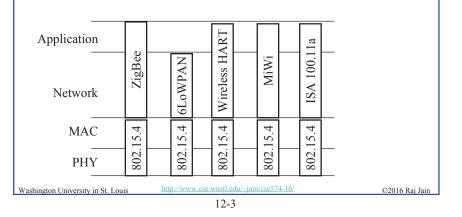
Wireless Protocols for IoT Part II: IEEE 802.15.4 Wireless Personal Area Networks

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: <u>http://www.cse.wustl.edu/~jain/cse574-16/</u>

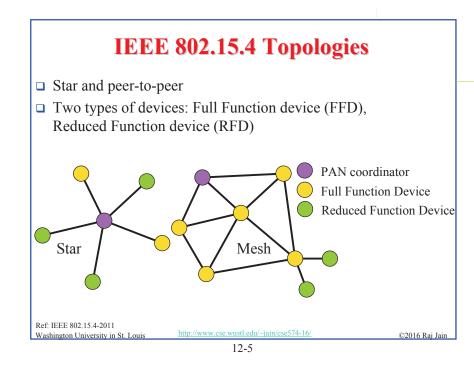

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/ 12-1 ©2016 Rai Jain

Overview Internet of Things and Wireless Protocols for IoT IEEE 802.15.4: Topologies, MAC, PHY 2. New PHY concepts: Offset-QPSK, Parallel Sequence Spread 3 Spectrum, Chirp Spread Spectrum, Ultra-Wideband IEEE 802.15.4e Enhancements 4. Note: This is the 3rd lecture in series of class lectures on IoT. Bluetooth and Bluetooth Smart are also used in IoT and were covered in the previous lectures. Future lectures will cover ZigBee and other protocols. http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Raj Jain 12 - 2

IEEE 802.15.4

 Used by several "Internet of Things" protocols: ZigBee, 6LowPAN, Wireless HART, MiWi, and ISA 100.11a



IEEE 802.15.4 Overview

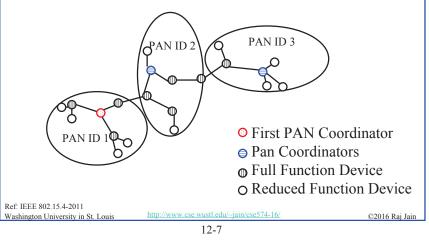
- Low Rate Wireless Personal Area Network (LR-WPAN)
- □ 2.4 GHz (most common). 16 5-MHz channels
- □ 250 kbps PHY \Rightarrow 50 kbps application data rate
- □ Peak current depends upon symbol rate ⇒ multilevel 4b/symbol)
- Similar to 802.11: Direct Sequence Spread Spectrum, CSMA/CA, Backoff, Beacon, Coordinator (similar to Access point)
- □ Lower rate, short distance \Rightarrow Lower power \Rightarrow Low energy
- □ Each node has a 64-bit Extended Unique ID (EUI-64):

U/MG/LOUI40 bits assigned by the manufacturer1b1b22b40b

No segmentation/reassembly. Max MAC frame size is 127 bytes with a payload of 77+ bytes.
Washington University in St. Louis
http://www.cse.wuld.edu/-jain/cse574-16/
C2016 Rai Jain

Coordinator

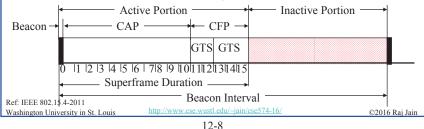
- □ FFDs can become coordinator and can also route messages to other nodes
- **□** RFDs cannot become coordinator and can only be a leaf
- □ FFD that starts a PAN becomes the coordinator
- □ In star topology, all communication is to/from the coordinator
- □ In P2P topology, FFDs can communicate directly also.
- Each piconet has a PAN ID and is called a **cluster**.
- □ Nodes join a cluster by sending association request to the coordinator. Coordinator assigns a 16-bit short address to the device. Devices can use either the short address or EUI-64 address

