

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides and audio/video recordings of this class lecture are at: <u>http://www.cse.wustl.edu/~jain/cse574-16/</u>

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

- 1. What are Things?
- 2. Business Opportunities for IoT
- 3. IoT Research Challenges
- 4. Recent Protocols for IoT
- 5. Datalink Issues

Note: This is part 1 of a series of class lectures on IoT.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

What are Things?

- $\Box Thing = Not a computer$
- Phone, watches, thermostats, cars, Electric Meters, sensors, clothing, band-aids, TV,...
- □ Anything, Anywhere, Anytime, Anyway, Anyhow (5 A's)

 Ref: http://blog.smartthings.com/iot101/iot-adding-value-to-peoples-lives/

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse574-16/

Internet of Things

- Less than 1% of things around us is connected.
 Refrigerator, car, washing machine, heater, a/c, garage door, should all be connected but are not.
- From 10 Billion today to 50 Billion in 2020
 Should include processes, data, things, and people.
- \$14 Trillion over 10 years
 ⇒ Third in the list of top 10 strategic technologies by Gartner (After Mobile devices, Mobile Apps, but before Clouds, ...)
- a.k.a. Internet of Everything by Cisco
 Smarter Planet by IBM

 http://www.cioinsight.com/it-news-trends/gartner-identifies-top-10-strategic-technologies.html

 Ref: J. Bradley, "The Internet of Everything: Creating Better Experiences in Unimaginable Ways," Nov 21, 2013,

 http://blogs.cisco.com/ioe/the-internet-of-everything-creating-better-experiences-in-unimaginable-ways/#more-131793

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse574-16/

Ref: "Gartner Identifies Top 10 Strategic Technologies,"

¹⁰⁻⁵

What's Smart?

- □ IoT = Instrument, Interconnect, Intelligently process (3 I's)
- □ Old: Smart = Can think \Rightarrow Can compute
- Now: Smart = Can find quickly, Can Delegate
 ⇒ Communicate = Networking
- Smart Grid, Smart Meters, Smart Cars, Smart homes, Smart Cities, Smart Factories, Smart Smoke Detectors, ...

Why IoT Now?

- □ IoT = Sensing + Communication + Computation
- 1. Micro-Sensors: Temperature, Moisture, Pressure, air quality, ...
- 2. Tags: Radio Frequency Id (RFID), Quick Response (QR) Codes, ...
- 3. Energy Efficient Communication: Small or no batteries, Personal area communication (PAN), Bluetooth, ZigBee, ...
- 4. Micro-Computing: Micro multi-core chips, Raspberry Pi, Intel Galileo, Arduino, ...
- 5. Cloud Computing: Little or no local computing
- 6. Open/Small operating systems: Linux

Ref: CTIA, "Mobile Cyber security and the Internet of Things,"http://www.ctia.org/docs/default-source/default-document-library/ctia-iot-white-paper.pdfWashington University in St. Louishttp://www.cse.wustl.edu/~jain/cse574-16/

Tunded under / III Framework in 2

 \Rightarrow "Internet of European Things"

□ US interest started in 2009 w \$4B funding for smart grid in American Recovery and Reinvestment Act of 2009

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Research Funding for IoT

- 70 M € in European Research program FP7
 ⇒ Internet of European Things
- Networking and Information Technology Research and Development (NITRD)
 - Group of 15 Federal agencies: NSF, NIH, NASA, DOE, DARPA, ONR, …
 - Recommends supplement to the president's annual budget
 - ▷ CPS is one of the areas recommended by NITRD starting 2012 ⇒ Smart infrastructure
 - Smart Grid, Smart Bridges, Smart Cars, tele-operational surgical robots, Smart Buildings

□ March 2014: £45M for IoT research in UK by David Cameron

Smart Grid

- □ \$4B funding in Economic Recovery Act
- □ Smart Grid can
 - > Identify surges, outages, and failure points
 - Contain damage and reroute power around failure
 - > Accommodate new off-grid energy sources
 - Load balance dynamically
 - > Be less vulnerable to accidental or malicious harms
- □ Meters that provide features needed for energy control
- Efficient cryptographic communication between substations and control centers
- Protocols for publishing/subscribing of system data

Ref: Workshop on Future Directions in CPS Security, July 2009, http://www.ee.washington.edu/faculty/radha/dhs_cps.pdfWashington University in St. Louishttp://www.cse.wustl.edu/~jain/cse574-16/

