Introduction to **Internet of Things**

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~iain/cse574-16/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

10 - 1

- 1. What are Things?
- Business Opportunities for IoT
- 3. IoT Research Challenges
- Recent Protocols for IoT
- Datalink Issues

Note: This is part 1 of a series of class lectures on IoT.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

10 - 2

What are Things?

- □ Thing = Not a computer
- Phone, watches, thermostats, cars, Electric Meters, sensors, clothing, band-aids, TV,...
- □ Anything, Anywhere, Anytime, Anyway, Anyhow (5 A's)

http://www.cse.wustl.edu/~jain/cse574-16

Internet of Things

- Less than 1% of things around us is connected. Refrigerator, car, washing machine, heater, a/c, garage door, should all be connected but are not
- □ From 10 Billion today to 50 Billion in 2020 Should include processes, data, things, and people.
- \$14 Trillion over 10 years ⇒ Third in the list of top 10 strategic technologies by Gartner (After Mobile devices, Mobile Apps, but before Clouds, ...)
- □ a.k.a. **Internet of Everything** by Cisco **Smarter Planet** by IBM

Ref: "Gartner Identifies Top 10 Strategic Technologies,"

http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html

Ref: J. Bradley, "The Internet of Everything: Creating Better Experiences in Unimaginable Ways," Nov 21, 2013,

©2016 Rai Jain

10 - 3

Sample IoT Applications

Smart Grid

Smart Health

Smart Home

Smart Cities

Smart Industries

Smart TV

Smart Watch

Smart Car Smart Kegs

http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis

©2016 Rai Jain

10-5

What's Smart?

- □ IoT = Instrument, Interconnect, Intelligently process (3 I's)
- \bigcirc Old: Smart = Can think \Rightarrow Can compute
- Now: Smart = Can find quickly, Can Delegate ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

Think

Communicate

http://www.cse.wustl.edu/~jain/cse574-16/

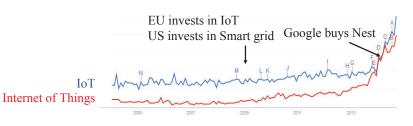
©2016 Raj Jain

Washington University in St. Louis

10-6

Why IoT Now?

- □ IoT = Sensing + Communication + Computation
- Micro-Sensors: Temperature, Moisture, Pressure, air quality,
- Tags: Radio Frequency Id (RFID), Quick Response (QR) Codes, ...
- Energy Efficient Communication: Small or no batteries, Personal area communication (PAN), Bluetooth, ZigBee, ...
- Micro-Computing: Micro multi-core chips, Raspberry Pi, Intel Galileo, Arduino, ...
- Cloud Computing: Little or no local computing
- Open/Small operating systems: Linux


Ref: CTIA, "Mobile Cyber security and the Internet of Things,"

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

Funding Washington University in St. Louis ©2016 Rai Jain

Google Trends

- □ Around for 10 years
- □ IERC-European Research Cluster on the Internet of Things funded under 7th Framework in 2009
 - ⇒ "Internet of European Things"
- □ US interest started in 2009 w \$4B funding for **smart grid** in American Recovery and Reinvestment Act of 2009

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-1

©2016 Rai Jain

10-9

Research Funding for IoT

- □ 70 M € in European Research program FP7
 - ⇒ Internet of European Things
- □ Networking and Information Technology Research and Development (NITRD)
 - > Group of 15 Federal agencies: NSF, NIH, NASA, DOE, DARPA, ONR, ...
 - > Recommends supplement to the president's annual budget
 - > CPS is one of the areas recommended by NITRD starting 2012 \Rightarrow Smart infrastructure
 - Smart Grid, Smart Bridges, Smart Cars, tele-operational surgical robots, Smart Buildings
- □ March 2014: £45M for IoT research in UK by David Cameron

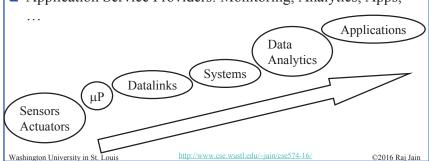
Ref: NITRD, http://www.nitrd.gov/ Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

