
# Introduction to Cellular Networks: 1G/2G/3G



Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-16/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

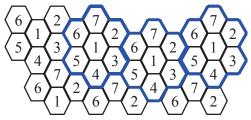
15-1



- 1. Cellular Telephony
- 2. Cellular Frequency Reuse
- 3. 2G: GSM
- 4. 2.5G: GPRS, EDGE
- 5. 3G: W-CDMA
- 3.5G: High-Speed Packet Access (HSPA)

Note: 3.9G/4G technologies LTE and LTE Advanced discussed in future lectures of this class.

Washington University in St. Louis


o://www.cse.wustl.edu/~jain/cse574-16/

@2016 Pai I

15-2

# **Cellular Network Beginnings**

- □ AT&T Bell Labs designed a cellular structure to reuse frequency. No two adjacent cells use the same frequency.
- □ 1977: FCC authorized two commercial deployments
  - > Chicago: Illinois Bell
  - > Washington, DC: American Radio telephone Service
  - > Both services started 1983



Ref: P. Bedell, "Cellular Networks: Design and Operation, A real World Perspective," Outskirts Press, 2014, ISBN:9781478732082
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/
©2016 Raj Jain

#### **Initial Cellular System in US**

- US was divided into
  - 306 metropolitan service areas (MSAs)
     75% of US population, 20% of area
     Densely populated ⇒ Small cell size
  - → 428 rural service areas (RSAs)
     Less populated ⇒ Larger cell size
- □ Each area was originally allowed two competing carriers: A, B
  - > Bell (B)
  - > Alternative (A)
- 832 channel-pairs in each area. 416 pairs per carrier. 45 MHz between transmit and receive frequencies 30 kHz per channel
  - 1:7 Frequency reuse with hexagonal cells
- Too many applicants  $\Rightarrow$  FCC started a lottery system
- At least one system in every market by 1990

Washington University in St. Louis

o://www.cse.wustl.edu/~iain/cse574-16/

©2016 Raj Jain

#### **Cell Sites**

- □ On towers, roof tops, water tanks, utility poles, ...
  - > Good source of income for utility companies, cities, schools, churches, hotels, ...
  - > With a base station for electronics
  - > NIMBY (Not in my back yard)
    - ⇒ Mostly hidden, shared towers









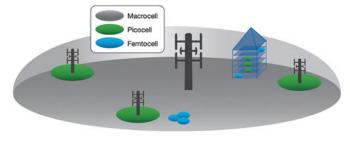
15-5

### Cells on Wheels (CoWs)

□ Used for temporary surge in traffic, e.g., games, fares,

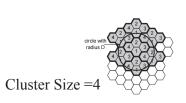





Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

15-6


# Macro, Micro, Pico, Femto Cells

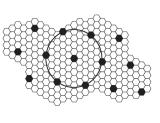
- Macro: Sections of a city, more than 1 km radius
- ☐ Micro: Neighborhoods, less than 1 km
- □ Pico: Busy public areas: Malls, airports, ..., 200 m
- ☐ Femto: Inside a home, 10 m




15-7

# **Cellular Frequency Reuse**




Washington University in St. Louis



Cluster Size = 7

(a) Frequency reuse pattern for N = 4

(b) Frequency reuse pattern for N = 7



Cluster Size =19

#### **Characterizing Frequency Reuse**

- □ D = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- $\square$  R = radius of a cell
- $\Box$  d = distance between centers of adjacent cells (d = R $\sqrt{3}$ )
- $\square$  N = number of cells in repetitious pattern (Cluster)
  - > Reuse factor
  - > Each cell in pattern uses unique band of frequencies
- □ Hexagonal cell pattern, following values of N possible
  - $N = I^2 + J^2 + (I \times J), I, J = 0, 1, 2, 3, ...$
- □ Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...
- Reuse Ratio = Distance/Radius =  $D/R = \sqrt{3N}$
- $\Box$  D/d =  $\sqrt{N}$

Ref: C. Siva Ram Murthy; B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols," Prentice Hall, 2004, ISBN: 013147023X, 880 pp., Safari Book, Section 3.2.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jai

15-9

#### **Frequency Reuse Example**

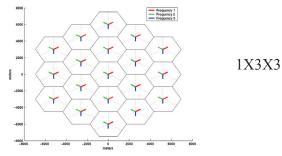
What would be the minimum distance between the centers of two cells with the same band of frequencies if cell radius is 1 km and the reuse factor is 12?

