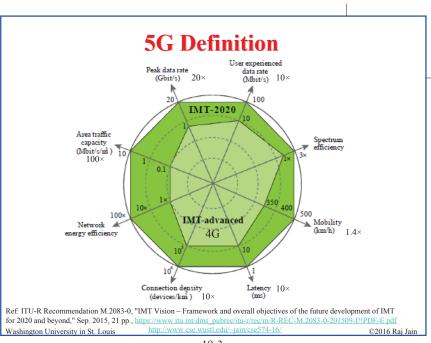
Introduction to 5G

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Slides and Audio/Video recordings of this class lecture are available at:


http://www.cse.wustl.edu/~jain/cse574-16/

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-16

©2016 Rai Jain

19-1

1. What: 5G Definition

2. How:

- 1. New Radio Multiplexing Technologies
- New Efficient Spectrum Usage Techniques
- 3. New Energy Saving Mechanisms
- 4. CapEx/OpEx Reduction Techniques
- 5. New Spectrum
- 6. Application Specific Improvements

Note: This is the 4th module in a series of lectures on 2G/3G, LTE, LTE-Advanced, and 5G

Washington University in St. Louis

://www.cse.wustl.edu/~jain/cse5/4-16/

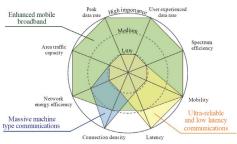
©2016 Rai J

19-2

5G Definition (Cont)

- 1. Peak Data Rate: max rate per user under ideal conditions. 10 Gbps for mobiles, 20 Gbps under certain conditions.
- 2. User experienced Data Rate: Rate across the coverage area per user. 100 Mbps in urban/suburban areas. 1 Gbps hotspot.
- 3. Latency: Radio contribution to latency between send and receive
- 4. Mobility: Max speed at which seamless handover and QoS is guaranteed
- 5. Connection Density: Devices per km²
- 6. Energy Efficiency: Network bits/Joule, User bits/Joule
- 7. Spectrum Efficiency: Throughput per Hz per cell
- 8. Area Traffic Capacity: Throughput per m²

Ana traffic dense of the state of the state

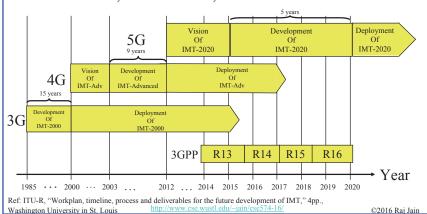

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

19-4

Importance

- □ Three Key Application Areas:
 - > Enhanced Mobile Broadband
 - > Ultra-Reliable and Low Latency: Real-time, safety
 - > Massive Machine Type Communications



Ref: ITU-R Recommendation M.2083-0, "IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015, 21 pp., https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-1!!PDF-E.pdf
Washington University in St. Louis https://www.cse.wustl.edu/~jain/cse574-16/
©2016 R

19-5

Timeline

- □ 3G: IMT-2000 started in 1985, first release in 2000
- □ 4G: IMT-Advanced, vision in 2003, First release in 2012
- □ 5G: IMT-2020, vision in 2015, first release in 2020

19-6

How?

- New Radio Multiplexing Technologies
- 2. New Efficient Spectrum Usage Techniques
- 3. New Energy Saving Mechanisms
- 4. CapEx/OpEx Reduction Techniques
- 5. New Spectrum
- 6. Application Specific Improvements

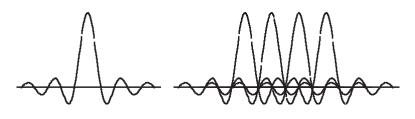
New Radio Multiplexing Technologies

- 1. Spectrum Filtered OFDM (f-OFDM)
- 2. Filtered Bank Multicarrier (FBMC)
- 3. Non-Orthogonal Multiple Access (NOMA)
- 4. Pattern Division Multiple Access (PDMA)
- 5. Low Density Spreading (LDS)
- 6. Sparse Code Multiple Access (SCMA)
- 7. Interleave-Division Multiple Access (IDMA)

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse574-1

©2016 Raj Jain

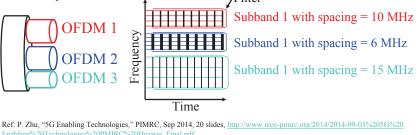

Washington University in St. Louis

ttp://www.cse.wustl.edu/~iain/cse574-16/

©2016 Rai Jain

Problems with OFDM

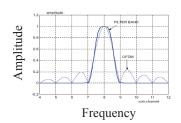
- □ Spectrum overflow \Rightarrow Need **guard bands**
- ☐ Entire band should use the **same subcarrier** spacing
- ☐ Entire time should use the **same symbol size** and cyclic prefix
- □ All users should strictly **time synchronize** in the uplink

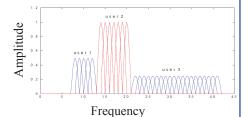

Ref: P. Zhu, "5G Enabling Technologies," PIMRC, Sep 2014, 20 slides, http://www.ieee-pimrc.org/2014/2014-09-03%205G%20 Enabling%20Technologies%20PMIRC%20Huawei Final.pdf

ashington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

19-9

Spectrum Filtered OFDM (f-OFDM)


- Band divided into multiple subbands
- Each subband may use different OFDM parameters optimized for the application: Frequency spacing, cyclic prefix, ...
- Each subband spectrum is **filtered** to avoid inter-subband interference ⇒ Spectrum filtered
- □ Different users (subbands) do not need to be time synchronized ⇒ **Asynchronous OFDMA**Filter



19-10

Filtered Bank Multicarrier (FBMC)

- □ A filter is used to remove the subcarrier overflow
- No side lobes ⇒ No cyclic prefix needed
 ⇒ More bits/Hz
- □ Different users can have different subbands with different parameters

Ref: M. Bellanger, "FBMC physical layer – principle," June 2011, 13 slides, http://www.cent.org/Documents/se.43/500/SE43/11VInfo06_FBMC_physical

http://www.cept.org/Documents/se-43/500/SE43(11)Info06_FBMC-physical-layer-principle

