Digital Signal Processing
- DVB-H Digital Video Broadcast handheld
- **G** FDMA Frequency Division Multiple Access
- □ FFT Fast Fourier Transform
- □ IDFT Inverse Discrete Fourier Transform
- □ IFFT Inverse Fast Fourier Transform
- □ ISI Inter-symbol interference
- □ kHz Kilo Hertz
- □ LoS Line of Sight

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

Acronyms (Cont)

- □ MHz Mega Hertz
- MIMO Multiple Input Multiple Output
- MS Mobile Station
- OFDM Orthogonal Frequency Division Multiplexing
- OFDMA Orthogonal Frequency Division Multiple Access
- QAMQuadrature Amplitude Modulation
- QPSK Quadrature Phase-Shift Keying
- □ RF Radio Frequency
- □ SNR Signal to Noise Ratio
- □ SS Subscriber Station
- **TDMA** Time Division Multiple Access

Scan This to Download These Slides

Related Modules

CSE567M: Computer Systems Analysis (Spring 2013), https://www.youtube.com/playlist?list=PLjGG94etKypJEKjNAa1n_1X0bWWNyZcof

CSE473S: Introduction to Computer Networks (Fall 2011), https://www.youtube.com/playlist?list=PLjGG94etKypJWOSPMh8Azcgy5e_10TiDw

Recent Advances in Networking (Spring 2013),

https://www.youtube.com/playlist?list=PLjGG94etKypLHyBN8mOgwJLHD2FFIMGq5

CSE571S: Network Security (Fall 2011),

https://www.youtube.com/playlist?list=PLjGG94etKypKvzfVtutHcPFJXumyyg93u

Video Podcasts of Prof. Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-18/

4 - 38