D/R = 
$$\sqrt{3N}$$
  
D =  $(3 \times 12)^{1/2} \times 1$  km  
= 6 km

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse574-16/

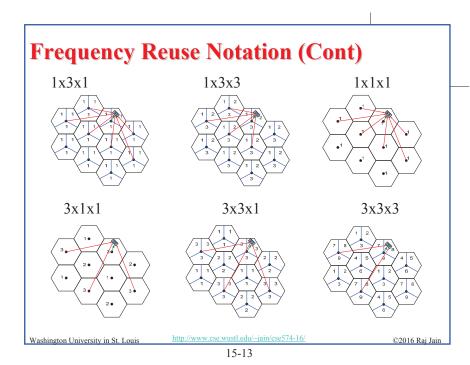
©2016 Raj.

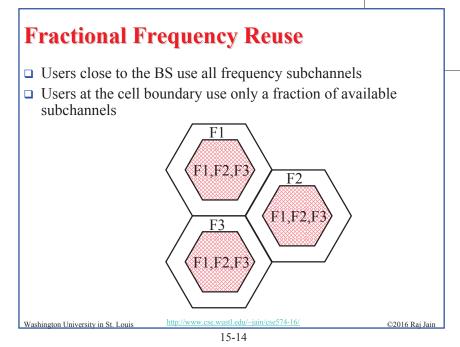

15-10

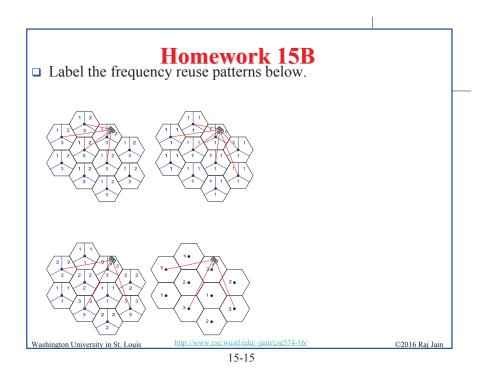
#### **Homework 15A**

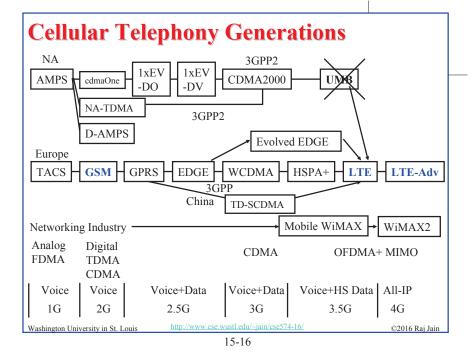
☐ The distance between cell centers with the same frequency band is required to be more than 6 km. What is the cell radius for the cluster size of 12.

# **Frequency Reuse Notation**


- $\square$  N×S×K frequency reuse pattern
- □ N=Number of cells per cluster
- □ S= Number of sectors in a cell
- $\blacksquare$  K = Number of frequency allocations per cell





Washington University in St. Louis


//www.cse.wusti.edu/~jain/cse5/4-16/

©2016 Raj Ja









#### **Cellular Generations (Cont)**

- ☐ 1G: Analog Voice. FDMA. 1980s
  - > AMPS: Advanced Mobile Phone System
  - > TACS: Total Access Communications System
- □ 2G: Digital Voice. TDMA. 1990
  - > cdmaOne: Qualcomm. International Standard IS-95.
  - > NA-TDMA
  - > Digital AMPS (D-AMPS)
  - > **GSM**: Global System for Mobile Communications
- □ 2.5G: Voice + Data. 1995.
  - > 1xEV-DO: Evolution Data Optimized
  - > 1xEV-DV: Evolution Data and Voice
  - > General Packet Radio Service (GPRS)
  - > Enhanced Data Rate for GSM Evolution (EDGE)

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-16

©2016 Rai Jain

15-17

#### **Cellular Generations (Cont)**

- □ 3G: Voice + High-speed data. All CDMA. 2000.
  - > CDMA2000: Qualcomm. International Standard IS-2000.
  - > W-CDMA: Wideband CDMA
  - > TD-SCDMA: Time Division Synchronous Code Division Multiple Access (Chinese 3G)
  - > 384 kbps to 2 Mbps
- □ 3.5G: Voice + Higher-speed data
  - > EDGE Evolution
  - High-Speed Packet Access (HSPA)
  - > Evolved HSPA (HSPA+)
  - > Ultra Mobile Broadband (UMB)