Washington University in St. Louis http://www.cse.wustl.edu/

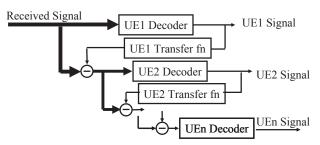
©2016 Raj Jain

Non-Orthogonal Multiple Access (NOMA)

- Users are distinguished by power levels
- □ Users with poor channel condition get higher power
- □ Users with higher power decode their signal treating others as noise
- ☐ Users with lower power subtract the higher powered signals before decoding
- □ Can also be used with beamforming and MIMO

User 1 subtracts signal of user 2 then decodes

User 2 decodes its signal Considers user 1's signal as noise

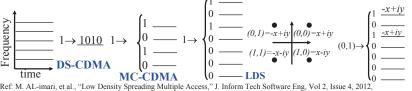

Ref: G. Ding, et al, "Application of Non-orthogonal Multiple Access in LTE and 5G Networks,"

https://pdfs.semanticscholar.org/a404/21a9762db528bfe848166765fee43e740c94.pdf
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

Pattern Division Multiple Access (PDMA)

- A variation of NOMA
- □ The users detect the signal with highest signal, subtract its waveform ⇒ Successive Interference Cancellation (SIC)
- □ Can increase spectral efficiency by a factor between 1 and 2.


Ref: J. Zeng, et al, "Pattern Division Multiple Access (PDMA) for Cellular Future Radio Access," Intl Conf on Wireless Comm & Signal Proc (WCSP), Oct. 2015, 5 pp., http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arn

http://www.cse.wustl.edu/~jain/cse574-16/

19-13

Low Density Spreading (LDS)

- □ **Direct Sequence-CDMA**: Symbols are *spread* in time. Multiple users spread over at same time and frequency.
- □ Multi-carrier CDMA: Symbols are *spread* in frequency. Multiple users spread over same subcarriers at same time.
- □ LDS: Multi-carrier CDMA in which symbols are spread over large vectors most of whose elements are zero (sparse).
 - > At each subcarriers, the number of interferers is small
 - > Codes can even be randomly chosen
- ☐ Input and the output are multi-bit symbols and complex numbers

Ref: M. AL-imari, et al., "Low Density Spreading Multiple Access," J. Inform Tech Software Eng, Vol 2, Issue 4

19-14

Sparse Code Multiple Access (SCMA)

- ☐ In stead of repeating the same symbol on different subcarriers (as in LDS), optimally coded symbols on different subcarriers.
- Symbols are mapped to higher-dimensional complex symbols and then mapped to subcarriers
 - > K dimensions are spread over K subcarriers
- \square Codes are non-orthogonal \Rightarrow More code books and users can be supported than if limited to orthogonal
- \square Sparse \Rightarrow A lot of zeros in the code book \Rightarrow Easier to decode
 - > All codes in one codebook have zeros in the same location
 - > Each code book has K dimension of which N are zero. Total ${}^{K}C_{N} = \binom{K}{N}$ codebooks.
- □ Good for unscheduled random access without polling and grant scheduling \Rightarrow Good for IoT

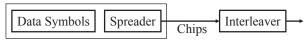
□ SCMA combines spreading and coding Ref: P. Zhu, "5G Enabling Technologies," PIMRC, Sep 2014, 20 slides, http://www.

SCMA Example

- □ 2-bit symbols to 4-dimensional symbols with 2 zeros: K=4, N=2
- Number of possible mappings ${}^{4}C_{2} = {}^{4}_{2} = 6$ codebooks
- Six users can be supported over 4 subcarriers
- Each codebook has 2 zeros in the same rows for entire codebook.
- □ Combines spreading and coding → QAM encoder | Spread Spreading Encoder User 5 User 6 $0\ 0\ 0\ 0\ y_2\,y_4\,y_6\,y_8\,0\ 0\ 0\ 0\ u_2\,u_4\,u_6\,u_8\,v_1\,v_3\,v_5\,v_7\,0\ 0\ 0\ 0$ $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & z_2 & z_4 & z_6 & z_8 \end{bmatrix}$ $0 \ 0 \ 0 \ v_2 \ v_4 \ v_6 \ v_8 \ w_2 w_4 w_6 w_8$

Ref: K. Au, et al, "Uplink Contention Based SCMA for 5G Radio Access," http://arxiv.org/vc/arxiv/papers/140"

Interleave-Division Multiple Access (IDMA)


□ Interleaving: Rearranging symbols according to a specified pattern ⇒ Reduces correlation between successive symbols

 $[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1] \times [2, 4, 3, 1] \rightarrow [1, 3, 2, 0, 5, 7, 6, 4, 9, 1, 0, 8]$

□ **DS-CDMA**: Symbols are interleaved then spread in to chips

Data Symbols Interleaver Spreader Chips

□ **IDMA**: Symbols spread and then interleaved.

- > Different users have different interleaving pattern
- Low-Rate Spreading ~ DS-CDMA without spreading
 ⇒ High spectral efficiency

Ref: J. C. Fricke, et al, "An Interleave-Division Multiple Access Based System Proposal for the 4G Uplink," IST Summit, 2005, 5 pp., http://www.agilon.de/Dr_Hendrik_Schoneich/Publications/Fricke_IST_Summit_2005.pdf

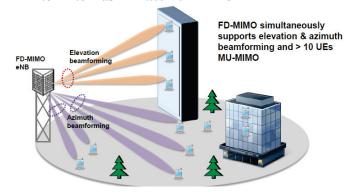
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Rai Jain

19-17

New Efficient Spectrum Usage Techniques

- 3D Beamforming and Massive MIMO
- 2. FDD-TDD Carrier Integration
- 3. Distributed Antenna Systems (DAS)
- 4. Simultaneous Transmission and Reception
- 5. Dynamic TDD
- 6. License Assisted Access (LAA)
- Multimode Base Stations
- 8. Intelligent Multi-Mode RAT Selection
- 9. Higher order modulations in small cells

Washington University in St. Louis

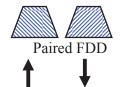

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

19-18

3D Beamforming

- □ Aka 3D-MIMO or Full-dimension MIMO (**FD-MIMO**)
- ☐ Infinite Antennas = Massive MIMO



Ref: G. Xu, et al, "Full-Dimension MIMO: Status and Challenges in Design and Implementation," May 2014, http://www.ieee-ctw.org/2014/slides/session3/CTW_2014_Samsung_FD-MIMO.pdf

shington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

FDD-TDD Carrier Integration

- □ Can aggregate Down FDD band with TDD in downlink
- Aggregate Up FDD band with TDD in uplink
- □ Use only FDD in Primary Cell and TDD in Small Cell or vice versa
- ☐ Generally FDD bands are lower frequency ⇒ Used for primary
- □ In future, 32 carriers could be aggregated

Washington University in St. Louis


://www.cse.wustl.edu/~iain/cse574-16

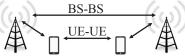
©2016 Raj Jain

19-19

Distributed Antenna Systems (DAS)

- □ Multiple antennas connected via cable
- □ Used for indoor coverage
- □ Need multiple cables for MIMO
- Some times the RF signal is converted to digital and transmitted over fiber optic cables and converted back to RF
 ⇒ Active DAS

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jair

19-21

Simultaneous Transmission and Reception

- □ Also known as "Full Duplex" on the same frequency
 ⇒ Doubles the throughput, reduces end-to-end latency, allows transmitters to monitor the channel
- □ Difficult because transmitted signal too strong and interferes with reception ⇒ FDD (Large gap between transmit and receive frequencies) or TDD (Half-Duplex)
- □ Solution: Self-Interference cancellation (SIC) in analog and digital domain
- □ Similar techniques can be used to overcome BS-BS or UE-UE interference
- □ SIC can also be used in Multi-radio systems (WiFi and Bluetooth)

Ref: W. Afifi and M. Krunz, "Adaptive Transmission-Reception-Sensing Strategy for Cognitive Radios with Full-duplex Capabilities,"
April 2010, 12 pp., http://www2.engr.arizona.edu/~wessamafifi/DvSPAN14.pdf


http://www.cse.wustl.edu/~jain/cse574-

19-22

Dynamic TDD

- ☐ Time Division Duplexing (TDD) allows varying uplink to downlink ratio
- □ All cells in an area must synchronize their UL/DL subframes pattern, otherwise mobile's transmission get interference from neighboring BS
- □ LTE allows 7 variations of UL/DL subframe patterns.

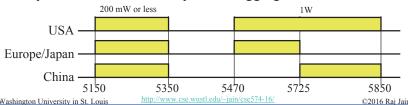
S=Switchover time from D to U

Ref: V. Pauli, Y. Li, E. Seidel, "Dynamic TDD for LTE-A and 5G," Nomor Research GmbH, Sep 2015, 8 pp., http://nashville.dyndns.org.823/YourFreeLibrary/ Ite/LTE%20advanced/WhitePaperNomor LTE-A_5G-eIMTA_2015-09.pdf
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

Dynamic TDD (Cont)

- □ Too many U's or D's in a row delay acks/nacks and affect the usefulness of HARO.
- \square Release 12 added flexible "F" subframes that can be declared as S, D, or U \Rightarrow Can change every 10 ms.
- □ Enhanced Interference Mitigation and Traffic Adaptation (eIMTA): Cells can change UL/DL pattern as needed. Mobiles asked to transmit at higher power if needed.
- ☐ This will be further enhanced for 5G

			1	Ш	ind	ex			
0	1	2	3	4	5	6	7	8	9
D	S	٥	H	H	۵	S/D	F	F	F

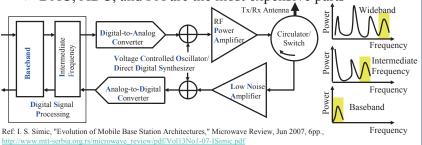

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jai

License Assisted Access (LAA)

- □ A.k.a. unlicensed LTE (LTE-U). Release 13.
- □ 5 GHz band for public hot-spots and in-building
- □ Different rules and bands in different countries, e.g.,
 - > Avoid if a radar is operating
 - > Can't block 20 MHz if using only 180 kHz
 - > Transmit only if free. Recheck after maximum occupancy time \Rightarrow Can not transmit continuously as in standard LTE
- End-to-End LTE ⇒ Better integration than with WiFi
- May use as a downlink-only carrier aggregation



19-25

Multimode Base Stations

- □ 2G/3G/4G/WiFi/WiMAX, multi-band, multi-frequency, multiple modulation formats, multiple air interfaces
- Need "Software Define Radios (SDRs)"
 - > Analog signal is sampled at a very high rate and processed using digital signal processing (DSP)

> DAC, ADC, and PA are the most expensive parts

19-26

Intelligent Multi-Mode RAT Selection

- □ Selecting between LTE, WiFi, 3G, ...
- Can not just select
 - > Highest speed
 - > Highest signal power
 - > Cheapest
- □ Correct choice also depends upon the type of traffic: voice vs. data ⇒ Network assisted selection

Ref: 4G Americas, "Integration of Cellular and WiFi Networks," Sep 2013, 65 pp.,
http://www.4gamericas.org/files/3114/0622/2546/Integration_of_Cellular_and_WiFi_Networks_White_Paper__9.25.13.pdf
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/
©2016 R

Hyper-Dense Small Cells

- □ Used in extremely busy areas. Sports arena, Malls, Metro trains ⇒ Heterogeneous and Small Cell Network (HetSNets)
- □ Self-Organizing: Neighbor discovery, parameter setting,
- □ Backhaul Flexibility: DSL, HomePlug, Wireless, ...
- Mobility-Management:
 - > Frequent Handovers Mitigation: Ping-pong. Network assisted as in intelligent multi-mode RAT selection
 - > Forward Handover: Small cell can prefetch user context from the Serving cell Smaller Cell
- □ Load balancing between small cells and with macro cell
- □ Multi-RAT Management: 2G/3G/4G/WiFi
- □ Privately Owned: Security and Incentive issues Spectrum

Smaller Cell
Data
Rate

Spectrum
Spectral

Efficiency

©2016 Rai Jair

Ref: I. Hwang, B. Song, and S. S. Soliman, "A Holistic View on Hyper-Dense Heterogeneous and Small Cell Networks," IEEE
Communications Magazine, Jun 2013, pp. 20-27, http://blog.sciencenet.cn/home.php?mod=attachment&id=62246
Washington University in St. Louis
http://www.cse.wustl.edu/~jain/cse574-16/
©2016 Rai Jain

New Energy Saving Mechanisms

- Discontinuous Transmission (DTX)
- 2. Antenna Muting
- 3. Cell on/off switching
- 4. Power Save Mode for IoT

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse574-16/

©2016 Rai Ja

19-29

Discontinuous Transmission (DTX)

- □ Do not transmit during silence ⇒ Resources can be reused by others
- Was difficult to do in static allocation like GSM
- Already part of LTE

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jair

19-30

Antenna Muting

- Base stations have multiple antenna for MIMO
- □ Antenna Muting: Turn off some antenna at low load

- □ Advantage: Energy savings
- □ Problem: Number of antenna is assumed fixed and each antenna has its own pilot signals
 - > Space-Frequency Block Code (SFBC) is used to transmit different frequency components from different antenna
 - ⇒ Throughput reduces
- □ Studies have shown significant energy savings with acceptable loss in throughput at low load.
- ☐ In 5G number of Antenna will become dynamic

Ref. P. Skillermark and P. Frenger, "Enhancing Energy Efficiency in LTE with Antenna Muting," 75th Vehicular Technology Conf. (VTC Spring), Yokohama, 2012, pp. 1-5, https://pdfs.semanticscholar.org/29ec/17e00ccae04ae34b74f9e6e62c1e2c42d789.pdf
Washington University in St. Louis https://www.cse.wustl.edu/~jain/cse574-16/
©2016 Rai Jair

Cell On/Off Switching

- Under low load a cell or small cell can be turned off
- □ Off cells broadcast "Discovery reference signals (DRS)" periodically so that they can be turned on if necessary
- □ Takes a few hundred ms
- Used for energy consumption during nights

Washington University in St. Louis

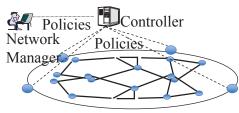
http://www.cse.wustl.edu/~iain/cse574-1

©2016 Raj Jair

19-31

CapEx/OpEx Reduction Techniques

- Software Defined Networking (SDN)
- Network Function Virtualization (NFV)
- Mobile Edge Computing (MEC)
- Cloud Radio Access Network (C-RAN)

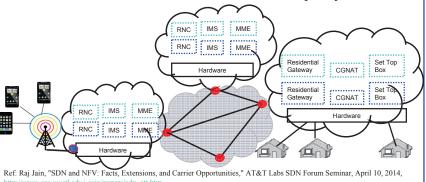

Washington University in St. Louis

©2016 Rai Jain

http://www.cse.wustl.edu/~jain/cse574-16/ 19-33

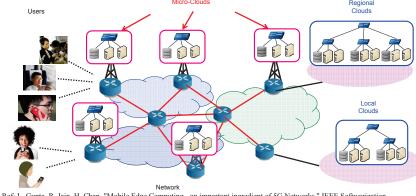
Software Defined Networking (SDN)

- 1. Abstract the Hardware: No dependence on physical infrastructure Software API
- **Programmable**: Shift away from static manual operation to fully configurable and dynamic
- **Centralized Control of Policies:** Policy delegation and management



Ref: D. Batista, et al, "Perspectives on software-defined networks: interviews with five leading scientists from the networking munity" Journal of Internet Services and Applications 2015, 6:22, http://www.cse.wustl.edu/~ja

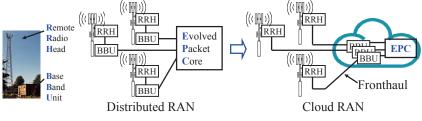
19-34


Network Function Virtualization

- \square Standard hardware is fast and cheap \Rightarrow No specialized hardware
- □ Implement all functions in software
- □ Virtualize all functions ⇒ Cloud ⇒ Create capacity on demand

Mobile Edge Computing (MEC)

□ To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing

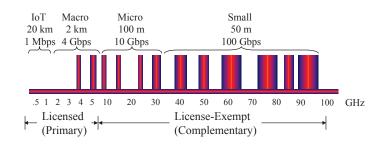


Ref: L. Gupta, R. Jain, H. Chan, "Mobile Edge Computing - an important ingredient of 5G Networks," IEEE Softwarization Newsletter, March 2016, http Washington University in St. Louis ©2016 Rai Jain

http://www.cse.wustl.edu/~jain/cse574-16/ 19-35

Cloud Radio Access Network (C-RAN)

- □ Centralize baseband processing in a cloud
- □ Need to carry high-bit rate signal (after A-to-D conversion) from tower to cloud site ~ 10 Gbps
- □ Optical fiber, 10 Gbps Ethernet, Microwave can be used depending upon the distance ~ 1-20 km of **fronthaul**
- □ Particularly good for dense small cells. Multi-provider support.


Ref: C. I, et al, "Recent Progress on C-RAN Centralization and Cloudification," IEEE Access, Vol. 2, 2014, pp. 1030-1039, http://ieeexplore.ieee.org/iel7/6287639/6514899/06882182.pdf?arnumber=6882182

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

19-37

New Spectrum

□ ITU estimates 900-1420 MHz required for 4G/5G by 2020 and 440-540 MHz required for 2G/3G and their enhancements

Ref: P. Zhu, "5G Enabling Technologies," PIMRC, Sep 2014, 20 slides, http://www.ieee-pimrc.org/2014/2014-09-03%205G%20 Enabling%20Technologies%20PMIRC%20Huawei Final.pdf

Ref: ITU-R M.2290-0, "Future Spectrum Requirements estimate for Terrestrial IMT," Dec 2013

http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2290-2014-PDF-E.pdf

Huawei, "White Paper on Spectrum," February 2013, http://www.huawei.com/us/others/index-cdf en group white book htm

19-38

Above 6 GHz

- □ Free-space loss increases in proportion to square of frequency and square of distance. 88 dB loss with 30 GHz at 20 m ⇒ 10-100 m cell radius
- □ Outdoor-to-Indoor: Glass windows add 20-40 dB
- Mobility: Doppler shift is proportional to frequency and velocity. Multipath results in varying Doppler shifts ⇒ Lower mobility
- □ Wide Channels: Duplex filters cover only 3-4% of center frequency ⇒ Need carrier aggregation.
- □ Antenna: 8x8 array at 60 GHz is only 2cm x 2cm. A/D and D/A converters per antenna element may be expensive
- 2 Gbps to 1 km is feasible using mm waves

Ref: ITU-R M2376-0, "Technical Feasibility of IMT in bands above 6 GHz," July 2015, http://www.itu.int/dms.pub/itu-r/opb/rep/R-REP-M 2376-2015-PDF-E.pdf

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

Application Specific Improvements

- Internet of Things
- Video

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

LTE Applications

- Machine Type Communication (MTC): M2M or IoT
 - > Versus current Human Type Communication (HTC)
 - > GSM and HSPA modems for ~\$5 are potential choices
 - Extended Coverage GSM (EC-GSM): Half-duplex FDD, Power Saving Mode (Same as LTE), 20 dB enhancements in link budget (total 164 dB) in R13 ⇒ 7x range for low rate
- □ Device-to-Device (D2D): Proximity services (Nearby search), enable direct device-to-device communication if nearby.
 - > Low Latency D2D: Vehicular networking
- □ Group Communication: Public Safety (Fire, Police), push-to-talk
- Enhanced Multimedia Broadcast Multicast System (eMBMS): Broadcast Services (TV)

Washington University in St. Louis

o://www.cse.wustl.edu/~jain/cse5/

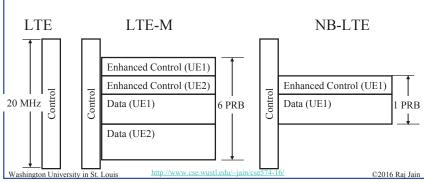
©2016 Rai Jain

19-41

Machine Type Communication

- □ LTE Low-cast (Category 0) UE: In Release 12.
 - > Single Antenna
 - > Reduced peak rate up to 1 Mbps
 - ightharpoonup Half-Duplex \Rightarrow No duplex filter
 - > Power saving mode (PSM)
- □ MTC LTE (LTE-M) (Category -1) UE: In Release 13.
 - ➤ 1 Mbps using 1.4 MHz = 6 Physical Resource Blocks (PRB)
 - > All power on fewer subcarriers
 - ⇒ Power Spectral Density (PSD) Boosting
 - ⇒ 15 dB reduction in link budget by PSD and repetition
 - ⇒ Allows UEs in basements and indoors
 - ➤ Reduced Tx power to 20 dBm ⇒ integrated amplifier
- □ Narrow Band LTE (NB-LTE) introduced Category -2 UE:
 - > 128 kbps using 200 kHz band = Single PRB
 - > 23 dBm power (required to maintain the link budget)
- □ Both LTE-M and NB-LTE UEs use single RF chain

Washington University in St. Louis


tp://www.cse.wustl.edu/~jain/cse574-1

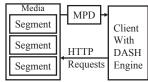
©2016 Raj Jain

19-42

Signaling Enhancements for MTC

- □ Enhanced Physical Downlink Control Channel (EPDCCH)
- □ LTE Cat 0 UE receive signaling in the entire 20 MHz band
- □ LTE-M UEs receive signaling in their 1.4 MHz band
- □ For NB-LTE UEs, signaling is part of the assigned PRB

Power Saving Mode (PSM)


- □ Discontinuous Reception (DRX). Introduced in Release 12
- □ Allows UE to stay registered while sleeping
- UE's need to monitor resource allocation channel even if it has nothing to send or receive
- □ Connected mode DRX (cDRX): UE can sleep and periodically wake up to check the control channel
 - > Short sleep cycle: 5 to 400 ms
 - ➤ Long sleep cycle: 20 ms to 2.5s (if no activity for 4 short cycles)

19-43

Dynamic Adaptive Streaming over HTTP (DASH)

- □ Video is the major component of mobile traffic ⇒ DASH provides an efficient method for video streaming
- □ Standard developed jointly by 3GPP, ISO, Open IPTV Forum
- □ Standard Web Servers: No changes required to servers, Content Distribution Networks (CDN), or HTTP protocol. HTTP passes easily through firewalls
- Mobile client controls what is downloaded using a "media presentation description (MPD)" file defined by DASH
- MPD contains URLs for segments
- Client requests segments as needed. Allows fast forward, rewind, etc.

Ref. T. Stockhammer, "Dynamic Adaptive Streaming over HTTP – Standards and Design Principles," MMSys'11, Feb 2011, San Jose, CA, https://svn-itec.uni-klu.ac.at/trac2/dash/export/58/trunk/documentation/029

http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis

19-45

Reading List

- □ ITU-R Recommendation M.2083-0, "IMT Vision Framework and overall objectives of the future development of IMT for 2020 and beyond," Sep. 2015, 21 pp., https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
- □ ITU-R M.2290-0, "Future Spectrum Requirements estimate for Terrestrial IMT," Dec 2013, http://www.itu.int/dms pub/itu-r/opb/rep/R-REP-M.2290-2014-PDF-E.pdf
- ITU-R M2376-0, "Technical Feasibility of IMT in bands above 6 GHz," July 2015. http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2376-2015-PDF-E.pdf
- J. Zeng, et al, "Pattern Division Multiple Access (PDMA) for Cellular Future Radio Access," Intl Conf on Wireless Comm & Signal Proc (WCSP), Oct. 2015, 5 pp.,

http://ieeexplore.ieee.org/xpl/login.isp?tp=&arnumber=7341229

- □ K. Au, et al, "Uplink Contention Based SCMA for 5G Radio Access," http://arxiv.org/vc/arxiv/papers/1407/1407.5495v1.pdf
- □ M. AL-imari, et al., "Low Density Spreading Multiple Access," J. Inform Tech Software Eng, Vol 2, Issue 4, 2012, http://epubs.surrev.ac.uk/788182/1/Ready%20to%20Upload.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

Summary

- Current IMT Vision document defines 5G in terms of 8 parameters: a peak rate up to 20 Gbps per user, User experienced rate of 100 Mbps, spectral efficiency 3 times of 4G, Mobility support to 500 km/h, a latency of 1 ms, a density of a million connections per m2, energy efficiency 100x of 4G, and traffic capacity of 10 Mbps/m2.
- New radio multiplexing techniques include f-OFDM, FBMC, NOMA, PDMA, LDS, SCMA, and IDMA
- New spectrum utilization techniques include 3D Beamforming, Massive MIMO, FDD-TDD Carrier Integration, DAS, Simultaneous Transmission and Reception, Dynamic TDD, LAA, Multimode Base Stations, Intelligent Multi-Mode RAT Selection, and Higher order modulations in small cells
- 4. New energy savings mechanisms include Discontinuous Transmission (DTX), Antenna Muting, Cell on/off switching, and Power Save Mode for
- Capex/OpEx reduction techniques include SDN, NFV, MEC, and C-RAN.
- Application specific improvements include LTE-M, NB-LTE for IoT and DASH for video.
- New license-exempt spectrum in 6GHz-100 GHz will complement the licensed spectrum.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-46

Reading List (Cont)

- □ M. Bellanger, "FBMC physical layer principle," June 2011, 13 slides, http://www.cept.org/Documents/se-43/500/SE43(11)Info06 FBMCphysical-layer-principle
- A. Altamimi, "Interleave Division Multiple Access (IDMA)." http://www.ece.uvic.ca/~cai/IDMA.pdf
- ☐ I. Hwang, B. Song, and S. S. Soliman, "A Holistic View on Hyper-Dense Heterogeneous and Small Cell Networks," IEEE Communications Magazine, Jun 2013, pp. 20-27, http://blog.sciencenet.cn/home.php?mod=attachment&id=62246
- □ D. Batista, et al, "Perspectives on software-defined networks: interviews with five leading scientists from the networking community" Journal of Internet Services and Applications 2015, 6:22, http://www.cse.wustl.edu/~jain/papers/jisa15.htm
- □ C. I, et al, "Recent Progress on C-RAN Centralization and Cloudification," IEEE Access, Vol. 2, 2014, pp. 1030-1039, http://ieeexplore.ieee.org/iel7/6287639/6514899/06882182.pdf?arnumber=6 882182

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

19-47

Wikipedia Links

- □ https://en.wikipedia.org/wiki/5G
- □ https://en.wikipedia.org/wiki/Machine to machine
- □ https://en.wikipedia.org/wiki/LTE in unlicensed spectrum
- https://en.wikipedia.org/wiki/LTE_in_unlicensed_spectrum#License_Assist_ed_Access_.28LAA.29
- □ https://en.wikipedia.org/wiki/Discontinuous transmission
- □ https://en.wikipedia.org/wiki/Software-defined networking
- □ https://en.wikipedia.org/wiki/Network function virtualization
- □ https://en.wikipedia.org/wiki/Mobile edge computing
- □ https://en.wikipedia.org/wiki/C-RAN
- □ https://en.wikipedia.org/wiki/Small_cel 1
- □ https://en.wikipedia.org/wiki/Distributed antenna system
- □ https://en.wikipedia.org/wiki/Dynamic Adaptive Streaming over HTTP
- □ https://en.wikipedia.org/wiki/3GPP
- □ https://en.wikipedia.org/wiki/Beamforming
- □ https://en.wikipedia.org/wiki/Discontinuous reception

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

19-49

Wikipedia Links (Cont)

- □ https://en.wikipedia.org/wiki/Distributed antenna system
- □ https://en.wikipedia.org/wiki/Multicast-broadcast_single-frequency network
- □ https://en.wikipedia.org/wiki/Multimedia Broadcast Multicast Service
- □ https://en.wikipedia.org/wiki/NarrowBand IOT

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

19-50

References

- 4G Americas, "Integration of Cellular and WiFi Networks," Sep 2013, 65 pp.,
 - http://www.4gamericas.org/files/3114/0622/2546/Integration_of_Cellular_a nd WiFi Networks White Paper- 9.25.13.pdf
- □ G. Ding, et al, "Application of Non-orthogonal Multiple Access in LTE and 5G Networks,"
 - $\frac{https://pdfs.semanticscholar.org/a404/21a9762db528bfe848166765fee43e74}{0c94.pdf}$
- G. Xu, et al, "Full-Dimension MIMO: Status and Challenges in Design and Implementation," May 2014, http://www.ieee-ctw.org/2014/slides/session3/CTW 2014 Samsung FD-MIMO.pdf
- □ Huawei, "5G: New Air Interface and Radio Access Virtualization," April 2015, 6 pp.,
 - $\underline{http://www.huawei.com/minisite/has2015/img/5g_radio_whitepaper.pdf}$
- □ Huawei, "White Paper on Spectrum," February 2013, http://www.huawei.com/us/others/index-cdf en group white book.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

References (Cont)

- □ I. S. Simic, "Evolution of Mobile Base Station Architectures," Microwave Review, Jun 2007, 6pp., http://www.mtt-serbia.org.rs/microwave-review/pdf/Vol13No1-07-ISimic.pdf
- □ IMT-2020 (5G) Promotion Group, "5G Concept," Feb 2015, 18 pp., http://www.imt-2020.cn/en/documents/download/25
- Huawei, "White Paper on Spectrum," February 2013, http://www.huawei.com/us/others/index-cdf en group white book.htm
- ITU-R M2376-0, "Technical Feasibility of IMT in bands above 6 GHz," July 2015, http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2376-2015-PDF-E.pdf
- □ ITU-R, "Workplan, timeline, process and deliverables for the future development of IMT," 4pp., http://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2020/Documents/Antipated-Time-Schedule.pdf
- J. C. Fricke, et al, "An Interleave-Division Multiple Access Based System Proposal for the 4G Uplink," IST Summit, 2005, 5 pp., http://www.agilon.de/Dr_Hendrik_Schoneich/Publications/Fricke_IST_Summit_2005.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-51

References (Cont)

- L. Gupta, R. Jain, H. Chan, "Mobile Edge Computing an important ingredient of 5G Networks," IEEE Softwarization Newsletter, March 2016, http://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-ingredient-of-5g-networks
- P. Skillermark and P. Frenger, "Enhancing Energy Efficiency in LTE with Antenna Muting," 75th Vehicular Technology Conf. (VTC Spring), Yokohama, 2012, pp. 1-5, https://pdfs.semanticscholar.org/29ec/17e00ccae04ae34b74f9e6e62c1e2c42
 d789.pdf
- P. Zhu, "5G Enabling Technologies," PIMRC, Sep 2014, 20 slides, http://www.ieee-pimrc.org/2014/2014-09-03%205G%20Enabling%20Technologies%20PMIRC%20Huawei_Final.pdf
- Raj Jain, "SDN and NFV: Facts, Extensions, and Carrier Opportunities," AT&T Labs SDN Forum Seminar, April 10, 2014, http://www.cse.wustl.edu/~jain/papers/adn_att.htm

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-53

References (Cont)

T. Stockhammer, "Dynamic Adaptive Streaming over HTTP - Standards and Design Principles," MMSys'11, Feb 2011, San Jose, CA, https://svn-itec.uni-klu.ac.at/trac2/dash/export/58/trunk/documentation/02%20mmt21da-stockhammer.pdf

 V. Pauli, Y. Li, E. Seidel, "Dynamic TDD for LTE-A and 5G," Nomor Research GmbH, Sep 2015, 8 pp., http://nashville.dyndns.org:823/YourFreeLibrary/lte/LTE%20advanced/WhitePaperNomor LTE-A 5G-eIMTA 2015-09.pdf

□ W. Afifi and M. Krunz, "Adaptive Transmission-Reception-Sensing Strategy for Cognitive Radios with Full-duplex Capabilities," April 2010, 12 pp., http://www2.engr.arizona.edu/~wessamafifi/DySPAN14.pdf

□ ITU-R M.2370-0, "IMT traffic estimates for the years 2020 to 2030," Jul 2015, 51 pp., http://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf

□ ITU-R M.2012-2, "Detailed specifications of the terrestrial radio interfaces of International Mobile Telecommunications-Advanced (IMT-Advanced)," Sep 2015, 168 pp., https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2012-2-201509-!!!PDF-E.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

References (Cont)

- □ Ericsson, "LTE Release 13," April 2015, 10 pp., http://www.ericsson.com/res/docs/whitepapers/150417-wp-lte-release-13.pdf
- □ 4G_Americas, "LTE_Carrier_Aggregation: Technology Development and Deployment Worldwide," October 2014, 53 pp.,

 http://www.4gamericas.org/files/8414/1471/2230/4G_Americas_Carrier_AggregationFINALv103.pdf
- □ 4G Americas, "Cellular_Technologies_Enabling_the_Internet of Things,"
 Nov 2015, 65 pp.,
 http://www.4gamericas.org/files/6014/4683/4670/4G Americas_Cellular_Technologies_Enabling_the_IoT_White_Paper_- November_2015.pdf
- □ Huawei, "Active Antenna System," November 2012, 16 pp., http://www1.huawei.com/en/static/AAS-129092-1-197969.pdf
- T. Lomar, et al., "Delivering Content with LTE Broadcast," Ericsson Review, Feb 2013, 8 pp.,
 http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2013/er-lte-broadcast.pdf

References (Cont)

- Viavi Solutions Inc., "LTE Evolved Multimedia Broadcast Multicast Services (eMBMS)," 2015, 16 pp., http://www.viavisolutions.com/sites/default/files/technical-library-items/lteembms-wp-nsd-nse-ae.pdf
- Nokia, "LTE Networks for Public Safety Services," 2014, 24 pp., http://networks.nokia.com/sites/default/files/document/nokia_lte_for_public_safety_white_paper.pdf
- Nokia, "LTE for Unlicensed Spectrum," 2014, 12 pp., http://networks.nokia.com/sites/default/files/document/nokia_lte_unlicensed_white_paper.pdf
- Nokia, "LTE-M Optimizing LTE for the Internet of Things," 2015, http://networks.nokia.com/sites/default/files/document/nokia_lte-m_-optimizing_lte_for_the_internet_of_things_white_paper.pdf
- Ericson, "Cellular Networks for Massive IoT," Jan 2016, http://www.ericsson.com/res/docs/whitepapers/wp_iot.pdf
- DAS Forum, "Distributed Antenna Systems (DAS)," 33 slides, http://www.newjerseywireless.org/3.0/docs/njwadasnov16final.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-55

References (Cont)

- Ericsson, "LTE License Assisted Access," 18 slides, http://www.ericsson.com/res/thecompany/docs/press/media_kits/ericsson-license-assisted-access-laa-january-2015.pdf
- B. Bertenyi, "LTE Standards for Public Safety 3GPP View," 25 slides, May 2013, http://www.3gpp.org/IMG/pdf/2013 05 3gpp ccw.pdf
- Qualcomm Research, "LTE eMBMS Technology Overview," 18 slides, Nov 2012, https://s3.amazonaws.com/sdieee/222eMBMS tech overview IEEE 112712.pdf
- M. Blanco, "Carrier Aggregation: Fundamentals and Deployments," 34 slides, 2014,
 http://www.keysight.com/upload/cmc_upload/All/23Jan14WebcastSlides.pd

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-57

References (Cont)

- □ T. L. Marzetta, "Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas," in *IEEE Transactions on Wireless Communications*, vol. 9, no. 11, pp. 3590-3600, November 2010, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5595728 (Original paper on Massive MIMO)
- R. Hoshyar, et al., "Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel," IEEE Trans on Signal Processing, Vol. 56, No. 4, April 2008, pp. 1616-1626, https://pdfs.semanticscholar.org/5e4b/405202c92fd77a12f463ca1247a8b59fd935.pdf (Original paper on LDS)
- H. Nikopour and H. Baligh, "Sparse Code Multiple Access," 24th International Symposium on Personal, Indoor and Mobile Radio Communications: Fundamentals and PHY Track, 2013, http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6666156 (Original Paper on SCMA)
- L. Ping, et al, "Interleave-Division Multiple-Access," IEEE Transactions on Wireless Communications, Vol. 5, No. 4, April 2006, http://www.ee.cityu.edu.hk/~liping/Research/Journal/IDMA2.pdf (Original paper on IDMA)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-58

References (Cont)

- D. W. Bliss, P. A. Parker, A. R. Margetts, "Simultaneous Transmission and Reception for Improved Wireless Network Performance," 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, 26-29 Aug. 2007, pp. 478 - 482,
 - http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4301304 (Original paper on Simultaneous Transmit and Receive)
- E. Arikan, "Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels," in *IEEE Transactions on Information Theory*, vol. 55, no. 7, pp. 3051-3073, July 2009,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5075875 (Original paper on Polar Codes)

Acronyms

□ 3GPP 3rd Generation Partnership Project

□ ADC Analog-to-Digital Converter

API Application Programming InterfaceAWGN Additive White Gaussian Noise

□ BBU Broadband Unit

□ BS Base Station

□ CapEx Capital Expenditure□ CDMA Code Division Multiple Access

□ CDN Content Distribution Networks

cDRX Connected mode discontinuous receptionCGNAT Carrier Grade Network Address Translator

DACDigital-to-Analog ConverterDASDistributed Antenna Systems

□ DASH Dynamic Adaptive Streaming over HTTP

□ dB DeciBel

□ dBm DeciBel Milliwatt

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

19-59

Acronyms (Cont)

	DL	Downlink	
	DRS	Discovery reference signals	
	DRX	Discontinuous Reception	
	DS-CDMA	Direct Sequence Code Division Multiple Access	
	DSL	Digital Subscriber Line	
	DSP	Digital signal processing	
	DTX	Discontinuous Transmission	
	eIMTA	Enhanced Interference Mitigation and Traffic Adapt	tation
	eMBMS	Enhanced Multimedia Broadcast Multicast System	
	eNB	Evolved Node-B	
	EPC	Evolved Packet Core	
	EPDCCH	Enhanced Physical Downlink Control Channel	
	FBMC	Filtered Bank Multicarrier	
	FD-MIMO	Full Dimension MIMO	
	FDD	Frequency Division Duplexing	
	GHz	Giga Hertz	
Way	shington University in St	http://www.cse.wustl.edu/~jain/cse574-16/	©2016 Pai Jain

19-61

Acronyms (Cont)

	GSM	Global System for Mobile Telephony	
	HARQ	Hybrid Automatic Repeat Request	
	HetSNets	Heterogeneious Small Cell Network	
	HSPA	High Speed Packet Access	
	HTC	Human Type Communication	
	HTTP	Hyper-Text Transfer Protocol	
	IDMA	Interleave Division Multiple Access	
	IEEE Instituti	on of Electrical and Electronic Engineers	
	IMS	IP Multimedia System	
	IMT-2020	5G	
	IMT	International Mobile Telecommunications	
	IoT	Internet of Things	
	IPTVInternet	Protocol Television	
	ISO	International Standards Organization	
	ITU-R	International Telecommunications Union- Radio	
	ITU	International Telecommunications Union	
Wa	shington University in S	t, Louis http://www.cse.wustl.edu/~jain/cse574-16/	©2016 Raj Jain

19-62

Acronyms (Cont)

	kHz	Kilo Hertz
	LAA	License Assisted Access
	LDS	Low Density Spreading
	LTE-A	Long-Term Evolution Advanced
	LTE-M	Long-Term Evolution for Machine Type Communication
	LTE-U	Long-Term Evolution Unlicensed
	LTE	Long-Term Evolution
	MC-CDMA	Multi-carrier Code Division Multiple Access
	MEC	Mobile Edge Computing
	MHz	Mega Hertz
	MIMO	Multiple Input Multiple Output
	MME	Mobility Management Entity
	MPD	Media presentation description
	MTC	Machine Type Communication
	mW	Milli Watt
	NB-LTE	Narroband Long Term Evolution
Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain

Acronyms (Cont)

	NFV	Network Function Virtualization	
	NOMA	Non-Orthogonal Multiple Access	
	OFDM	Orthogonal Frequency Division Multiplexing	
	OFDMA	Orthogonal Frequency Division Multiple Access	
	OpEx	Operational Expenditure	
	PA	Power Amplifier	
	PDMA	Pattern Division Multiple Access	
	PHY	Physical Layer	
	PRB	Physical Resource Blocks	
	PSD	Power Spectral Density	
	PSM	Power Saving Mode	
	QAM	Quadrature Amplitude Monitor	
	QoE	Quality of Experience	
	QoS	Quality of Service	
	RAN	Radio Access Network	
	RAT	Radio Access Technology	
Was	shington University in St	. Louis http://www.cse.wustl.edu/~jain/cse574-16/	©2016 Raj .

19-63

Acronyms (Cont)

□ REC Recommendation

□ REP Report

□ RF Radio Frequency

RNCRadio Network ControllerRRHRemote Radio Head

SCMA Sparse code multiple access
 SDN Software Defined Networking
 SDR Software Defined Radios
 SFBC Space-Frequency Block Code

□ SIC Successive Interference Cancellation

□ TDD Time Division Duplexing

TV TelevisionUE User ElementUL Uplink

□ URL Uniform Resource Locator□ USA United States of America

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

19-65

Acronyms (Cont)

□ VTC Vehicular Technology Conference

WCSP Wireless Communications and Signal Processing

WiFi Wireless Fidelity

■ WiMAX Worldwide Interoperability for Microwave Access

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

19-66

Scan This to Get These Slides

©2016 Raj Jain

Related Modules

Introduction to Cellular Networks: 1G/2G/3G,

http://www.cse.wustl.edu/~jain/cse574-16/j_15cel.htm

Introduction to LTE,

http://www.cse.wustl.edu/~jain/cse574-16/j_16lte.htm

Introduction to 4G: LTE-Advanced,

http://www.cse.wustl.edu/~jain/cse574-16/j_17lta.htm

Low Power WAN Protocols for IoT,

http://www.cse.wustl.edu/~jain/cse574-16/j_14ahl.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzOMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jair

19-67