<section-header>Wireless Protocols for IoT Part III:
ZigBeeOutputOutputOutputOutputVireles ColspanOutputVireles ColspanOutputVireles ColspanVireles Colspan="2">Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"Vireles Colspan="2"<td colspan="2"

- 1. ZigBee Features, Versions, Device Types, Topologies
- 2. ZigBee Protocol Architecture
- 3. ZigBee Application, ZigBee Application Support Layer
- 4. Network Layer, Routing: AODV, DSR
- 5. ZigBee Smart Energy V2

Note: This is the 3rd lecture in series of class lectures on IoT. Bluetooth, Bluetooth Smart, IEEE 802.15.4 were covered in the previous lectures..

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

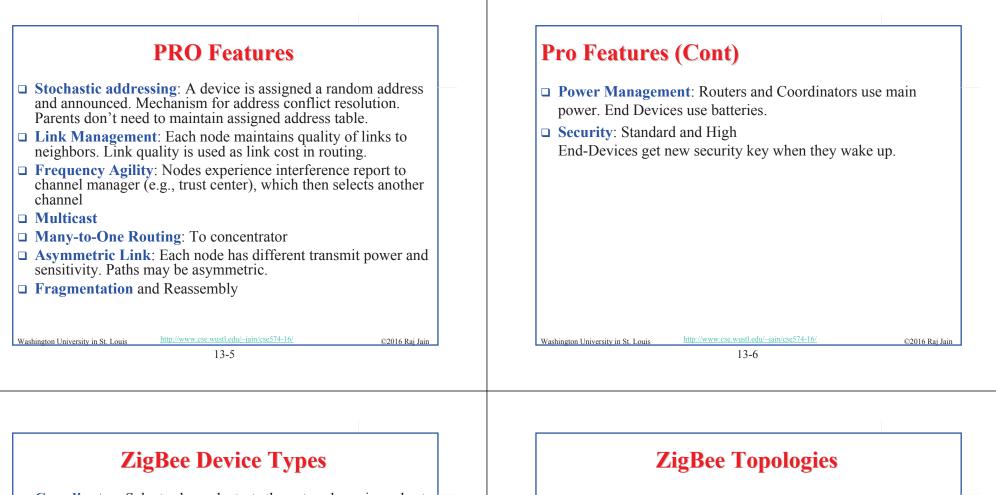
©2016 Raj Jain

ZigBee Overview

- Industrial monitoring and control applications requiring small amounts of data, turned off most of the time (<1% duty cycle), e.g., wireless light switches, meter reading, patient monitoring
- □ Ultra-low power, low-data rate, multi-year battery life
- □ Power management to ensure low power consumption.
- □ Less Complex. 32kB protocol stack vs 250kB for Bluetooth
- **Range**: 1 to 100 m, up to 65000 nodes.
- **Tri-Band**:
 - > 16 Channels at 250 kbps in 2.4GHz ISM
 - > 10 Channels at 40 kb/s in 915 MHz ISM band
 - > One Channel at 20 kb/s in European 868 MHz band

13-3

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/


4-16/

©2016 Raj Jair

ZigBee Overview (Cont)

 IEEE 802.15.4 MAC and PHY. Higher layer and interoperability by ZigBee Alliance
 Up to 254 devices or <u>64516</u> simpler nodes
 Named after zigzag dance of the honeybees Direction of the dance indicates the location of food
 Multi-hop ad-hoc mesh network
 Multi-Hop Routing: message to non-adjacent nodes
 Ad-hoc Topology: No fixed topology. Nodes discover each other
 Mesh Routing: End-nodes help route messages for others
 Mesh Topology: Loops possible

Ref: ZigBee Alliance, http://www.ZigBee.org Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

- **Coordinator**: Selects channel, starts the network, assigns short addresses to other nodes, transfers packets to/from other nodes
- **Router**: Transfers packets to/from other nodes
- **Full-Function Device**: Capable of being coordinator or router
- **Reduced-Function Device**: Not capable of being a coordinator or a router \triangleright Leaf node
- □ ZigBee Trust Center (ZTC): Provides security keys and authentication
- □ ZigBee Gateway: Connects to other networks, e.g., WiFi

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jair

13-8

Cluster Tree

E

E

Mesh

E

Self-Healing

©2016 Rai Jair

E

Tree

E

Star

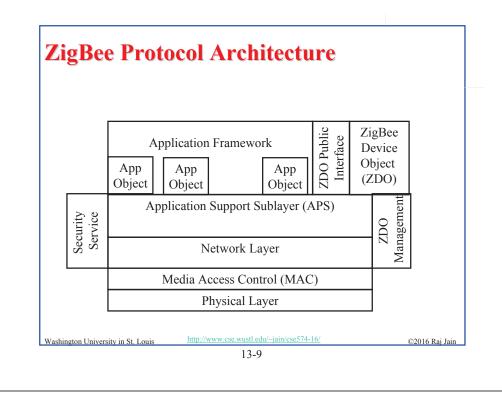
E

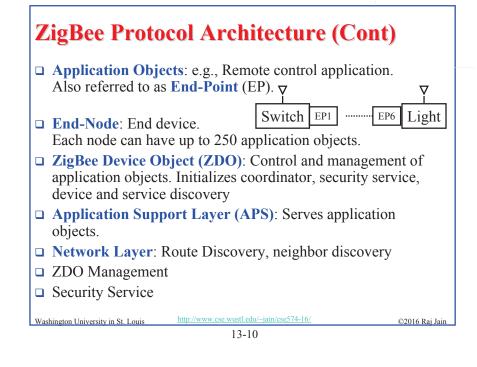
Ē

Router

Washington University in St. Loui

Coordinator


End-Device


E

E

E

E

ZigBee Application Layer

- Application layer consists of application objects (aka end points) and ZigBee device objects (ZDOs)
- □ 256 End Point Addresses:
 - > 240 application objects: Address EP1 through EP240
 - > ZDO is EP0
 - > End Points 241-254 are reserved
 - > EP255 is broadcast
- Each End Point has one application profile, e.g., light on/off profile
- □ ZigBee forum has defined a number of profiles. Users can develop other profiles
- □ Attributes: Each profile requires a number of data items. Each data item is called an "attribute" and is assigned an 16-bit "attribute ID" by ZigBee forum

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jair

ZigBee Application Layer (Cont)

- □ **Clusters**: A collection of attributes and commands on them. Each cluster is represented by a 16-bit ID. Commands could be read/write requests or read/write responses
- Cluster Library: A collection of clusters. ZigBee forum has defined a number of cluster libraries, e.g., General cluster library contains on/off, level control, alarms, etc.
- **Binding**: Process of establishing a logical relationship (parent, child, ...)

ZDO:

- > Uses device and service discovery commands to discover details about other devices.
- > Uses binding commands to bind and unbind end points.
- Uses network management commands for network discover, route discovery, link quality indication, join/leave requests

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

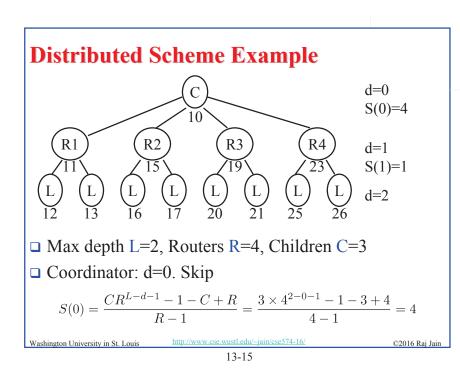
ZigBee Application Profiles

- □ Smart Energy: Electrical, Gas, Water Meter reading
- **Commercial Building Automation:** Smoke Detectors, lights,
- □ **Home Automation**: Remote control lighting, heating, doors, ...
- **Personal, Home, and Hospital Care (PHHC)**: Monitor blood pressure, heart rate, ...
- **Telecom Applications**: Mobile phones
- **Remote Control for Consumer Electronics**: In collaboration with Radio Frequency for Consumer Electronics (RF4CE) alliance
- □ Industrial Process Monitoring and Control: temperature, pressure, position (RFID), ...
- □ Many others

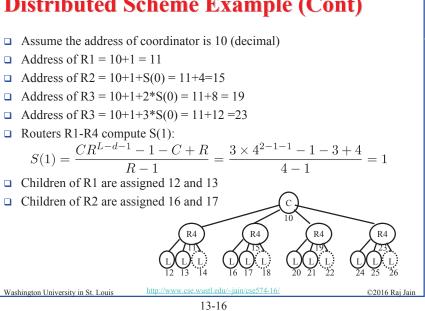
Ref: A. Elahi and A. Gschwender, "ZigBee Wireless Sensor and Control Network," Prentice Hall, 2009, 288 pp., ISBN:0137134851, Safari Book http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Rai Jain

13-13

ZigBee Address Assignment


□ Each node gets a unique 16-bit address

Washing


- □ Two Schemes: Distributed and Stochastic
- Distributed Scheme: Good for tree structure
 - > Each child is allocated a sub-range of addresses.
 - > Need to limit maximum depth L, Maximum number of children per parent C, and Maximum number of routers R
 - > Address of the n^{th} child is parent+(n-1)S(d)

$$S(d) = \begin{cases} 1 + C(L-d) & \text{if } R = 1\\ \frac{CR^{L-d-1} - 1 - C + R}{R-1} & \text{if } R > 1 \end{cases}$$
on University in St. Louis http://www.cse.wustl.edu/-jain/cse574-16/ C2016 Raj Jain

13-14

Distributed Scheme Example (Cont)

Stochastic Address Assignment

- □ Parent draws a 16 bit random number between 0 and 2^{16} -1 and assigns it to a new child. A new number is drawn if the result is all-zero (null) or all-one (broadcast). So the assigned address is between 1 and $2^{16}-2$
- □ Parent then advertises the number to the network
- □ If another node has that address an address conflict message is returned and the parent draws another number and repeats
- □ There is no need to pre-limit # of children or depth

shington University in St. Louis	http://www.cse.wustl.edu/~jain/cse574-16/
	13 17

Was

13-17

©2016 Rai Jain

ZigBee Routing

- Ad-Hoc On-Demand Distance Vector (AODV) 1.
- Dynamic Source Routing (DSR) 2.
- Tree Hierarchical Routing 3
- Many-to-one routing 4

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/ 13-18

©2016 Rai Jair

AODV

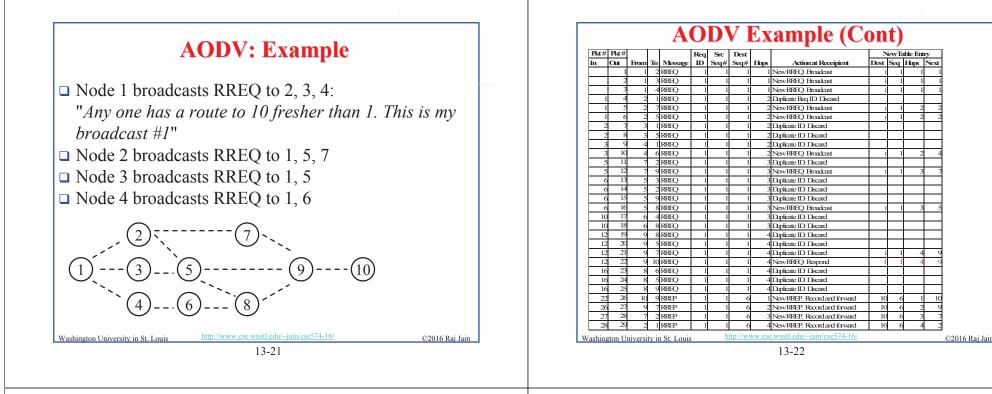
- □ Ad-hoc On-demand Distance Vector Routing
- \Box On-demand \Rightarrow Reactive \Rightarrow Construct a route when needed
- **Routing Table**: Path is not stored. Only next hop.
 - > Entry = <destination, next node, "sequence #" (timestamp)>
- □ Route Discovery: Flood a route request (RREO) to all neighbors. Neighbors broadcast to their neighbors

Src Reg Dest Src Dest Hop Addr ID Addr Seg # Seg # Count

□ Request ID is the RREQ serial number. Used to discard duplicates.

Source sequence # is a clock counter incremented when RREQ is sent.

Destination sequence # is the most recent sequence from the destination that the source has seen. Zero if unknown.

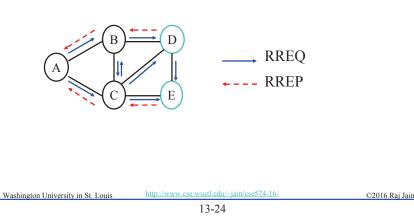

Ref: K. Garg, "Mobile Computing: Theory and Practice," Pearson, 2010, ISBN: 81-3173-166-9, 232 pp., Safari Book. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Rai Jain

AODV (Cont)

- □ Intermediate nodes can reply to RREQ only if they have a route to destination with higher destination sequence #
- □ *Route reply* (**RREP**) comes back "unicast" on the reverse path

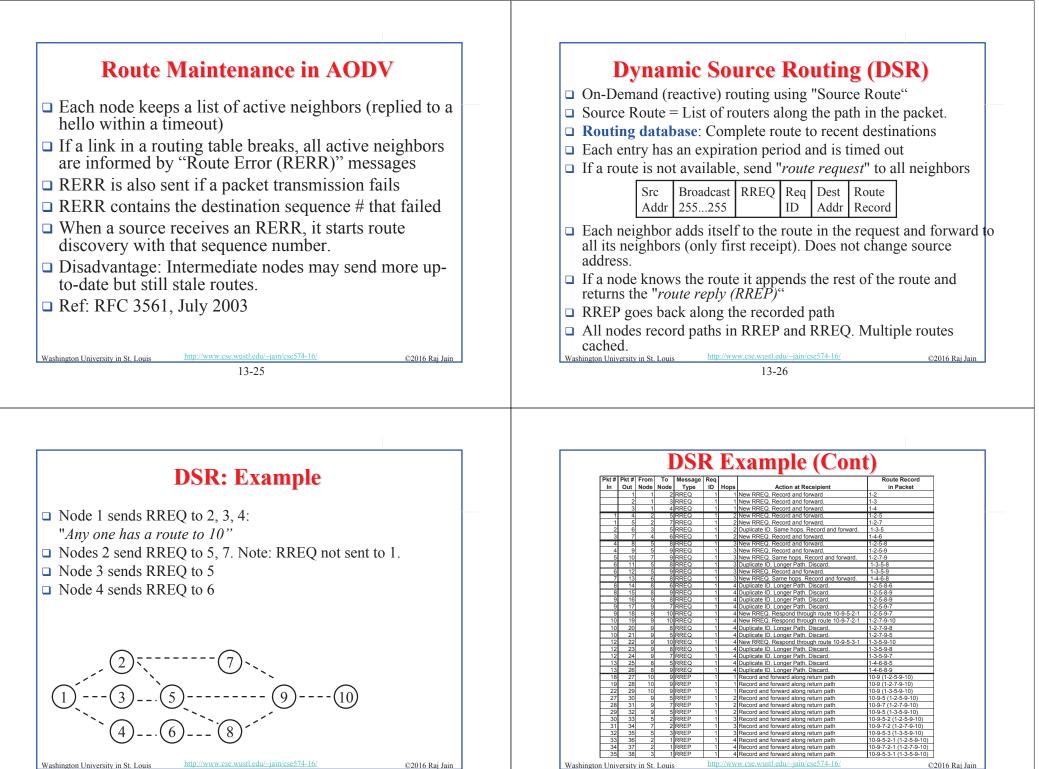
Src	Dest	Dest	Нор	Life
Addr	Addr	Seq #	Count	Time

- □ Destination Sequence # is from Destination's counter Lifetime indicates how long the route is valid
- □ Intermediate nodes record node from both RREP and RREQ if it has a lower cost path \Rightarrow the reverse path
- □ Backward route to Destination is recorded if sequence number is higher or if sequence number is same and hops are lower
- Old entries are timed out
- □ AODV supports only symmetric links



Multicast Route Discovery

- □ Similar to unicast route discovery
- If a node receives an RREQ but is not a member of the group or does not have the route to any member of the group, it creates a reverse-route entry and broadcasts the request to other neighbors
- If the node is a member of the group, it sends a RREP message to the source and forwards to other neighbors. Intermediate nodes make a note of this and set up a forward path


Multicast Discovery Example

- D and E are members. B and C are not.
- □ A concludes that the paths are ABD and ACE

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jair

©2016 Rai Jair

Route Maintenance in DSR

- □ If a transmission fails, route error (RERR) is sent to the source. It contains hosts at both ends of the link.
- □ Intermediate nodes remove or truncate all routes with that link.
- □ Source may re-initate the route discovery.
- Caching multiple routes results in a faster recovery but the routes may be stale resulting in cache poisoning at other nodes.
- □ Not suitable for high-mobility environments.
- □ Source-route overhead in each packet.
- □ Ref: RFC 4728, February 2007

shington University in St. Louis	http://www.cse

Wa

wustl.edu/~jain/cse574-16/

©2016 Rai Jair

©2016 Rai Jai

Tree Hierarchical Routing

- □ All leaf nodes send the packet to their parent
- Each parent checks the address to see if it is in its subrange.
 - > If yes, it sends to the appropriate child.
 - > If not, it sends to its parent

 $R4 \rightarrow A30$

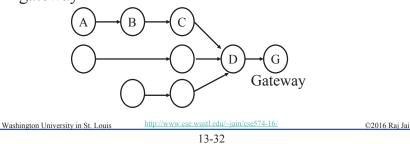
ashington University in St. Loui

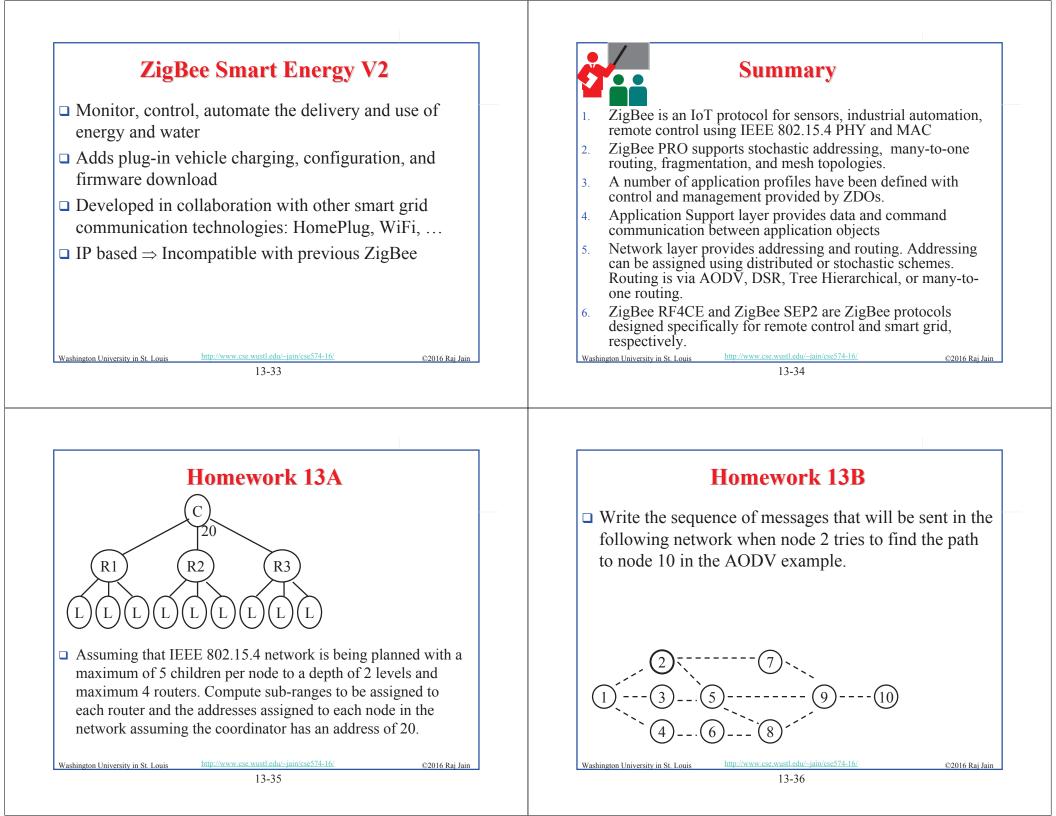
 $\square \text{ Example: A12 to A30. A12} \rightarrow \text{R1} \rightarrow \text{Coordinator} \rightarrow \\$

13-31

AODV vs. DSR

- In DSR a single RREQ can result in routes to several destination
- □ In DSR RERR messages are sent to the source not broadcast
 - \Rightarrow Many nodes are unaware of failure
- □ In DSR, route discovery is delayed until all cached entries have been tried ⇒ Not good for high mobility


Feature	DSR	AODV
Routing Table	Route	Next Hop
Packet	Route	No route
Replies	Multiple	First only
Route	Fast	Slow
Deletion	Local	Global


K. Garg, "Mobile Computing: Theory and Practice," Pearson, 2010, ISBN: 81-3173-166-9, 232 pp., Safari Book. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jair

13-30

Many-to-One Routing

- Used for sensor data collection. All data goes to a concentrator or a gateway
- Gateway has a large memory and can hold complete routes to all nodes
- But each node only remembers the next hop towards gateway

Homework 13C **Reading List** □ A. Elahi and A. Gschwender, "ZigBee Wireless Sensor and Control □ Write the sequence of messages that will be sent in the Network," Prentice Hall, 2009, 288 pp., ISBN:0137134851, Safari Book, following network when node 2 tries to find the path Chapters 2, 5, 6, 9 □ K. Garg, "Mobile Computing: Theory and Practice," Pearson, 2010, ISBN: to node 10 in the DSR example. 81-3173-166-9, 232 pp., Safari Book, Sections 6.5-6.7 □ R. Jain, "Networking Protocols for Internet of Things," (6LowPAN and RPL)," http://www.cse.wustl.edu/~jain/cse570-13/m_19lpn.htm 10http://www.cse.wustl.edu/~jain/cse574-16/ http://www.cse.wustl.edu/~jain/cse574-16/ ngton University in St. Loui ©2016 Rai Jair Washington University in St. Louis ©2016 Rai Jain 13-37 13-38 **Related Wikipedia Pages** References D. A. Gratton, "The Handbook of Personal Area Networking □ http://en.wikipedia.org/wiki/ZigBee Technologies and Protocols," Cambridge University Press, 2013, 424 pp., □ http://en.wikipedia.org/wiki/ZigBee specification ISBN:9780521197267, Safar Book. O. Hersent, et al., "The Internet of Things: Key Applications and □ http://en.wikipedia.org/wiki/Ad hoc On-2. Protocols," Wiley, 2012, 370 pp., ISBN:9781119994350, Safari Book. Demand Distance Vector Routing N. Hunn, "Essentials of Short Range Wireless," Cambridge University 3 □ http://en.wikipedia.org/wiki/Dvnamic Source Routing Press, 2010, 344 pp., ISBN:9780521760690, Safari book. D.Gislason, "ZigBee Wireless Networking," Newnes, 2008, 288 pp., 4. □ http://en.wikipedia.org/wiki/Source routing ISBN:07506-85972. Safari book. □ http://en.wikipedia.org/wiki/Loose Source Routing S. Farahani, "ZigBee Wireless Network and Transceivers," Newnes, 2008 5 J. Gutierrez, E. Gallaway, and R. Barrett, "Low-Rate Wireless Personnel 6 Area Networks," IEEE Press Publication, 2007 7. H. Labiod, H. Afifi, C. De Santis, "Wi-Fi, Bluetooth, ZigBee and WiMax," Springer, Jun 2007, 316 pp., ISBN:1402053967. I. Guvenc, et al., "Reliable Communications for Short-Range Wireless Systems," Cambridge University Press, March 2011, 426 pp., ISBN: 978-0-521-76317-2, Safari Book

Washington University in St. Louis http://www

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jair

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

13 - 40

©2016 Rai Jain

References (Cont)

- □ ZigBee Alliance Technical Documents, http://www.zigbee.org/Products/TechnicalDocumentsDownloa d/tabid/237/Default.aspx
- □ ZigBee Alliance Whitepapers, http://www.zigbee.org/LearnMore/WhitePapers/tabid/257/Defa ult.aspx
- □ ZigBee Alliance, ZigBee Specification Document 053474r17, 2008
- □ Daintree Network, "Comparing ZigBee Specification Versions," www.daintree.net/resources/spec-matrix.php
- "How Does ZigBee Compare with Other Wireless Standards?" www.stg.com/wireless/ZigBee-comp.html

Washington	University	in	St	Lou
w asinington	University		οι.	LOU

http://www.cse.wustl.edu/~jain/cse574-16/ 13-41

©2016 Rai Jain

References (Cont)

- □ ZigBee IEEE 802.15.4 Summary, http://www.eecs.berkeley.edu/~csinem/academic/publications/z igbee.pdf
- □ I., Poole, "What exactly is . . . ZigBee?", Volume 2, Issue 4, Pages: 44-45, IEEE Communications Engineer, 2004, http://ieeexplore.ieee.org/iel5/8515/29539/01340336.pdf?tp=& arnumber=1340336&isnumber=29539
- □ "ZigBee starts to buzz", Volume 50, Issue 11, Pages: 17-17, IEE Review, Nov. 2004 http://ieeexplore.ieee.org/iel5/2188/30357/01395370.pdf?tp=& arnumber=1395370&isnumber=30357
- □ C. Evans-Pughe, "Bzzzz zzz [ZigBee wireless standard]", Volume 49, Issue 3, Pages:28-31, IEE Review, March 2003
- □ Craig, William C. "ZigBee: Wireless Control That Simply Works," ZigBee Alliance, 2003

```
http://www.cse.wustl.edu/~jain/cse574-16/
Washington University in St. Louis
```

```
13-42
```

©2016 Raj Jain

Acronyms

	AIB	Application Information Base	
	AODV	Ad-Hoc On-Demand Distance Vector	
	APS	Application Support Sublayer	
	APSDE	Application Support Sublayer Data Entity	
	APSME	Application Support Sublayer Management Entity	
	CD	Compact Disc	
	CSMA/CA	Carrier Sense Multiple Access	
	DSR	Dynamic Source Routing	
	DVD	Digital Video Disc	
	EP	End Point	
	FCC	Federal Communications Commission	
	GHz	Giga Hertz	
	HDTV	High Definition Television	
	ID	Identifier	
	IEEE	Institution of Electrical and Electronic Engineers	
	IoT	Internet of Things	
Was	shington University in St		©2016 Raj Jain

Acronyms (Cont)

	IP	Internet Protocols	
	ISM	Instrumentation, Scientific, and Medical	
	kB	Kilo byte	
	MAC	Media Access Control	
	MHz	Mega Hertz	
	NIB	Network Layer Information Base	
	NLDE	Network Layer Data Entity	
	NLME	Network Layer Management Entity	
	NPDU	Network Protocol Data Unit	
	NPDU	Network Service Data Unit	
	OFDM	Orthogonal Frequency Division Multiplexing	
	PAN	Personal Area Network	
	РННС	Personal, Home, and Hospital Care	
	PHY	Physical Layer	
	RF4CE	Radio Frequency for Consumer Electronics	
	RFC	Request for Comment	
Was	shington University in St	t. Louis http://www.cse.wustl.edu/~jain/cse574-16/	©2016 Raj Jain
		13-44	

Acronyms (Cont)	Scan This to Get These Slides	
 RFID Radio Frequency ID RREP Route Reply RREQ Route Request TV Television UWB Ultra Wide-Band WiFi Wireless Fidelity WiMAX Worldwide Interoperability for Microwave Access WLAN Wireless Local Area Network WMAN Wireless Metropolitan Area Network WPAN Wireless Personal Area Network WWAN Wireless Wide Area Network ZDO ZigBee Device Object 		
Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse574-16/</u> ©2016 Raj Jain 13-45	Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse574-16/</u> ©20 13-46	016 Raj Jai
Related Modules Internet of Things, http://www.cse.wustl.edu/~jain/cse574-16/j_10iot.htm		
Wireless Protocols for IoT Part I: Bluetooth and Bluetooth Smart,		
http://www.cse.wustl.edu/~jain/cse574-16/j_11ble.htm		
http://www.cse.wustl.edu/~jain/cse5/4-16/j_11ble.htm Wireless Protocols for IoT Part II: IEEE 802.15.4, http://www.cse.wustl.edu/~jain/cse574-16/j_12wpn.htm		
Wireless Protocols for IoT Part II: IEEE 802 15 4		