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai J

15-18

#### **Cellular Generations (Cont)**

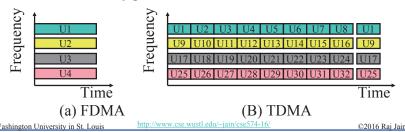
- □ Two Tracks for 1G/2G/3G:
  - ➤ Europe 3GPP (3<sup>rd</sup> Generation Partnership Project)
  - > North America 3GPP2
- □ 3.9G: High-Speed Data. VOIP. OFDMA.
  - > WiMAX 16e (Worldwide Interoperability for Microwave Access)
  - > Long Term Evolution (LTE)
- □ 4G: Very High-Speed Data. 2013.
  - > WiMAX 16m or WiMAX2
  - > LTE-Advanced
  - > 100 Mbps − 1 Gbps
- □ 5G: Ultra High-Speed Data. 2020.
  - > IP based

Washington University in St. Louis

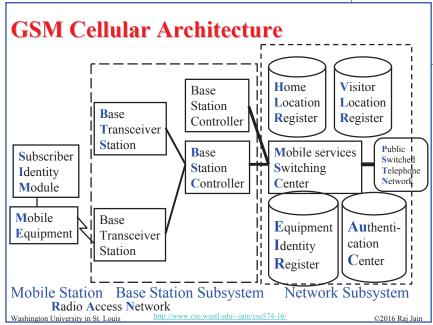
p://www.cse.wustl.edu/~iain/cse574-16/

©2016 Raj Jain

#### 3.9G vs. 4G


- □ 3G = International Mobile Communications 2000 (IMT-2000) = W-CDMA, CDMA2000
- □ 4G = IMT-Advanced
  - = LTE-Advanced, IEEE 802.16m
- WiMAX forum officially declared WiMAX to be 3G technology so that they can use spectrum allocated to 3G.
- WiMAX, LTE are at most 3.9G or "near-4G" Some telecom companies are selling them as 4G

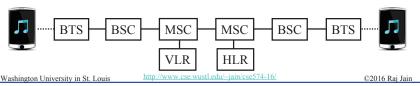
Washington University in St. Louis


©2016 Raj Ja



- □ Global System for Mobile Communications
- □ Implemented in 90% of cell phones world-wide.
- □ 1990 Technology using Time-Division Multiple Access (TDMA) in stead of Frequency Division Multiple Access (FDMA) used in 1G
- 850/900/1800/1900 MHz (quad-band)
- □ Subscriber Identity Module (SIM) card contained user data. User could use any phone with his/her SIM card




15-21

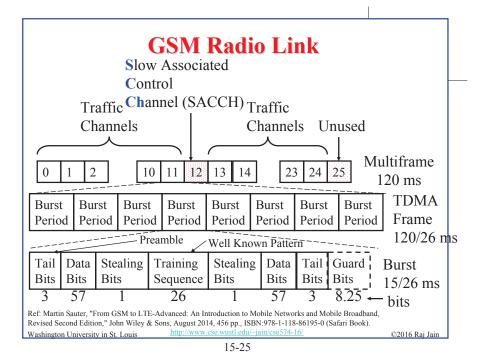


15-22

### **Cellular Architecture (Cont)**

- □ One Base transceiver station (BTS) per cell.
- □ One Base Station Controller (BSC) can control multiple BTSes.
  - > Allocates radio channels among BTSs.
  - > Manages call handoffs between BTSs.
  - > Controls handset power levels
- Mobile Switching Center (MSC) connects to PSTN and switches calls between BSCs. Provides mobile registration, location, authentication. Contains Equipment Identity Register.




#### **Cellular Architecture (Cont)**

- □ Home Location Register (HLR) and Visitor Location Register (VLR) provide call routing and roaming
- □ VLR+HLR+MSC functions are generally in one equipment
- □ Equipment Identity Register (EIR) contains a list of all valid mobiles.
- □ Authentication Center (AuC) stores the secret keys of all SIM cards.
- □ Each handset has a International Mobile Equipment Identity (IMEI) number.

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse574-1

©2016 Raj Jair



#### **GSM Radio Link (Cont)**

- 890-915 MHz uplink, 935-960 MHz downlink
- Arr 25 MHz  $\Rightarrow$  125  $\times$  200kHz frequency channels
- Each frequency channel is TDMA with burst (slot) period of 15/26 ms.
- Eight burst periods = TDMA frame of 120/26 ms.
- One user traffic channel = one burst period per TDMA frame.
- $\supseteq$  26 TDMA frames  $\Rightarrow$  one Multiframe 24 are used for traffic. 1 for control, and 1 is unused. Slow Associated Control Channel (SACCH) If SACCH does not have sufficient capacity, Fast Associated Control Channel (FACCH) is used by stealing ½ of some bursts.
- □ Stealing bits identify whether the 1/2-slot carries data or control
- $\square$  200 kHz = 270.8 kbps over 26 slots
  - ⇒ 9.6 kbps/user after encryption and FEC overhead

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

Washington University in St. Louis

15-26

#### **GSM Specs**

- □ Full rate vocoders ⇒ Voice is sampled at 64 kbps compressed to 16 kbps.
- Subscriber Identify Module (SIM) contains a micro-controller and storage. Contains authentication, encryption, and accounting info.
  - Owners need 4-digit PIN.
- □ SIM cards can contain additional info such as emergency medical info.
- Mobile Assisted Handoff: Mobile sends identities of six candidate base stations for handoff. MSC selects.
- □ Short Message Service (SMS)
  - > Up to 160 characters
  - > Sent over control channel
  - > Unicast or broadcast

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

# **Cellular System Capacity Example**

- □ A particular cellular system has the following characteristics: cluster size =7. uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.
- A. Using FDMA/FDD:
  - 1. How much bandwidth is available per cell using FDD?
  - 2. How many users per cell can be supported using FDMA?
  - 3. What is the cell area?
  - 4. What is the cell radius assuming circular cells?
- B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
  - 1. What is the bandwidth and data rate per channel?
  - 2. How many time slots are needed in a TDMA frame to support the required number of users?
  - 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
  - 4. How many bits are transmitted in each time slot?

#### **Cellular System Capacity (Cont)**

- □ A particular cellular system has the following characteristics: cluster size =7, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.
- A. Using FDMA/FDD:
  - 1. How much bandwidth is available per cell using FDD?

49 MHz/7 = 7 MHz/cell

 $FDD \Rightarrow 3.5 \text{ MHz/uplink or downlink}$ 

2. How many users per cell can be supported using FDMA?

10 kbps/user = 10 kHz  $\Rightarrow$  350 users per cell

3. What is the cell area?

100 users/sq km  $\Rightarrow$  3.5 Sq km/cell

4. What is the cell radius assuming circular cells?

$$\pi r^2 = 3.5 \Rightarrow r = 1.056 \text{ km}$$

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

15-29

#### **Cellular System Capacity (Cont)**

- B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
  - 1. What is the bandwidth and data rate per channel?

3.5 MHz/35 = 100 kHz/Channel = 100 kbps

2. How many time slots are needed in a TDMA frame to support the required number of users?

 $10 \text{ kbps/user} \Rightarrow 10 \text{ users/channel}$ 

3. If the TDMA frame is 10ms, how long is each user slot in the frame?

10 ms/10 = 1 ms

4. How many bits are transmitted in each time slot?  $1 \text{ ms } \times 100 \text{ kbps} = 100 \text{ b/slot}$ 

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jair

15-30

#### **Homework 15C**

- □ A particular cellular system has the following characteristics: cluster size =9, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-945 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 2 bps/Hz.
- A. Using FDMA/FDD:

Washington University in St. Louis

- > 1. How much bandwidth is available per cell using FDD?
- > 2. How many users per cell can be supported using FDMA?
- > 3. What is the cell area
- > 4. What is the cell radius assuming circular cells?
- B. If the available spectrum is divided in to 100 channels and TDMA is employed within each channel:
  - 1. What is the bandwidth and data rate per channel?
  - 2. How many time slots are needed in a TDMA frame to support the required number of users?
  - 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
  - 4. How many bits are transmitted in each time slot?

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

#### **GPRS**

- □ General Packet Radio Service (GPRS). 2.5G Technology
- □ Standard GSM has 8 slots per 200 kHz channel One slot/user ⇒ 9.6 kbps data/user
- □ GPRS allows any number of slots to a user
  - > 4 different codings used depending upon channel condition
  - > 9.6 kbps to 21.4 kbps per slot
  - > 76-171 kbps using all 8 slots.
- □ GPRS user can hop frequency channels

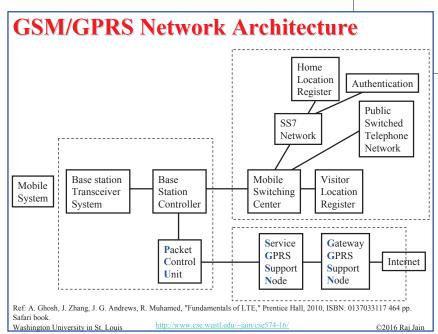
Gi = GSM User

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jai

#### **GPRS (Cont)**


- Supports intermittent and bursty data transfers
   Point-to-multipoint also supported
- Need to add two new elements to GSM networks:
  - > Service GPRS support node (SGSN)
    - Security, Mobility, Access control for data packet
  - > Gateway GPRS support node (GGSN)
    - Connects to external packet switched networks
- Standardized by ETSI

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

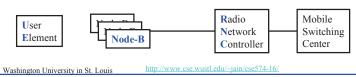
15-33



15-34

#### **EDGE**

- Enhanced Data Rates for GSM Evolution (EDGE)
- □ Standard GSM uses Gaussian Minimum Shift Keying (GMSK) modulation.
  - > Data stream is shaped with a Gaussian filter before frequency modulation
- □ EDGE changes to 8-PSK modulation  $\Rightarrow$  3 bps/Hz
- □ GPRS+EDGE  $\Rightarrow$  384 kbps
- □ Need better radio signal quality
- □ GSM-EDGE Radio Access Network (GERAN)


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

#### W-CDMA

- Wideband Code Division Multiple Access
- European 3G
- □ Aka Universal Mobile Telecommunications System (UMTS)
- ☐ Uses Direct Sequence Spread Spectrum over two 5 MHz FDD channels
- □ Radio access network is called "UMTS Terrestrial Radio Access Network (UTRAN)"
- □ Air interface is called "UMTS Terrestrial Radio Access (UTRA)"



15-36

©2016 Rai Jain

#### **High-Speed Packet Access (HSPA)**

- □ Evolution (extension) of W-CDMA
- ☐ High-Speed Downlink **Packet** Access (HSDPA):
  - > Adaptive modulation and coding
  - > Channel dependent scheduling
  - > Higher order modulations, e.g., 16-QAM
- □ High-Speed Uplink Packet Access (HSUPA):
  - > Parallel transmissions from multiple users
- □ HSPA = HSDPA+HSUPA
  - > Up to 64-QAM
- □ HSPA+: Evolution of HSPA. Up to 168 Mbps down, 22 Mbps up using MIMO and multiple carriers

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-1

©2016 Rai Jain

15-37

#### **Evolved Packet System (EPS)** Radio Access Network Serving Network Core Network Circuit Switched **GSM** Core GERAN BTS H BSC MGW MSC SGW Edge 2-2.5G **SS7** Packet Switched **WCDMA** Core HSPA+ NodeB | RNC UTRAN **SGSN GGSN** (UMTS) 3-3.5G Internet Evolved Packet Core **E-UTRAN** MME/ P-GW LTE **eNB** UE S-GW 3.9 G http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Rai Jair

15-38

# **Evolved Packet System (Cont)**

- □ CS = Circuit Switched
- □ EPC = Evolved Packet Core
- □ EPS = Evolved Packet System
- ☐ GERAN = GSM Enhanced Radio Access Network
- ☐ GGSN = Gateway GPRS Support Node
- □ LTE = Long Term Evolution
- □ MGW = Media Gateway
- MME = Mobility Management Utility
- MSC = Mobile Switching Center
- □ P-GW = Packet Gateway
- □ PS = Packet Switched
- □ RNC = Radio Network Control
- □ S-GW = Serving Gateway
- □ SGSN = Service GPRS Support Node
- $\square$  SS7 = Signaling System 7
- □ eNB = Evolved NodeB

Washington University in St. Louis

w.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

Summary



- In a cellular cluster of size N, the same distance between cells with same frequencies is  $D = R\sqrt{3N}$ . Here R is the cell radius.
- 2. 1G was analog voice with FDMA
- 2G was digital voice with TDMA. Most widely implemented 2G is GSM. Data rate was improved by GPRS and EDGE.
- 4. 3G was voice+data with CDMA. Most widely implemented 3G is W-CDMA using two 5 MHz FDD channels.
- 5. Data rate was improved later using HSPA and HSPA+.

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-16

©2016 Raj Jair

15-39

#### **Reading List**

- Martin Sauter, "From GSM to LTE-Advanced: An Introduction to Mobile Networks and Mobile Broadband, Revised Second Edition," John Wiley & Sons, August 2014, 456 pp., ISBN:978-1-118-86195-0 (Safari Book).
- □ C. Siva Ram Murthy; B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols," Prentice Hall, 2004, ISBN: 013147023X, 880 pp., Safari Book.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

15-41

#### Wikipedia Links

- □ <a href="http://en.wikipedia.org/wiki/Advanced Mobile Phone System">http://en.wikipedia.org/wiki/Advanced Mobile Phone System</a>
- □ http://en.wikipedia.org/wiki/CDMA
- □ http://en.wikipedia.org/wiki/IS-2000
- □ http://en.wikipedia.org/wiki/IS-95
- □ http://en.wikipedia.org/wiki/W-CDMA
- □ http://en.wikipedia.org/wiki/Evolution-Data Optimized
- □ http://en.wikipedia.org/wiki/EV-DV#Potential competing standards
- □ <a href="http://en.wikipedia.org/wiki/GSM">http://en.wikipedia.org/wiki/GSM</a>
- □ http://en.wikipedia.org/wiki/GPRS
- □ http://en.wikipedia.org/wiki/EDGE
- □ http://en.wikipedia.org/wiki/Evolved EDGE
- □ <a href="http://en.wikipedia.org/wiki/TD-SCDMA">http://en.wikipedia.org/wiki/TD-SCDMA</a>
- □ http://en.wikipedia.org/wiki/High Speed Packet Access
- □ http://en.wikipedia.org/wiki/Ultra Mobile Broadband
- □ http://en.wikipedia.org/wiki/IMT-2000

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

15-42

#### References

- P. Bedell, "Cellular Networks: Design and Operation, A real World Perspective," Outskirts Press, 2014, ISBN:9781478732082 (Good/easy reading but not a Safari book)
- □ UMTS Forum, <a href="http://www.umts-forum.org">http://www.umts-forum.org</a>
- □ 3G Americas, <a href="http://www.3gamericas.org">http://www.3gamericas.org</a>
- □ 3G Americas," The mobile broadband revolution: 3GPP Release 8 and beyond, HSPA+, SAE/LTE and LTE-Advanced," White paper, February 2009.

Washington University in St. Louis http://www.cs

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

#### **Acronyms**

3GPP3rd Generation Partnership ProjectAMPSAdvanced Mobile Phone System

□ AuC Authentication Center

□ BS Base Station

□ BSC Base Station Controller□ BTS Base transceiver station

□ CDMA Code Division Multiple Access

□ CS Circuit Switched□ DO Data-Only□ DV Data+Voice

■ EDGE Enhanced Data rate for GSM evolution

□ EIR Equipment Identity Register

□ eNB eNodeB

□ EPC Evolved Packet Core□ EPS Evolved Packet System

■ ETSI European Telecommunications Standards Institute

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

# Acronyms (Cont)

|   | EVDO                      | Evolution to Data only                             |               |
|---|---------------------------|----------------------------------------------------|---------------|
|   | EVDV                      | Evolution to Data and voice                        |               |
|   | FACCH                     | Fast Associated Control Channel                    |               |
|   | FDD                       | Frequency Division Duplexing                       |               |
|   | FDMA                      | Frequency Division Multiple Access                 |               |
|   | FEC                       | Forward Error Correction                           |               |
|   | GERAN                     | GSM Enhanced Radio Access Network                  |               |
|   | GGSN                      | Gateway GPRS Support                               |               |
|   | GMSK                      | Gaussian Minimum Shift Keying                      |               |
|   | GPRS                      | General Packet Radio Service                       |               |
|   | GSM                       | Global System for Mobile Communications            |               |
|   | HSDPA                     | High-speed Downlink Packet Access                  |               |
|   | HSPA                      | High-speed Packet Access                           |               |
|   | HSPA+                     | Evolved High-speed Packet Access                   |               |
|   | HSUPA                     | High-Speed Uplink Packet Access                    |               |
|   | IEEE                      | Institution of Electrical and Electronic Engineers |               |
| W | ashington University in S | t. Louis http://www.cse.wustl.edu/~jain/cse574-16/ | ©2016 Raj Jai |

15-45

# **Acronyms (Cont)**

| $l_{n}$ | IMEI                     | International Mobile Equipment Identity             |                |
|---------|--------------------------|-----------------------------------------------------|----------------|
| 1-      |                          | International Mobile Equipment Identity             |                |
|         | IMT-2000                 | International Mobile Communications 2000            |                |
|         | IMT-Advanc               | ed International Mobile Communications Advanced     |                |
|         | IP                       | Internet Protocol                                   |                |
|         | IS                       | International Standard                              |                |
|         | kHz                      | Kilo Hertz                                          |                |
|         | LTE                      | Long-Term Evolution                                 |                |
|         | MGW                      | Media Gateway                                       |                |
|         | MHz                      | Mega Hertz                                          |                |
|         | MIMO                     | Multiple Input Multiple Output                      |                |
|         | MME                      | Mobility Management Utility                         |                |
|         | MSA                      | Metropolitan Service Areas                          |                |
|         | MSC                      | Mobile Switching Center                             |                |
|         | NA-TDMA                  | North America Time Division Multiple Access         |                |
|         | NA                       | North America                                       |                |
|         | NIMBY                    | Not in my backyard                                  |                |
| Was     | shington University in S | st. Louis http://www.cse.wustl.edu/~jain/cse574-16/ | ©2016 Raj Jain |

15-46

# **Acronyms (Cont)**

|  |       | 11010113 (00110)                              |
|--|-------|-----------------------------------------------|
|  | NodeB | Base Station                                  |
|  | OFDMA | Orthogonal Frequency Division Multiple Access |
|  | PIN   | Personal Identification Number                |
|  | PS    | Packet Switched                               |
|  | PSK   | Phase Shift Keying                            |
|  | PSTN  | Public Switched Telephone Network             |
|  | QAM   | Quadrature Amplitude Modulation               |
|  | RNC   | Radio Network Control                         |
|  | RSA   | Rural Service Areas                           |
|  | SACCH | Slow Associated Control Channel               |
|  | SCDMA | Synchronous CDMA                              |
|  | SGSN  | Service GPRS Support Node                     |
|  | SGW   | Service Gateway                               |
|  | SIM   | Subscriber Identify Module                    |
|  | SMS   | Short Message Service                         |
|  | SS7   | Signaling System 7                            |
|  |       |                                               |

# **Acronyms (Cont)**

|   |          | Acronyms (Cont)                                         |
|---|----------|---------------------------------------------------------|
|   | TACS     | Total Access Communications System                      |
|   | TD-SCDMA | Time Duplexed Synchronous Code Division Multiple Access |
|   | TDMA     | Time Division Multiple Access                           |
|   | UE       | User Element                                            |
|   | UMB      | Ultra Mobile Broadband                                  |
|   | UMTS     | Universal Mobile Telecommunications System              |
|   | UTRA     | UMTS Terrestrial Radio Access                           |
|   | UTRAN    | UMTS Terrestrial Radio Access Network                   |
|   | VLR      | Visitor Location Register                               |
|   | VOIP     | Voice over IP                                           |
|   | WCDMA    | Wideband Code Division Multiple Access                  |
|   | WiMAX    | Worldwide Interoperability for Microwave Access         |
|   |          |                                                         |
|   |          |                                                         |
|   |          |                                                         |
|   |          |                                                         |
| l |          |                                                         |

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

©2016 Raj Jain

Washington University in St. Louis

#### **Scan This to Get These Slides**



Washington University in St. Louis <a href="http://www.cse.">http://www.cse.</a>

©2016 Rai Jai

15-49

#### **Related Modules**



Internet of Things,

http://www.cse.wustl.edu/~jain/cse574-16/j 10iot.htm

Introduction to LTE-Advanced,

http://www.cse.wustl.edu/~jain/cse574-16/j 17lta.htm





Introduction to 5G,

http://www.cse.wustl.edu/~jain/cse574-16/j 195g.htm

Low Power WAN Protocols for IoT,

http://www.cse.wustl.edu/~jain/cse574-16/j 14ahl.htm





Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

@2016 Pai Jair