

What is 4G?

- □ International Mobile Telecommunication (IMT) Advanced
- Requirements in ITU M.2134-2008
- □ IP based packet switch network
- □ 1.0 Gbps peak rate for fixed services with 100 MHz
- □ 100 Mbps for mobile services. High mobility to 500 km/hr

Feature	Cell	Cell Edge	Peak
DL Spectral Efficiency (bps/Hz)	2.2	0.06	15
UL Spectral Efficiency (bps/Hz)	1.4	0.03	6.75

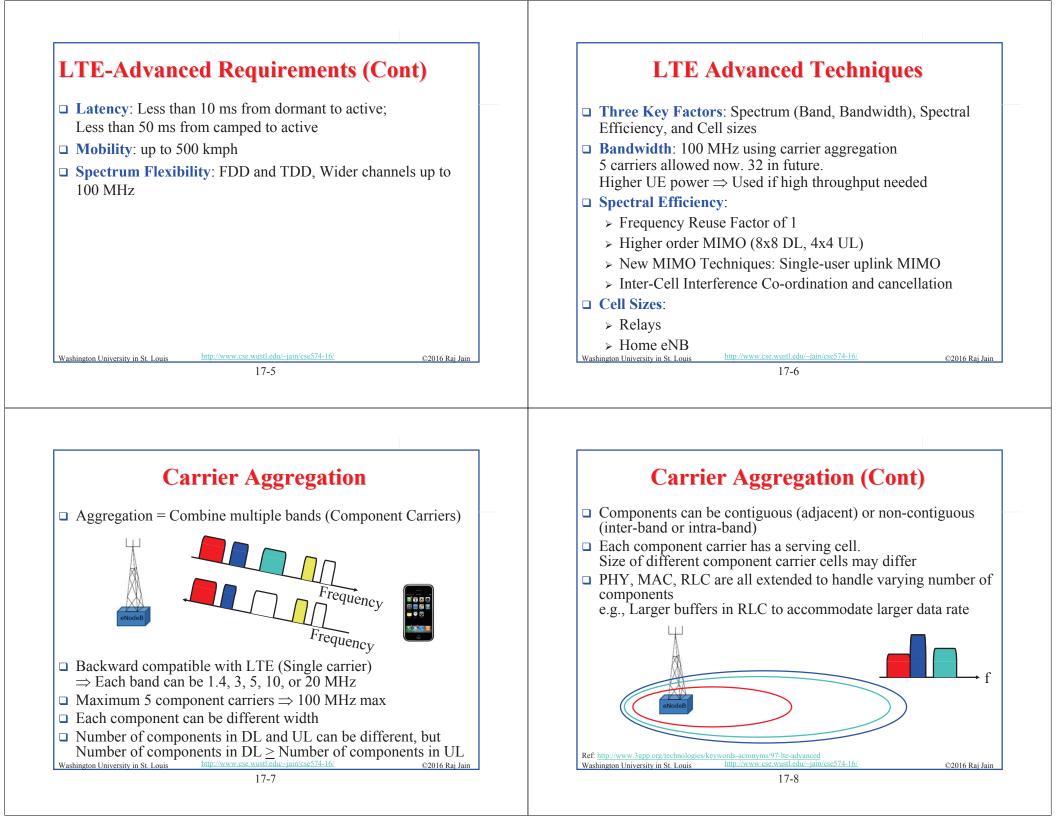
- Seamless connectivity and global roaming with smooth handovers
- □ High-Quality Multimedia
- □ ITU has approved two technologies as 4G (Oct 2010)
 - > LTE-Advanced
 - > WiMAX Release 2 (IEEE 802.16m-2011)

17-3

©2016 Rai Jair

LTE-Advanced Requirements

- □ UMTS Rel. 10, 2011H1
- **Goal**: To meet and exceed IMT-advanced requirements
- Data Rate: 3 Gbps downlink, 1.500 Mbps uplink (low mobility) using 100 MHz
- Spectral Efficiency: 30 bps/Hz using 8x8 MIMO downlink, 15 bps/Hz assuming 4x4 MIMO uplink
- Cell Spectral Efficiency: DL 3.7 bps/Hz/cell assuming 4x4 MIMO, 2.4 bps/Hz/cell assuming 2x2 MIMO (IMT-Adv requires 2.6 bps/Hz/cell)
- Downlink Cell-Edge Spectral Efficiency: 0.12 bps/Hz/User assuming 4x4 MIMO, 0.07 bps/Hz/user assuming 2x2 MIMO (IMT-Adv requires 0.075 bps/Hz/user)