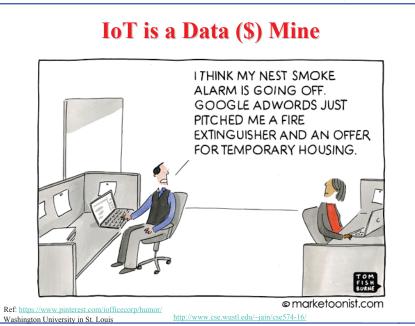
©2016 Rai Jain

10-10

Smart Grid


- □ \$4B funding in Economic Recovery Act
- Smart Grid can
 - > Identify surges, outages, and failure points
 - > Contain damage and reroute power around failure
 - > Accommodate new off-grid energy sources
 - > Load balance dynamically
 - > Be less vulnerable to accidental or malicious harms
- Meters that provide features needed for energy control
- Efficient cryptographic communication between substations and control centers
- Protocols for publishing/subscribing of system data

 Ref: Workshop on Future Directions in CPS Security, July 2009, http://www.ee.washington.edu/faculty/radha/dhs cps.pdf


 Washington University in St. Louis
 http://www.ese.wustl.edu/~jain/cse574-16/
 ©2016 Raj Jain

Business Opportunities

- □ Components: Sensors, wireless radios, protocols,
- □ Smart Objects: Smart TV, Camera, Watch, ...
- □ Systems: Buildings, Cars, Health, ...
- □ Network service providers: ISP
- □ Application Service Providers: Monitoring, Analytics, Apps,

10-11

10-13

Venture Activities in IoT

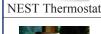
- \$1.1B invested in IoT startups by VCs in 153 deals in 2013
 - > Quantified Self: Know your body and mind
 - > Healthcare sensors: Wearable clock, sleep monitors
 - > Energy management
 - > Home Automation: Kitchenware, locks,
 - > Environmental monitoring: Air Quality sensors, personal weather stations
- □ January 2014: Google buys NEST for 3.3B
- May 2014: \$150M in VC investments in IoT by Cisco

Ref: http://www.cbinsights.com/blog/internet-of-things-investing-snapshot

©2016 Rai Jain

10-14

Recent IoT Products



Corventis: Wireless Cardiac Monitor

Tractive Pet Tracker

Revolve

Home Automation

WEMO Remote

ThingWorx Application Platform

Lings Cloud Platform

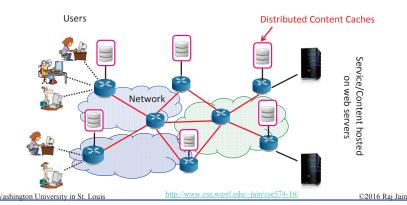
Ninja Blocks

Washington University in St. Louis

©2016 Rai Jain

IoT Research Challenges

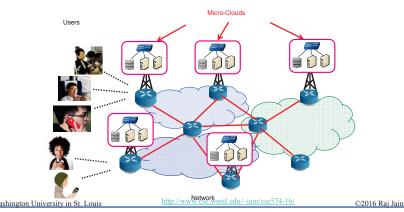
- Naming and Addressing: Advertising, Searching and Discovery
- Service Orchestration
- Power/Energy/Efficient resource management. Energy harvesting
- Things to Cloud: Computation and Communication Gateways
- Miniaturization: Sensors, CPU, network
- **Big Data Analytics**: 35 ZB of data \$2B in value by 2020
- Semantic technologies: Information and data models for interoperability
- **Virtualization**: Multiple sensors aggregated, or a sensor shared by multiple users
- 9. **Privacy/Security/**Trust/Identity/Anonymity Target Pregnancy Prediction
- 10. Heterogeneity/Dynamics/Scale


Washington University in St. Louis

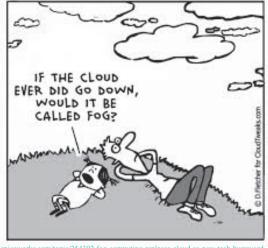
http://www.cse.wustl.edu/~jain/cse574-16/

http://www.cse.wustl.edu/~jain/cse574-16/

Past: Data in the Edge


☐ To serve world-wide users, latency was critical and so the data was replicated and brought to edge