Business Opportunities

- Components: Sensors, wireless radios, protocols,
- □ Smart Objects: Smart TV, Camera, Watch, ...
- □ Systems: Buildings, Cars, Health, ...
- □ Network service providers: ISP
- □ Application Service Providers: Monitoring, Analytics, Apps,

10-12

Venture Activities in IoT

- □ \$1.1B invested in IoT startups by VCs in 153 deals in 2013
 - > Quantified Self: Know your body and mind
 - > Healthcare sensors: Wearable clock, sleep monitors
 - Energy management
 - > Home Automation: Kitchenware, locks,
 - Environmental monitoring: Air Quality sensors, personal weather stations
- □ January 2014: Google buys NEST for 3.3B
- □ May 2014: \$150M in VC investments in IoT by Cisco

Ref: <a href: http://www.cbinsights.com/blog/internet-of-things-investing-snapshot/

 <a href: http://www.zdnet.com/cisco-invests-150m-in-internet-of-things-startups-7000028964/

 Washington University in St. Louis
 http://www.cse.wustl.edu/~jain/cse574-16/

IoT Research Challenges

- 1. Naming and Addressing: Advertising, Searching and Discovery
- 2. Service Orchestration
- 3. Power/Energy/Efficient resource management. Energy harvesting
- 4. Things to Cloud: Computation and Communication Gateways
- 5. Miniaturization: Sensors, CPU, network
- 6. **Big Data Analytics**: 35 ZB of data \$2B in value by 2020
- 7. Semantic technologies: Information and data models for interoperability
- 8. Virtualization: Multiple sensors aggregated, or a sensor shared by multiple users
- 9. **Privacy/Security**/Trust/Identity/Anonymity Target Pregnancy Prediction
- 10. Heterogeneity/Dynamics/Scale

Past: Data in the Edge

To serve world-wide users, latency was critical and so the data was replicated and brought to edge

Trend 2: Computation in the Edge

□ To service mobile users/IoT, the computation needs to come to edge ⇒ Mobile Edge Computing, Fog Computing

Trend 3: Multi-Cloud Larger and infrequent jobs serviced by local and regional clouds \Rightarrow Fog Computing **Micro-Clouds** Regional Clouds Users Local Clouds Network http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Raj Jain

10-20

Software Defined Multi-Cloud Application Management

10-22

Legacy IoT Protocols

- **BACnet**: Building Automation and Control Network
- □ LonWorks: Local Operating Network (like BACnet)
- □ ModBus: Modicon (Schneider Electric)'s Serial Bus (<u>www.modbus.org</u>)
- **KNX**: Home and Building Automation Standard
- **Z-Wave**: Wireless Communication for Home Automation
- □ **M-Bus**: Bus for remote reading of gas and electric meters
- □ ANSI CI12.20: Electric Meter Accuracy and Performance
- **DLMS**: Device Language Message Specification
- **COSEM**: Company Specification for Energy Metering
- **DALI**: Digital Addressable Lighting Interface
- **EIB**: European Installation Bus
- WirelessHART: Wireless Highway Addressable Remote Transducer Protocol (<u>www.hartcomm.org</u>)

 Ref: IEC 61158: Fieldbus for use in industrial control systems, Part 1 to 6, 2008

 Washington University in St. Louis

 http://www.cse.wustl.edu/~jain/cse574-16/

Recent Protocols for IoT

Session	MQTT, SMQTT, CoRE, DDS, AMQP , XMPP, CoAP, IEC,	Security	Management	
Network	Encapsulation 6LowPAN, 6TiSCH, 6Lo, Thread Routing RPL, CORPL, CARP	IEEE 1888.3, TCG, Oath 2.0, SMACK,	IEEE 1905, IEEE 1451, IEEE 1377, IEEE P1828,	
Datalink	WiFi, 802.11ah, Bluetooth Low Energy, Z-Wave, ZigBee Smart, DECT/ULE, 3G/LTE, NFC, Weightless, HomePlug GP, 802.15.4e, G.9959, WirelessHART, DASH7, ANT+, LTE-A, LoRaWAN, ISA100.11a, DigiMesh, WiMAX,	SASL, EDSA, ace, DTLS, Dice,	IEEE P1856	
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Jai				

Standardization

- □ Almost every standards body is working on IoT:
 - ▹ IEEE: 802.11, 802.15.4, HomePlug
 - > ZigBee Alliance: ZigBee Smart
 - > Bluetooth SIG: Bluetooth Smart
 - > IETF: RPL, 6LowPAN
 - > ITU:
 - > ETSI: DECT/ULE
 - > IPSO, ...
- □ Seven organizations joined together to avoid duplication: ARIB, ATIS, CCSA, ETSI, TIA, TTA, TTC \Rightarrow oneM2M

Datalink Issues

- Energy efficiency
 - > \Rightarrow Need to decrease energy/bit by a factor of 1000
 - Energy/bit has gone down by a factor of 2 per year
 - > Either wait ten years or design better protocols
- $\square Small messages \Rightarrow Need low overhead$
- □ Limited computing \Rightarrow Light weight protocols \Rightarrow lightweight Encryption, authentication, security
- Quality of Information (QoI)

Power per MB

Туре	Bit rate	TX Power	mJoules/MB
802.11b	11Mb	50mW	36.4
802.11g	54Mb	50mW	7.4
802.11a	54Mb	200mW	29.6
802.15.1 Bluetooth	1Mb	1mW	8.0
802.15.3	55Mb	200uW	0.03

 Once connected, Bluetooth classic maintains connections even when there is no data. Low power but not low enough.

Washington University in St. Louis

Networking Issues

- □ Large number \Rightarrow 32-bit or 48-bit addressing not sufficient
- □ 32-bit IPv4 addresses too small
- □ 48-bit IEEE 802 too small
- 128-bit IPv6 addresses too large. Tiny things do not have energy to transmit such large addresses.
- □ 16-bit local addresses and 64-bit global addresses
- □ 6LowPAN, 6-to-NonIP

Last 100m Protocols

- The Last Mile: Mobile and Broadband Access revolution Smart Grid, Smart Cities, Smart Industries
- □ The last 100m: Smart home
- □ The last 10 meter: Smart Healthcare, Smart Wearable's

Machines vs. Human

- □ IoT will enable machines to handle many tasks currently handled by humans ⇒ Comfort + Unemployment
- Gartner predicts that by 2018:
 - > 20% of business content authored by machines
 - > 6B support calls from connected things
 - Digital assistants will recognize individuals by faces and voice
 - > 3M (small) workers supervised by a "roboboss"
 - > 2M (small) employees will be required to wear health tracking devices
 - > 50% of fast growing companies will have fewer employees than smart machines

Ref: Gartner, "Top Strategic Predictions for 2016 and Beyond: The Future Is a Digital Thing," October 2015

Washington University in St. Louis

- 1. Less than 1% of things are connected \Rightarrow IoT is a big opportunity for academics and industry
- 2. Smart Grid and Energy management is leading the change.
- 3. Smartness comes from communication capability since the computation can be delegated
- 4. Right at the knee: Academic and Startup Research opportunities in almost subfields of computing including hardware development, data analytics, security, and networking.
- 5. Cloud computing everywhere leads to fog computing and multi-cloud computing \Rightarrow AppFabric

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Reading List

- Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective," CRC Press, October 2012, 391 pp., ISBN:978-1-4398-9299-2 (Safari Book).
- Olivier Hersent; David Boswarthick; Omar Elloumi, "The Internet of Things: Key Applications and Protocols," John Wiley & Sons, February 1, 2012, 370 pp., ISBN:978-1-119-99435-0 (Safari Book).

Optional:

- Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything," Apress, January 2014, 192 pp., ISBN:1-4302-5740-7 (Safari Book).
- Hakima Chaouchi, "The Internet of Things: Connecting Objects," John Wiley & Sons, June 2010, 288 pp., ISBN:978-1-848-21140-7 (Safari Book).
- □ Nitesh Dhanjani, "Abusing the Internet of Things," O'Reilly Media, Inc., August 2015, 250 pp., ISBN:978-1-4919-0233-2 (Safari Book).

Wikipedia Links

- □ <u>https://en.wikipedia.org/wiki/Fog_computing</u>
- □ <u>https://en.wikipedia.org/wiki/Industrial_Internet</u>
- https://en.wikipedia.org/wiki/Internet_of_Things
- □ <u>https://en.wikipedia.org/wiki/IPSO_Alliance</u>
- □ <u>https://en.wikipedia.org/wiki/Machine_to_machine</u>
- □ <u>https://en.wikipedia.org/wiki/Multicloud</u>
- □ <u>https://en.wikipedia.org/wiki/Nearables</u>
- □ <u>https://en.wikipedia.org/wiki/Smart_device</u>
- □ <u>https://en.wikipedia.org/wiki/SmartThings</u>
- □ <u>https://en.wikipedia.org/wiki/Ubiquitous_computing</u>
- □ <u>https://en.wikipedia.org/wiki/Wearable_technology</u>
- □ <u>https://en.wikipedia.org/wiki/Web_of_Things</u>

Wikipedia Links (Cont)

- □ http://en.wikipedia.org/wiki/ANT%2B
- http://en.wikipedia.org/wiki/Near_field_communication,
- http://en.wikipedia.org/wiki/Weightless_%28wireless_commun ications%29
- https://en.wikipedia.org/wiki/Highway_Addressable_Remote_ Transducer_Protocol
- □ https://en.wikipedia.org/wiki/Li-Fi
- □ https://en.wikipedia.org/wiki/LoRaWAN
- https://en.wikipedia.org/wiki/Thread_(network_protocol)
- https://en.wikipedia.org/wiki/Weightless_(wireless_communica_ tions)

Acronyms

- □ 6LowPAN IPv6 over Low Powered Personal Area Network
- ACM Automatic Computing Machinery Association
- AMQP Advanced Message Queueing Protocol
- ANSI American National Standards Institute
- □ ANT A proprietary open access multicast wireless sensor network
- □ ANT+ Interoperability function added to ANT
- □ API Application Programming Interface
- □ ARIB Association of Radio Industries and Businesses (Japan)
- BACnet Building Automation and Control Network
- □ CI12.20 ANSI Standard for Electric Meter Accuracy and Performance
- CoAP Constrained Application Protocol
- COSEM Company Specification for Energy Metering
- CPS Cyber Physical Systems
- CPU Central Processing Unit
- **CTIA** Cellular Telecommunication Industries Association
- **DARPA** Defense Advance Research Project Agency
- □ DASH7 ISO 18000-7 RFID standard for sensor networks

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

- DECT Digital Enhanced Cordless Communication
- DLMS Device Language Message Specification
- □ DoE Department of Energy
- □ EC2 Elastic Compute Cloud 2 (by Amazon)
- **ETSI** European Telecommunications Standards Institute
- □ EU European Union
- □ FP7 Framework Program 7
- GP GreenPHY
- GreenPHY Green Physical Layer
- □ HomePlug-GP HomePlug Green PHY
- □ IEEE Institute for Electrical and Electronic Engineers
- □ IERC IoT-European Research Cluster
- □ IETF Internet Engineering Task Force
- □ iOS iPhone Operating System
- □ IoT Internet of Things
- □ IP Internet Protocol

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

- □ IPSO IP for Smart Objects
- □ IPv4 Internet Protocol version 4
- □ IPv6 Internet Protocol version 6
- □ ISP Internet Service Provider
- ITU International Telecommunications Union
- □ KNX Building automation protocol
- □ MB Mega-byte
- MCAD Multi-Cloud Application Deployment Platform
- MQTT Message Queue Telemetry Transport
- NASA National Aeronautical and Space Administration
- □ NEST Name of a product
- □ NFC Near field communication
- NIH National Institute of Health
- □ NITRD Networking and Info Tech Research and Development
- NonIP Non-Internet Protocol
- □ NSF National Science Foundation

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

- OAuth Open Authorization protocol from IETF
- oneM2M One Machine to Machine
- ONROffice of Naval Research
- PAN Personal area network
- PIN Personal Identification Number
- PLC Power Line Communication
- PoP Point of Presence
- **Q**oI Quality of information
- QRQuick Response
- □ RFID Radio Frequency Identifier
- **RPL** Routing Protocol for Low Power and Lossy Networks
- □ SDN Software Defined Networking
- □ SIG Special Interest Group
- □ TLV Type-Length-Value
- **TV** Television
- □ UK United Kingdom

Washington University in St. Louis

- □ ULE Ultra Low Energy
- □ US United States
- □ VC Venture Capital
- □ WAN Wide Area Network
- □ WiFi Wireless Fidelity
- □ XML eXtensible Markup Language
 - ZB Ziga-Byte

Washington University in St. Louis

Scan This to Get These Slides

Washington University in St. Louis

Related Modules

Introduction to Vehicular Wireless Networks, http://www.cse.wustl.edu/~jain/cse574-16/j_08vwn.htm

Introduction to 5G,

http://www.cse.wustl.edu/~jain/cse574-16/j_195g.htm

Wireless Protocols for IoT Part III: ZigBee, http://www.cse.wustl.edu/~jain/cse574-16/j_13zgb.htm

Low Power WAN Protocols for IoT, http://www.cse.wustl.edu/~jain/cse574-16/j 14ahl.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