 Ref: 3GPP, "Requirements for Further Advancements for E-UTRA (LTE-Advanced),," 3GPP TR 36.913 v8.0.1 (03/2009), http://www.3gpp.org/ftp/specs/archive/36_series/36.913/

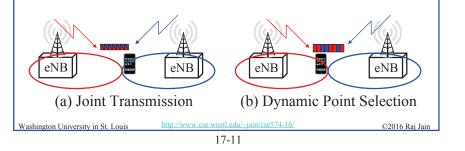
 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse574-16/
 ©2016

©2016 Raj Jain

©2016 Rai Jain

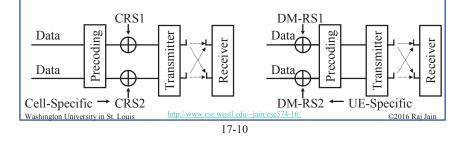
MIMO

- 8x8 MIMO in DL and 4x4 in UL
- \square MIMO used only when SINR is high \Rightarrow Good Channel
- □ If SINR is low, other spectral efficiency techniques, such as, transmit diversity, are used.
- □ Many different transmission modes defined. UE is informed about the mode to use via signaling
- □ Modes differ in number of antennas, antenna port, precoding type, type of reference signal
- □ Three new categories of UE: Category 6, 7, 8 Category 8 supports maximum features


Washington University in St. Louis

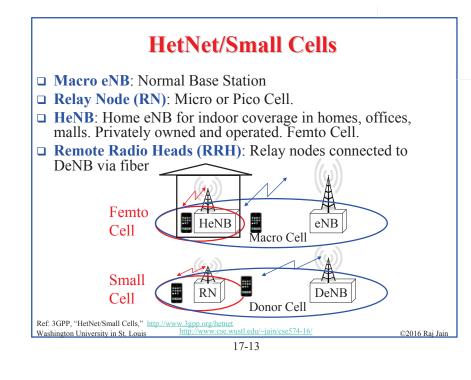
http://www.cse.wustl.edu/~jain/cse574-16/ 17-9

©2016 Rai Jair

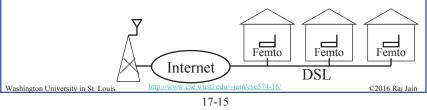

Coordinated Multipoint Operation (CoMP)

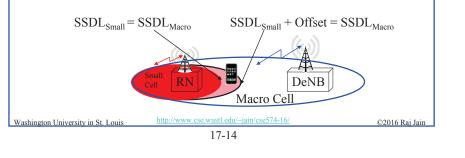
- □ To improve performance at cell edge
- □ Base stations coordinate transmissions and reception
- □ Joint Transmission: Multiple transmitters in the same subframe
- Dynamic Point Selection: Transmission scheduled from one BS
- □ Joint Reception: Multiple BS receive the signal from one UE and combine
- □ UE is informed about different UL/DL decisions

Precoding


- □ Used to map the modulation symbols to different antennas Depends upon the number of antennas and number of layers
- □ Reference (Pilot) signals are transmitted with the data
- □ Code-Book based precoding: Cell Reference Signals (CRS)
- □ Non-Code book based precoding: Demodulation Reference Signals (DM-RS) are added before precoding. Receiver can infer precoding from the pilots.

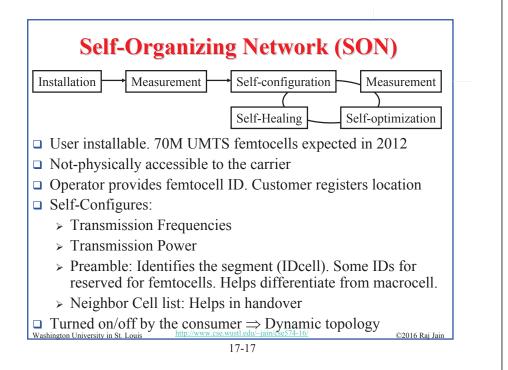
Relay Nodes


- **Relay Nodes**: Low-power base stations Used to enhance performance at cell edges, hot-spot areas, indoor coverage
- Donor eNB (DeNB): Primary base station
- □ A modified version of E-UTRAN air interface Uu is defined: Un
- □ Both Donor and Relays may use the same/different frequencies
- □ Self-Interference: Relay transmission may interfere with its reception on the same frequency \Rightarrow Avoided using time sharing
- Donor does the mobility management


Types of Cells

- □ Cell (MacroCell): Cover a few miles. Public Access. Open Area.
- □ MicroCell (10⁻⁶): Less than a mile wide. Public Access. Malls, Hotels. Train Stations
- □ **PicoCell** (10⁻¹²): in-Building with public access
- **FemtoCell** (10⁻¹⁵): In-Building with restricted access
- □ **AttoCell** (10⁻¹⁸): In-room
- □ ZeptoCell (10⁻²¹): On-Desk
- □ No milli, nano cells.

HetNet/Small Cells (Cont)

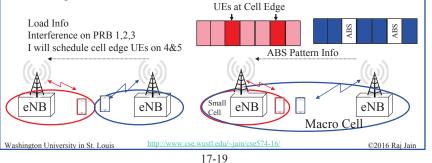

- □ UE selects the BS with the strongest Signal in DL (SSDL) \Rightarrow Both BS have same SSDL at the edge
- □ Cell Range Extension (CRE): Allow small cell to serve more users by requiring UE to join small cell even if the power is slightly below the macro cell \Rightarrow Interference from macro is mitigated by coordination

FemtoCells: Key Features

- □ 50-100 m cell radius
- □ Indoor
- □ Residential, Small office/home office (SOHO)
- □ Backhaul over DSL
- □ Plug and Play: *Self-Organizing*, Self optimizing
- Omni-directional antenna. No sectorization
- □ 10-50 users, 10-40 Mbps, Low cost
- Defined User group
- Continuation of Macro network. Handover of calls
- □ Regular mobile equipment work in femtocells
- □ Multiple FemtoCells should coexist
- □ New Applications: HD video streaming, LAN services

http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis

Management and Configuration


□ Self-Configuration

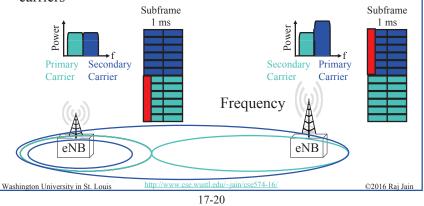
Washington University in St. Louis

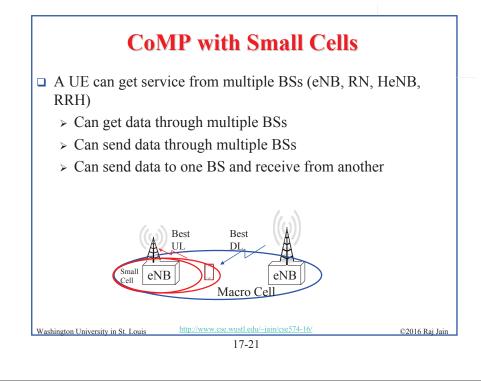
- □ Remote configuration by service provider
- □ Femtocell senses the channel to detect neighboring cells
- □ May broadcast messages for neighbors

Enhanced Inter-Cell Interference Coordination (eICIC)

- ICIC: A eNB sends a "load information" message to the neighbor eNB about interference level per physical resource block. The neighbor adjusts DL power levels at those blocks
- □ Almost Blank Subframes (ABS): Only control channels and cell-specific pilots, no user data ⇒ Allows UEs in CRE region to mitigate macro-cell interference = eICIC

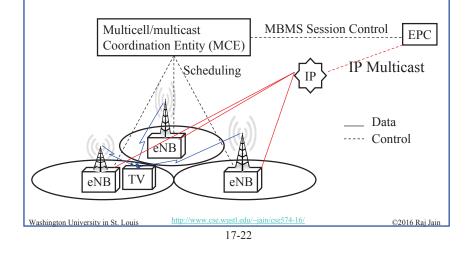
Carrier Aggregation with Cross-Carrier Scheduling

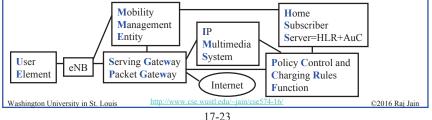

Physical DL Control channel (PDCCH) in macro cell and small cell is sent on different carriers and may be at a higher power than traffic channels


http://www.cse.wustl.edu/~jain/cse574-16/

17-18

©2016 Rai Jain

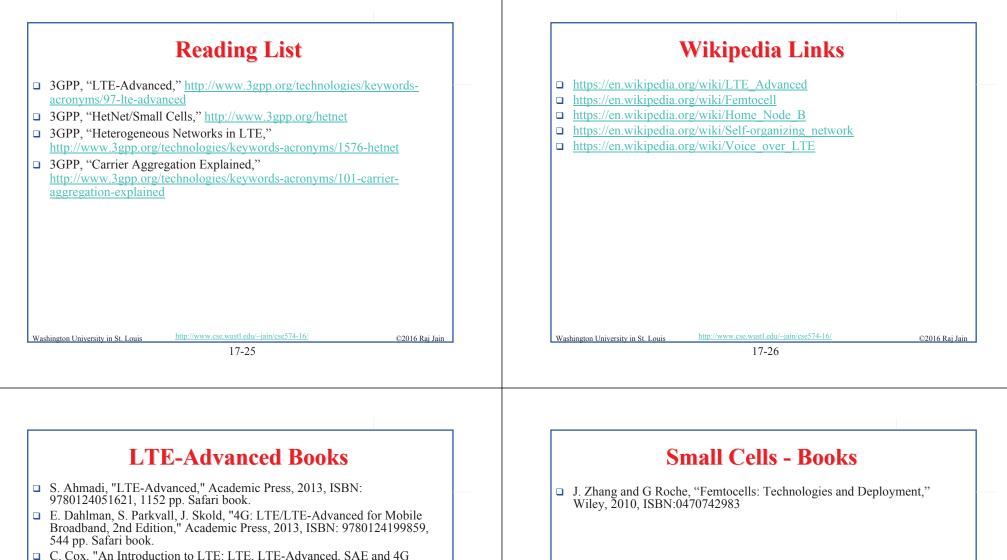

A UE can talk to both BS's using control channels on different carriers


Multimedia Broadcast Multicast Service (MBMS)

- □ MBMS Single Frequency Network (MBSFN)
- □ MCE handles synchronized data delivery

Voice over LTE (VoLTE)

- Original LTE is not circuit switched \Rightarrow Voice needed to go through GSM or 3G circuits Called Circuit Switch Fall Back (CSFB) \Rightarrow Need dual radios
- □ IP Multimedia Services (IMS) handles the call setup signaling
- **Transmission Time Interval (TTI) bundling** allows to repeat the uplink transmission in 4 consecutive subframes \Rightarrow 4x power \Rightarrow Improves link budget by 6 dB \Rightarrow reduces block error rate
- Semi-persistent scheduling saves scheduling overhead. Cannot adopt continuously to changing channel conditions
- **Packet Bundling**: Send only when two voice packets



Summary

- LTE-A meets and exceeds all requirements for 4G as specified in IMT-Advanced.
- Three key factors that affect data rate are: spectrum, spectral 2 efficiency, and cell size
- LTE-A can aggregate up to 5 carriers to make up to 100 MHz 3.
- LTE-A has frequency reuse factor of 1 since spectrum is 4 expensive, uses high-order MIMO.
- LTE-A uses relay nodes to cover remote areas and hot-spots. Also allowes Home eNB (Femto cells).
- Code-book and non-code book precoding improves MIMO 6.
- Coordinated Multipoint operation (CoMP) allows mitigation 7. of interference at cell edge. CoMP can also be used with cross-carrier scheduling. http://www.cse.wustl.edu/~jain/cse574-16/

Washington University in St. Louis

- Mobile Communications, 2nd Edition" Wiley, 2014, ISBN: 9781118818039, 486 pp. Safari book.
- □ A. Ghosh, R. Ratasuk, "Essentials of LTE and LTE-A," Cambridge University Press, 2011, ISBN: 9780521768702, 264 pp. Safari book.
- □ A. Ghosh, J. Zhang, J. G. Andrews, R. Muhamed, "Fundamentals of LTE," Prentice Hall, 2010, ISBN: 0137033117, 464 pp. Safari book.
- □ H. Holma, A. Toskala, "LTE Advanced: 3GPP Solution for IMT-Advanced," Wiley, 2012, ISBN: 9781119974055, 248 pp. Safari book.
- □ X. Zhang, X. Zhou, "LTE-Advanced Air Interface Technology," CRC Press, 2012, ISBN: 9781466501522, 528 pp. Safari book.
- □ A. Taha, H. Hassanein, N. Ali, "LTE, LTE-ADVANCED AND WiMAX: TOWARDS IMT-ADVANCED NETWORKS," Wiley, 2012, ISBN: 9780470745687, 303 pp. Safari book. http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Rai Jain

Washington University in St. Louis

Washington University in St. Louis

LTE-Advanced Specifications

- □ TR 36.806 E-UTRA Relay architectures for E-UTRA (LTE-Advanced)
- □ TR 36.808 E-UTRA Carrier Aggregation; Base Station (BS) radio transmission and reception
- □ TR 36.814 E-UTRA Further advancements for E-UTRA physical layer aspects
- TR 36.815 Further Advancements for E-UTRA; LTE-Advanced feasibility studies in RAN WG4
- □ TR 36.817 E-UTRA Uplink multiple antenna transmission; Base Station (BS) radio transmission and reception
- □ TR 36.819 Coordinated multi-point operation for LTE physical layer aspects
- □ TR 36.823 E-UTRA Carrier Aggregation Enhancements; UE and BS radio transmission and reception
- □ TR 36.826 E-UTRA Relay radio transmission and reception
- □ TR 36.871 E-UTRA Downlink Multiple Input Multiple Output (MIMO) enhancement for LTE-Advanced
- □ TR 36.912 Feasibility study for Further Advancements for E-UTRA (LTE-Advanced)

```
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/
```

17-29

LTE-Advanced Specifications (Cont)

- □ TR 36.913 Requirements for further advancements for E-UTRA (LTE-Advanced)
- □ TR 36.932 Scenarios and requirements for Small Cell Enhancements for E-UTRA and E-UTRAN
- □ TS 36.101 E-UTRA User Equipment (UE) radio transmission and reception
- □ TS 36.211 E-UTRA Physical channels and modulation
- **TS** 36.212 E-UTRA Multiplexing and channel coding
- **TS 36.213 E-UTRA Physical layer procedures**
- **TS 36.216 E-UTRA Physical layer for relaying operation**
- □ TS 36.221 E-UTRA Medium Access Control (MAC) protocol specification
- TS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2
- □ TS 36.306 E-UTRA User Equipment (UE) radio access capabilities
- □ TS 36.331 E-UTRA Radio resource Control (RRC) protocol specification

17-30

Femtocell Specifications (Cont)

TS 32.582: HNB OAM&P information model for Type 1 interface HNT to

□ TS 32.583: HNB OAM&P procedure flows for Type 1 interface HNT to

Broadband Forum TR-069 management protocol has been adopted to

- TS 36.423 Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP)
- All available at <u>http://www.3gpp.org/</u> Washington University in St. Louis http://www.cse.wust

stl.edu/~jain/cse574-16/

©2016 Raj Jain

Femtocell Specifications

- □ 3GPP Rel 8 specifies HNB (Home Node B) and HeNB (22.*)
- □ Rel 9 includes an IMS (IP Multimedia Subsystem) capable HNB (23.*)
- □ TS 22.220: Service Requirements for HNB and HeNB
- TR 23.830: Architecture aspects of HNB and H3NB
- □ TR 23.832: IMS aspects of architecture for HNB
- TR 25.820: 3G HNB study item
- TR 25.967: FDD HNB RF Requirements
- TR 32.821: Study of self-organizing networks related OAM interfaces for HNB TR33.820: Security of HNB/HeNB
- □ TS 25.467: Mobility procedures for HNB
- □ TS 25.468: UTRAN luh Interface RANAP (Radio Access Network Application Part) User adaptation signaling
- □ TS 25.469: UTRAN Iuh Interface HNB application part signaling
- TS 32.581: HNB OAM&P (Operation, Administration, Management and Provisioning) concepts and requirements for Type 1 interface HNT to HNT Management system

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

©2016 Raj Jain

Washington University in St. Louis

HNT Management system

HNT Management system

include femtocells.

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><page-footer><page-footer>

Acronyms (Cont)

	FDMA	Frequency Division Multiple Access	
	GPS	Global Positioning System	
	HD	High Definition	
	HeNB	Home eNB	
	HetNet	Heterogeneous Network	
	HSS	Home Subscriber System	
	ID	Identifier	
	IDFT	Inverse Discrete Fourier Transform	
	IEEE	Institution of Electrical and Electronic Engineers	
	IMS	Internet Multimedia System	
	IMT-Advance	ed International Mobile Telecommunications Advanced	1
	IP	Internet Protocol	
	ITU	International Telecommunications Union	
	LAN	Local Area Network	
	LTE-Advance	ed Long-Term Evolution Advanced	
	LTE	Long-Term Evolution	
Wa	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain	n

Acronyms

□ 3GPP 3rd Generation Partnership Project □ ABS Almost Blank Subframes \square BS **Base Station** □ CoMP Coordinated Multipoint Operation □ CRE Cell Range Extension □ CRS Cell Reference Signals □ CSFB Circuit Switch Fall Back □ dBm deciBel miliwatt Donor eNB □ DeNB □ DFT Discrete Fourier Transform DL Down Link DM-RS Demodulation Reference Signal DSL Digital Subscriber Line □ eNB eNode B □ EPC **Evolved Packet Core** □ FDD Frequency Division Duplexing http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Raj Jain 17-34

Acronyms (Cont)

	MAC	Media Access Control
	MBMS	Multimedia Broadcast Multicast Service
	MBSFN	MBMS Single Frequency Network
	MCE	Multicast Coordination Entity
	MHz	Mega Hertz
	MIMO	Multiple Input Multiple Output
	MU-MIMO	Multi-User MIMO
	NTP	Network Time Protocol
	OAM	Operation, Administration, and Management
	PDCCH	Packet Data Control Channel
	PHY	Physical Layer
	PRB	Physical Resource Block
	RAN	Radio Access Network
	RANAP	Radio Access Network Application
	RF	Radio Frequency
Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

	Acronyms (Cont)	Acronyms (Cont)
 RLC RN RRC RRH SAE SC-FDMA SFBC SINR SOHO SON SSDL SU-MIMO TDD TV 	Radio Link Control Relay Node Radio Resource Control Remote Radio Heads Reference Signal Service Access Gateway Single Carrier Frequency Division Multiple Access Space-Frequency Block Code Signal to Interference and Noise Ratio Small Office Home Office Self-Organizing Network Strongest Signal in Downlink Single User MIMO Time Division Duplexing Television	 UE User Element UL Uplink UMTS Universal Mobile Telecommunications System UTRA UMTS Terrestrial Radio Access UTRAN UMTS Terrestrial Radio Access Network VoLTE Voice over LTE WG Working Group WiMAX Worldwide Interoperability for Microwave Access
Washington University in a	St. Louis <u>http://www.cse.wustl.edu/~jain/cse574-16/</u> ©2016 Raj Jain 17-37	Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ 17-38

Scan This to Get These Slides

Related Modules

 Internet of Things,

 http://www.cse.wustl.edu/~jain/cse574-16/j_10iot.htm

Introduction to LTE, http://www.cse.wustl.edu/~jain/cse574-16/j_16lte.htm

Introduction to 5G, http://www.cse.wustl.edu/~jain/cse574-16/j 195g.htm

Low Power WAN Protocols for IoT, http://www.cse.wustl.edu/~jain/cse574-16/j_14ahl.htm

©2016 Raj Jain

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Rai Jain

Washington University in St. Louis

17-40