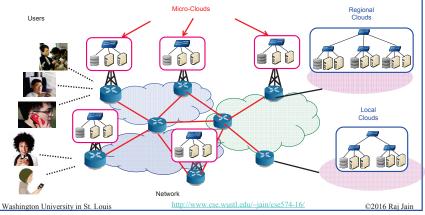
10-17


Trend 2: Computation in the Edge

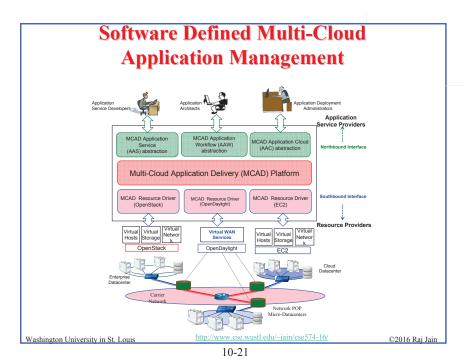
□ To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing, Fog Computing

10-18

Fog Computing



Ref: http://community.spiceworks.com/topic/254392-fog-computing-replaces-cloud-as-new-tech-buzzword Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/


©2016 Raj Jain

Trend 3: Multi-Cloud

□ Larger and infrequent jobs serviced by local and regional clouds ⇒ Fog Computing

10-19

Mobile Healthcare Use Case Medical Application Service Provider Home sensors for patient monitoring Multi-Cloud Mobile Application Deployment and Optimization **Platform** SDN Hospital Insurance (Controller Cloud Body Area Mobile 5G Carrier Network for Doctor mobile patient ©2016 Raj Jain 10-22

Legacy IoT Protocols

- □ **BACnet**: Building Automation and Control Network
- □ LonWorks: Local Operating Network (like BACnet)
- □ ModBus: Modicon (Schneider Electric)'s Serial Bus (www.modbus.org)
- □ KNX: Home and Building Automation Standard
- □ **Z-Wave**: Wireless Communication for Home Automation
- M-Bus: Bus for remote reading of gas and electric meters
- □ ANSI CI12.20: Electric Meter Accuracy and Performance
- □ **DLMS**: Device Language Message Specification
- □ **COSEM**: Company Specification for Energy Metering
- □ **DALI**: Digital Addressable Lighting Interface
- □ **EIB**: European Installation Bus
- □ Wireless Highway Addressable Remote Transducer Protocol (www.hartcomm.org)

Ref: IEC 61158: Fieldbus for use in industrial control systems, Part 1 to 6, 2008 http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis

©2016 Raj Jain

Recent Protocols for IoT

Session	MQTT, SMQTT, CoRE, DDS, AMQP, XMPP, CoAP, IEC,	Security	Management
Network	Encapsulation 6LowPAN, 6TiSCH, 6Lo, Thread Routing RPL, CORPL, CARP	IEEE 1888.3, TCG, Oath 2.0, SMACK,	IEEE 1905, IEEE 1451, IEEE 1377, IEEE P1828,
Datalink	WiFi, 802.11ah, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3G/LTE, NFC, Weightless, HomePlug GP, 802.15.4e, G.9959, WirelessHART, DASH7, ANT+, LTE-A, LoRaWAN, ISA100.11a, DigiMesh, WiMAX,	Rluetooth Low ZigBee Smart, LTE, NFC, Plug GP, 802.15.4e, HART, DASH7, oRaWAN,	
Washing	gton University in St. Louis http://www.cse.wustl.edu	/~jain/cse574-16/	©2016 Raj Jain

Washington University in St. Louis

10-24

Standardization

□ Almost every standards body is working on IoT:

> IEEE: 802.11, 802.15.4, HomePlug

> ZigBee Alliance: ZigBee Smart

> Bluetooth SIG: Bluetooth Smart

> IETF: RPL, 6LowPAN

> ITU:

> ETSI: DECT/ULE

> IPSO, ...