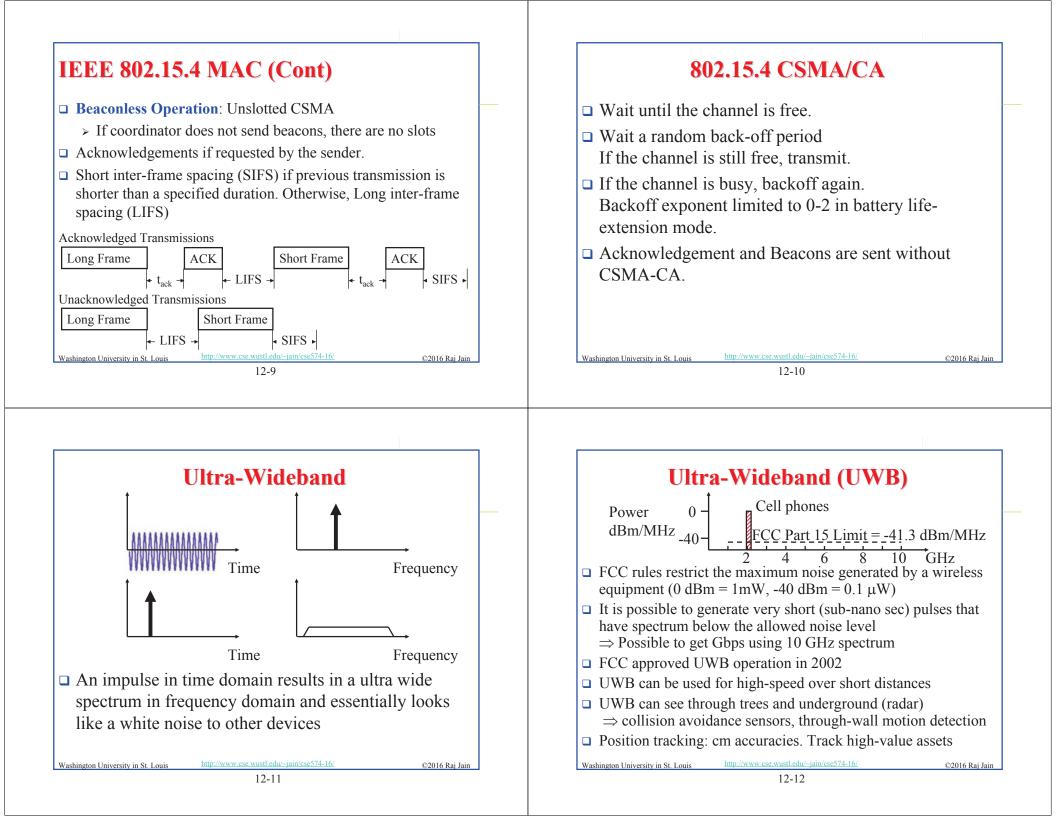

12-6

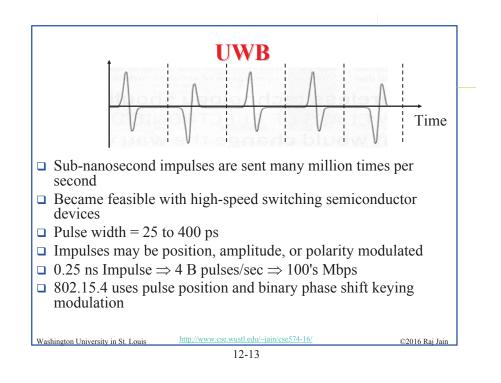
http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis

©2016 Rai Jain

Cluster Tree Network


□ A coordinator can ask another FFD to become a coordinator for a subset of nodes. Tree \Rightarrow No loops




IEEE 802.15.4 MAC

Beacon-Enabled CSMA/CA

- Coordinator sends out beacons periodically
- \square Part of the beacon interval is inactive \Rightarrow Everyone sleeps
- □ Active interval consists of 16 slots
- Guaranteed Transmission Services (GTS): For real-time services Periodic reserved slots
- □ Contention Access Period (CAP). Slotted CSMA.

Advantages of UWB □ Very low energy consumption: Good Watts/Mbps □ Line of sight not required. Passes through walls. □ Sub-centimeter resolution allows precise motion detection □ Pulse width much smaller than path delay \Rightarrow Easy to resolve multipath \Rightarrow Can use multipath to advantage □ Difficult to intercept (interfere) □ All digital logic \Rightarrow Low cost chips □ Small size: 4.5 mm² in 90 nm process for high data rate designs http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Rai Jair 12-14

Direct sequence (DS-UWB)

- Championed by Motorola/XtremeSpectrum
- □ Uses CDMA with multiple chips per bit
- □ Chips are encoded using pulse

Washington University in St. Louis

- \Box This is the scheme used in 802.15.4
- \Box Low power density \Rightarrow Good for body area network

IEEE 802.15.4e Enhancements

- □ Low latency deterministic operation: pre-assigned slots
- □ Channel adaptation: Different channels used by different nodes for contention free period
- □ Time slotted channel hopping: Higher layers coordinate the slot allocation along with its frequency. Good for harsh industrial environments.
- □ Each device can select its listening channel
- □ Transmitter and receiver coordinate their cycles (very low duty cycle)
- □ Transmit only when requested by receiver

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jai

http://www.cse.wustl.edu/~jain/cse574-16/ 12-15

©2016 Rai Jai

Summary	Reading List
 IoT fueled initially by smart grid is resulting in several competing protocols: Bluetooth Smart, ZigBee Smart, IEEE 802.15.4 is a low-data rate wireless personal area network and is the PHY and MAC layer used by many IoT protocols, such as ZigBee, and WirelessHART. 802.15.4 uses full function and reduced function devices. FFDs can act as coordinator. Allows a star, mesh, or a cluster tree topology. 	 A. Elahi and A. Gschwender, "ZigBee Wireless Sensor and Control Network," Prentice Hall, 2009, 288 pp., ISBN:0137134851, (Chapters 3 and 4) Safari Book. O. Hersent, et al., "The Internet of Things: Key Applications and Protocols," Wiley, 2012, 344 pp., ISBN:9781119994350, Safari book.
Uses Slotted/Unslotted CSMA/CA. Supports Guaranteed transmission services for low-latency application. UWB allows transmission with very low average power spread over a large band.	
/ashington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain 12-17	Washington University in St. Louis <u>http://www.cse.wustl.edu/~jain/cse574-16/</u> ©2016 Raj Jain 12-18
Wikipedia Pages	References
http://en.wikipedia.org/wiki/Internet_of_Things	 References J. T. Adams, "An introduction to IEEE STD 802.15.4" IEEEAC paper #1055, Dec 30, 2005, 8 pp., http://sonoma.edu/users/f//802_intro_01655947.pdf
http://en.wikipedia.org/wiki/Machine_to_machine http://en.wikipedia.org/wiki/Internet_of_Things http://en.wikipedia.org/wiki/IEEE_802.15.4 http://en.wikipedia.org/wiki/IEEE_802.15.4a http://en.wikipedia.org/wiki/IEEE_802.15	 J. T. Adams, "An introduction to IEEE STD 802.15.4" IEEEAC paper #1055, Dec 30, 2005, 8 pp., <u>http://sonoma.edu/users/f//802_intro_01655947.pdf</u> E. Karapistoli, et al., "An overview of the IEEE 802.15.4a Standard," IEEE Communications Magazine, January 2010, pp. 47-53, <u>http://www.ee.oulu.fi/~kk/dtsp/tutoriaalit/Karapistoli.pdf</u>
http://en.wikipedia.org/wiki/Machine_to_machine http://en.wikipedia.org/wiki/Internet_of_Things http://en.wikipedia.org/wiki/IEEE_802.15.4 http://en.wikipedia.org/wiki/IEEE_802.15 http://en.wikipedia.org/wiki/IEEE_802.15 http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_ avoidance	 J. T. Adams, "An introduction to IEEE STD 802.15.4" IEEEAC paper #1055, Dec 30, 2005, 8 pp., <u>http://sonoma.edu/users/f//802_intro_01655947.pdf</u> E. Karapistoli, et al., "An overview of the IEEE 802.15.4a Standard," IEEE Communications Magazine, January 2010, pp. 47-53, <u>http://www.ee.oulu.fi/~kk/dtsp/tutoriaalit/Karapistoli.pdf</u> D. Gratton, "The Handbook of Personal Area Networking Technologies and Protocols," Cambridge University Press, August 2013, 424 pp. ISBN: 978- 0-521-19726-7, Safari Book
http://en.wikipedia.org/wiki/Machine_to_machine http://en.wikipedia.org/wiki/Internet_of_Things http://en.wikipedia.org/wiki/IEEE_802.15.4 http://en.wikipedia.org/wiki/IEEE_802.15 http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Phase-shift_keying http://en.wikipedia.org/wiki/Chirp_spread_spectrum	 J. T. Adams, "An introduction to IEEE STD 802.15.4" IEEEAC paper #1055, Dec 30, 2005, 8 pp., http://sonoma.edu/users/f//802_intro_01655947.pdf E. Karapistoli, et al., "An overview of the IEEE 802.15.4a Standard," IEEE Communications Magazine, January 2010, pp. 47-53, http://www.ee.oulu.ft/~kk/dtsp/tutoriaalit/Karapistoli.pdf D. Gratton, "The Handbook of Personal Area Networking Technologies and Protocols," Cambridge University Press, August 2013, 424 pp. ISBN: 978- 0-521-19726-7, Safari Book I. Guvenc, et al., "Reliable Communications for Short-Range Wireless Systems," Cambridge University Press, March 2011, 426 pp., ISBN: 978-0- 521-76317-2, Safari Book
http://en.wikipedia.org/wiki/Machine_to_machine http://en.wikipedia.org/wiki/Internet_of_Things http://en.wikipedia.org/wiki/IEEE_802.15.4 http://en.wikipedia.org/wiki/IEEE_802.15 http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_ avoidance http://en.wikipedia.org/wiki/Phase-shift_keying http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Phase-shift_keying http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Pirsonal_area_network http://en.wikipedia.org/wiki/Piconet	 J. T. Adams, "An introduction to IEEE STD 802.15.4" IEEEAC paper #1055, Dec 30, 2005, 8 pp., http://sonoma.edu/users/f//802_intro_01655947.pdf E. Karapistoli, et al., "An overview of the IEEE 802.15.4a Standard," IEEE Communications Magazine, January 2010, pp. 47-53, http://www.ee.oulu.fi/~kk/dtsp/tutoriaalit/Karapistoli.pdf D. Gratton, "The Handbook of Personal Area Networking Technologies and Protocols," Cambridge University Press, August 2013, 424 pp. ISBN: 978- 0-521-19726-7, Safari Book I. Guvenc, et al., "Reliable Communications for Short-Range Wireless Systems," Cambridge University Press, March 2011, 426 pp., ISBN: 978-0- 521-76317-2, Safari Book D. Raychaudhuri and M. Gerla, "Emerging Wireless Technologies and the Future Mobile Internet," Cambridge University Press, March 2011, 330 pp., ISBN: 978-0-521-11646-6, Safari Book
http://en.wikipedia.org/wiki/Machine_to_machine http://en.wikipedia.org/wiki/Internet_of_Things http://en.wikipedia.org/wiki/IEEE_802.15.4 http://en.wikipedia.org/wiki/IEEE_802.15 http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Carrier_sense_multiple_access_with_collision_ avoidance http://en.wikipedia.org/wiki/Phase-shift_keying http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Phase-shift_keying http://en.wikipedia.org/wiki/Chirp_spread_spectrum http://en.wikipedia.org/wiki/Chirp_spread_spectrum	 J. T. Adams, "An introduction to IEEE STD 802.15.4" IEEEAC paper #1055, Dec 30, 2005, 8 pp., http://sonoma.edu/users/f//802_intro_01655947.pdf E. Karapistoli, et al., "An overview of the IEEE 802.15.4a Standard," IEEE Communications Magazine, January 2010, pp. 47-53, http://www.ee.oulu.fi/~kk/dtsp/tutoriaalit/Karapistoli.pdf D. Gratton, "The Handbook of Personal Area Networking Technologies and Protocols," Cambridge University Press, August 2013, 424 pp. ISBN: 978- 0-521-19726-7, Safari Book I. Guvenc, et al., "Reliable Communications for Short-Range Wireless Systems," Cambridge University Press, March 2011, 426 pp., ISBN: 978-0- 521-76317-2, Safari Book D. Raychaudhuri and M. Gerla, "Emerging Wireless Technologies and the Future Mobile Internet," Cambridge University Press, March 2011, 330 pp.,

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><page-footer><page-footer>

Acronyms (Cont)

	DIMO	Davias Language Massage Specification	
	DENIS	Device Language Message Specification	
	DQPSK	Differential Quadrature Phase-shift keying	
	DSME	Deterministic and Synchronous Multi-Channel Exte	ension
	DSSS	Direct Sequence Spread Spectrum	
	ETSI	European Telecommunications Standards Institute	
	EUI-64	Extended Unique Identifier	
	FCC	Federal Communications Commission	
	FFD	Full Function device	
	FSK	Frequency Shift Keying	
	GFSK	Gaussian Frequency-Shift Keying	
	GHz	Giga Hertz	
	GTS	Guaranteed Transmission Services	
	HART	Highway Addressable Remote Transducer Protocol	
	ID	Identifier	
	IEEE	Institution of Electrical and Electronics Engineer	
	IoT	Internet of Things	
w	ashington University in S	t Louis http://www.cse.wustl.edu/~jain/cse574-16/	©2016 Raj Jain
	asington oniversity in 5	12.22	©2010 Kaj Jam

Acronyms

	6LowPAN	IPv6 over Low Power Personal Area Network			
	AMCA	Asynchronous Multi-Channel Adaptation			
	ANSI	American National Standards Institute			
	ANT	Name of a company			
	ASK	Amplitude Shift Keying			
	BPM	Burst Position Modulation			
	BPSK	Binary Phase Shift Keying			
	CDMA	Code Division Multiple Access			
	COSEM	Company Specification for Energy Metering			
	CPS	Cyber-Physical Systems			
	CRC	Cyclic Redundancy Check			
	CSL	Coordinated Sampled Listening			
	CSMA	Carrier Sense Multiple Access			
	CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance			
	CSS	Chirp Spread Spectrum			
	dBm	deci-Bell milli-Watt			
Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain			
12-22					

Acronyms (Cont)

	ISA	International Society of Automation				
	LECIM	Low energy critical infrastructure monitoring				
	LIFS	Long Inter-frame Spacing				
	LLDN	Low-Latency Deterministic Network				
	LR-WPAN	Low-Rate Wireless Personal Area Networks				
	MAC	Media Access Control				
	MHz	Mega Hertz				
	MPSK	m-ary Phase-Shift Keying				
	OFDM	Orthogonal Frequency Division Multiplexing				
	OUI	Organizatinally Unique Identifier				
	PAN	Personal Area Network				
	PCA	Priority Channel Access				
	PHY	Physical Layer				
	PLC	Powerline Communications				
	PPDU	Physical Layer Protocol Data Unit				
	PSSS	Parallel Sequence Spread Spectrum				
Was	hington University in St	Louis http://www.cse.wustl.edu/~jain/cse574-16/	©2016 Raj Jain			
12-24						

Scan This to Get These Slides **Acronyms (Cont)** QPSK Quadrature Phase Shift Keying □ RFD Reduced Function device □ RFID Radio Frequency Identifier □ RIT Receiver Initiated Transmission □ RPL Routing Protocol for Low Power and Lossy Networks □ RX Receiver □ SCADA Supervisory control and data acquisition Short inter-frame spacing □ SIFS Smart metering utility network □ SUN Time Slotted Channel Hopping □ TSCH **UWB** Ultra Wide Band □ WirelessHART Wireless Highway Addressable Remote Transducer Protocol Wireless Personal Area Network WPAN http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Rai Jair http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis Washington University in St. Louis 12-25 12-26

©2016 Raj Jain

Related Modules

Internet of Things, <u>http://www.cse.wustl.edu/~jain/cse574-16/j_10iot.htm</u>

Wireless Protocols for IoT Part I: Bluetooth and Bluetooth Smart, http://www.cse.wustl.edu/~jain/cse574-16/j_11ble.htm

Wireless Protocols for IoT Part III: ZigBee, http://www.cse.wustl.edu/~jain/cse574-16/j 13zgb.htm

Low Power WAN Protocols for IoT, http://www.cse.wustl.edu/~jain/cse574-16/j 14ahl.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures, <u>https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw</u> neton University in St. Louis <u>http://www.cse.wustl.edu/-jain/cse574-16/</u> ©2016 Raj Jain