□ Seven organizations joined together to avoid duplication: ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC ⇒ oneM2M

Ref: http://www.onem2m.org Washington University in St. Lo

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

10-25

Datalink Issues

■ Energy efficiency

 \rightarrow Need to decrease energy/bit by a factor of 1000

> Energy/bit has gone down by a factor of 2 per year

> Either wait ten years or design better protocols

■ Small messages ⇒ Need low overhead

□ Limited computing ⇒ Light weight protocols ⇒ lightweight Encryption, authentication, security

□ Quality of Information (QoI)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

10-26

Power per MB

Туре	Bit rate	TX Power	mJoules/MB
802.11b	11Mb	50mW	36.4
802.11g	54Mb	50mW	7.4
802.11a	54Mb	200mW	29.6
802.15.1 Bluetooth	1Mb	1mW	8.0
802.15.3	55Mb	200uW	0.03

 Once connected, Bluetooth classic maintains connections even when there is no data. Low power but not low enough.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

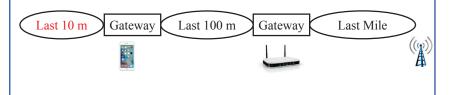
Networking Issues

- \square Large number \Rightarrow 32-bit or 48-bit addressing not sufficient
- □ 32-bit IPv4 addresses too small
- 48-bit IEEE 802 too small
- □ 128-bit IPv6 addresses too large. Tiny things do not have energy to transmit such large addresses.
- □ 16-bit local addresses and 64-bit global addresses
- □ 6LowPAN, 6-to-NonIP

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain


10-27

Last 100m Protocols

- ☐ The Last Mile: Mobile and Broadband Access revolution Smart Grid, Smart Cities, Smart Industries
- □ The last 100m: Smart home

Washington University in St. Louis

□ The last 10 meter: Smart Healthcare, Smart Wearable's

10-29

http://www.cse.wustl.edu/~jain/cse574-16/

Machines vs. Human

- □ IoT will enable machines to handle many tasks currently handled by humans ⇒ Comfort + Unemployment
- □ Gartner predicts that by 2018:
 - > 20% of business content authored by machines
 - > 6B support calls from connected things
 - Digital assistants will recognize individuals by faces and voice
 - > 3M (small) workers supervised by a "roboboss"
 - > 2M (small) employees will be required to wear health tracking devices
 - > 50% of fast growing companies will have fewer employees than smart machines

Ref: Gartner, "Top Strategic Predictions for 2016 and Beyond: The Future Is a Digital Thing," October 2015

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

10-30

Summary

- Less than 1% of things are connected
 ⇒ IoT is a big opportunity for academics and industry
- 2. Smart Grid and Energy management is leading the change.
- 3. Smartness comes from communication capability since the computation can be delegated
- Right at the knee: Academic and Startup Research opportunities in almost subfields of computing including hardware development, data analytics, security, and networking.
- 5. Cloud computing everywhere leads to fog computing and multi-cloud computing ⇒ AppFabric

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16

©2016 Raj Jain

Reading List

- □ Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, October 2012, 391 pp., ISBN:978-1-4398-9299-2 (Safari Book).
- Olivier Hersent; David Boswarthick; Omar Elloumi, "The Internet of Things: Key Applications and Protocols," John Wiley & Sons, February 1, 2012, 370 pp., ISBN:978-1-119-99435-0 (Safari Book).

Optional:

- □ Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything," Apress, January 2014, 192 pp., ISBN:1-4302-5740-7 (Safari Book).
- □ Hakima Chaouchi, "The Internet of Things: Connecting Objects," John Wiley & Sons, June 2010, 288 pp., ISBN:978-1-848-21140-7 (Safari Book).
- □ Nitesh Dhanjani, "Abusing the Internet of Things," O'Reilly Media, Inc., August 2015, 250 pp., ISBN:978-1-4919-0233-2 (Safari Book).

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jair

10-31

Wikipedia Links

- □ https://en.wikipedia.org/wiki/Fog_computing
- □ https://en.wikipedia.org/wiki/Industrial_Internet
- □ https://en.wikipedia.org/wiki/Internet of Things
- □ https://en.wikipedia.org/wiki/IPSO Alliance
- □ https://en.wikipedia.org/wiki/Machine_to_machine
- □ https://en.wikipedia.org/wiki/Multicloud
- □ https://en.wikipedia.org/wiki/Nearables
- □ https://en.wikipedia.org/wiki/Smart_device
- □ https://en.wikipedia.org/wiki/SmartThings
- https://en.wikipedia.org/wiki/Ubiquitous_computing
- https://en.wikipedia.org/wiki/Wearable_technology
- □ https://en.wikipedia.org/wiki/Web of Things

Washington University in St. Louis

□ DASH7

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

©2016 Rai Jain

10-33

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/ANT%2B
- □ http://en.wikipedia.org/wiki/Near_field_communication,
- □ http://en.wikipedia.org/wiki/Weightless_%28wireless_communications%29
- https://en.wikipedia.org/wiki/Highway_Addressable_Remote_ Transducer Protocol
- □ https://en.wikipedia.org/wiki/Li-Fi
- □ https://en.wikipedia.org/wiki/LoRaWAN
- □ https://en.wikipedia.org/wiki/Thread (network protocol)
- □ https://en.wikipedia.org/wiki/Weightless_(wireless_communications)

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

10-34

Acronyms

6LowPAN	IPv6 over Low Powered Personal Area Network
ACM	Automatic Computing Machinery Association
AMQP	Advanced Message Queueing Protocol
ANSI	American National Standards Institute
ANT	A proprietary open access multicast wireless sensor network
ANT+	Interoperability function added to ANT
API	Application Programming Interface
ARIB	Association of Radio Industries and Businesses (Japan)
BACnet	Building Automation and Control Network
CI12.20	ANSI Standard for Electric Meter Accuracy and Performance
CoAP	Constrained Application Protocol
COSEM	Company Specification for Energy Metering
CPS	Cyber Physical Systems
CPU	Central Processing Unit
CTIA	Cellular Telecommunication Industries Association
DARPA	Defense Advance Research Project Agency

Acronyms (Cont)

	DECT	Digital Enhanced Cordless Communication
	DLMS	Device Language Message Specification
	DoE	Department of Energy
	EC2	Elastic Compute Cloud 2 (by Amazon)
	ETSI	European Telecommunications Standards Institute
	EU	European Union
	FP7	Framework Program 7
	GP	GreenPHY
	GreenPHY	Green Physical Layer
	HomePlug-Gl	P HomePlug Green PHY
	IEEE	Institute for Electrical and Electronic Engineers
	IERC	IoT-European Research Cluster
	IETF	Internet Engineering Task Force
	iOS	iPhone Operating System

□ IoT Internet of Things□ IP Internet Protocol

/ashington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

10-36

©2016 Raj Jain

10-35

ISO 18000-7 RFID standard for sensor networks

Acronyms (Cont)

	IPSO	IP for Smart Objects
	IPv4	Internet Protocol version 4
	IPv6	Internet Protocol version 6
	ISP	Internet Service Provider
	ITU	International Telecommunications Union
	KNX	Building automation protocol
	MB	Mega-byte
	MCAD	Multi-Cloud Application Deployment Platform
	MQTT	Message Queue Telemetry Transport
	NASA	National Aeronautical and Space Administration
	NEST	Name of a product
	NFC	Near field communication
	NIH	National Institute of Health
	NITRD	Networking and Info Tech Research and Development
	NonIP	Non-Internet Protocol
	NSF	National Science Foundation
Was	shington University in S	t. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain

10-37

Acronyms (Cont)

	OAuth	Open Authorization protocol from IETF
	oneM2M	One Machine to Machine
	ONR	Office of Naval Research
	PAN	Personal area network
	PIN	Personal Identification Number
	PLC	Power Line Communication
	PoP	Point of Presence
	QoI	Quality of information
	QR	Quick Response
	RFID	Radio Frequency Identifier
	RPL	Routing Protocol for Low Power and Lossy Networks
	SDN	Software Defined Networking
	SIG	Special Interest Group
	TLV	Type-Length-Value
	TV	Television
	UK	United Kingdom
Wa	shington University in S	t, Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jain

10-38

Acronyms (Cont)

ULE	Ultra Low Energy
US	United States
VC	Venture Capital
WAN	Wide Area Network
WiFi	Wireless Fidelity

□ XML eXtensible Markup Language

□ ZB Ziga-Byte

Scan This to Get These Slides

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

©2016 Raj Jain

Related Modules

Introduction to Vehicular Wireless Networks, http://www.cse.wustl.edu/~jain/cse574-16/j 08vwn.htm

Introduction to 5G,

http://www.cse.wustl.edu/~jain/cse574-16/j 195g.htm

Wireless Protocols for IoT Part III: ZigBee,

http://www.cse.wustl.edu/~jain/cse574-16/j_13zgb.htm

Low Power WAN Protocols for IoT,

http://www.cse.wustl.edu/~jain/cse574-16/j 14ahl.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Vashington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain