Introduction to Vehicular Wireless Networks

Raj Jain

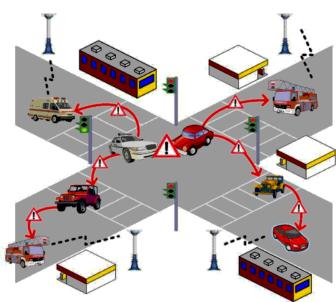
Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-16/

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse574-16/

- 1. Vehicular Ad-Hoc Networks (VANET):
 Architecture, Applications, Requirements, Routing
- Dedicated short Range Communication (DSRC) and Wireless Access for Vehicular Environment (WAVE)
 - > Spectrum
 - Protocol Components
 - > PHY, MAC
 - > Products

Vehicular Ad-Hoc Networks (VANET)

- Dynamic Topology with nodes moving at a fast speed
- □ More processing power, storage, and energy than handhelds
- Location based information: Accidents ahead
- Delay constraint
- Varying environments: City streets with tall buildings vs. open high-way roads
- Sensors: GPS, Speed, Proximity, engine sensor, etc.

Ref: Christoph Sommer, Falko Dressler, "Vehicular Networking," Cambridge Uni ISBN:978-1-107-04671-9 (Safari Book).


R. Aquino-Santos, A. Edwards, and V. Rangel-Licea, "Wireless Technologies in Vehicular Ad-Hoc Networks," IGI Global, Feb 2012, 382 pp., ISBN:1466602090 (Not a Safari Book).

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

VANET Architectures

- Vehicle to Infrastructure (V2I)
- □ Vehicle to Vehicle (V2V)
- Road-Side Unit (RSU)
- On-Board Unit (OBU)

Ref: R. Aquino-Santos, A. Edwards, and V. Rangel-Licea, "Wireless Technologies in Vehicular Ad-Hoc Networks," IGI Global, Feb 2012, 382 pp., ISBN:1466602090, Safari Book.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Applications

- □ **Infotainment**: Entertainment + Navigation + Telecom
 - > Minimize driver distraction: Bluetooth, Voice recognition
- □ Traffic Control: Reduce congestion and fuel consumption
 - > Highway advisory radio about congestion
 - > Warn before dangerous curves, road conditions
 - > Navigation based on congestion
- Safety: Car crashes are major cause of deaths of children aged 5 and above.
 - > Adaptive Cruise Control: Maintain a distance from vehicle ahead
 - > Forward Collision Warning: Warn and automatically activate brakes
 - > Speed Regulation: Maintain speed limit

Requirements

- □ Highly Critical Messages: Warnings about collision require low delay (20 ms), Electronic Toll collection (50 ms), roadside service locator (500 ms)
- □ Non-Critical: Video entertainment
- □ **Short Range**: <300 ft
- **□** Mobility
- Security: Denial of service, Impersonation, Privacy (location, ID, e-payment), tempering (change sensor readings)

Security Requirements

- □ Collaboration: Multi-hop communication
- Autonomy: Vehicles should be able to reject participation or a message
- **Authentication**: Originator and/or location
- Accountability: Messages that impact network functions should be audited. Deliberate disruption could be penalized.
- Privacy: Location, name of driver, vehicle type, etc should not be disclosed
- Availability: Vehicles should be usable even if the network is down

Routing Types

- □ Broadcast: Traffic, weather, emergency, road conditions, ...
- □ Geocast: Within an area. Accidents.
- □ **Forwarding**: Point-to-point via multi-hop
- Clustering: Within a specified group. Police, Fire, Safety,
- **Beaconing**: Periodic exchange of information. Receivers integrate received info with their own and beacon.
- Position Based: Geographical routing based on positions of routers
- **Delay-Tolerant**: Stored and forwarded when another car is seen.
- □ Ad-Hoc: Address based mobile ad-hoc network routing

VANET Technologies

□ Dedicated Short Range Communication (DSRC):

IEEE 802.11p, IEEE 1609.1-4 Up to 1km at 200 km/h

- WiMAX: Better for long distance. V2I
- □ **3G**: Seamless handoff, high latency
- Satellite: Ubiquitous. High Cost. Large propagation delay.

DSRC Spectrum

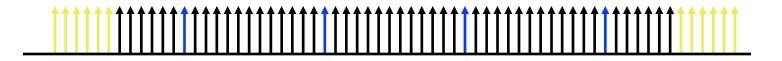
- Dedicated short-range communications (DSRC) band allocated by FCC: 5.850-5.925 GHz
- □ Seven 10 MHz channels in 5.9 GHz band
- □ Channel 178 used as Control Channel (CCH)
- □ Channels 174, 176, 180, 182 used as service channels (SCH)
- □ Channel 184 is reserved for future High Availability Low Latency (HALL)
- □ Channel 172 is unused
- □ Different EIRP for 4 Classes: OBU:33 dBm, RSU: 43dBm (Govt), 33 dBm (others)

Ref: Y. L. Morgan, "Notes on DSRC & WAVE Standards Suite: Its Architecture, Design and Characteristics," IEEE Communications Surveys and Tutorials, Vol 12, No. 4, 2010, pp. 504-518.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

DSRC Protocol Components


Data Plane Management Plane WAVE Short Message UDP/TCP WAVE Management Entity (WME) TCP not advised Protocol (WSMP) Service Entity (WSE) IEEE 1609 3/1609 4 **ASTM E17 51** IPv6 Only Logical Link Layer (LLC) **IEEE 802.2** MLME Extension WAVE MAC Layer IEEE IEEE 1609.4 IEEE 1609 3/1609 4 WAVE Security MAC Layer Management Entity (MLME) IEEE 802.11 Physical Layer WAVE PHY Layer Management Entity (PLME) IEEE 802.11p IEEE 802.11p http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis ©2016 Raj Jain

DSRC Protocol Components (Cont)

- Wireless Access for Vehicular Environment (WAVE)
- WAVE Short Message Service (WSMP): ASTM E17.51
 Packets contain Priority, data rate, and power (how far should it go). Developed by American Society for Testing and Materials (ASTM) E17.
- WAVE Management Entity (WME): IEEE 1609.3 and IEEE 1609.4
 Registers Priority, data rate, and power for different applications
- WAVE Security Entity (WSE): IEEE 1609.2
 Data Encryption and Key management

IEEE 802.11p PHY

- A Variation of IEEE 802.11a 5.8 GHz PHY
- OFDM with 64 subcarriers is used in 10 MHz
 - > 48 data, 4 pilots, and 12 guard subcarriers as in 802.11a
 - > Subcarrier spacing is half of that in 802.11a
 - > All time parameters are doubled
 - > Symbol size is twice of that in 802.11a
 - Guard Interval is also twice of that in 802.11a
 Allows larger multi-path delay spread
 - ➤ Data rate is half of that in 802.11a Þ 27 Mbps max

IEEE 802.11p PHY (Cont)

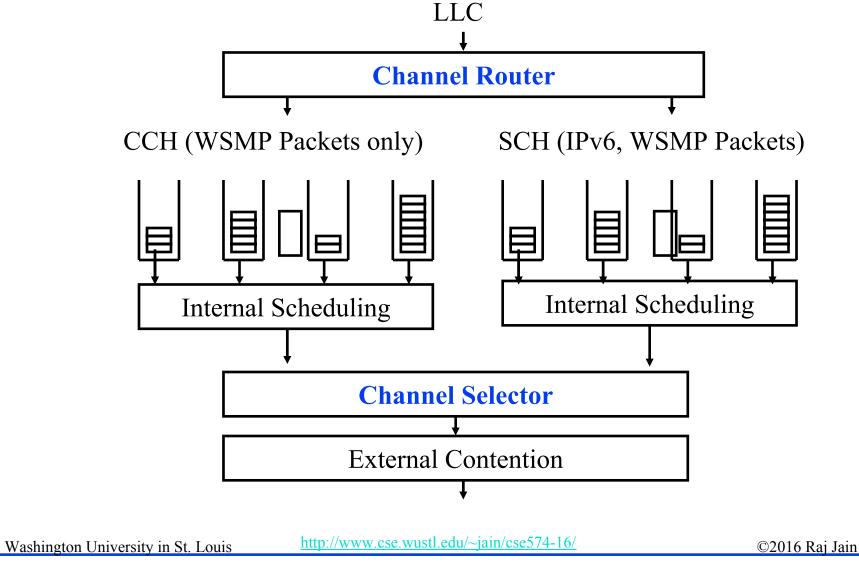
Parameter	IEEE 802.11a	IEEE 802.11p
Frequency Band	5.8 GHz	5.9 GHz
FFT Size	64	64
Number of Subcarriers	64	64
Data Subcarriers	48	48
Pilot Subcarriers	4	4
Channel Width	20 MHz	10 MHz
Symbol Duration	4 us	8 us
Guard Time	0.8 us	1.6 us
FFT Period	3.2 us	6.4 us
Preamble	16 us	32 us

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

DSRC Devices

- Two Channels: Control channel (CCH) for safety messages and network control. Service channel (SCH) for all other messages
- □ All devices use CCH and one or more SCH
- **☐** Two types of devices:
 - > Multi-Channel: Can use CCH and SCH continuously
 - Single Channel: Single Radio for both CCH and SCH
 Need time to switch between two channels
 Guard time between switching
- All devices must monitor CCH for a common CCH Interval All devices should synchronize clocks to UTC time Generally RSU's will have GPS clocks and transmit it in their beacons
- WAVE Basic Service Set (WBSS): Set of stations in one 802.11p network
- Neighboring WBSS use different Service Channels


Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

WAVE QoS

- Two types of traffic: IPv6 and WSM. No IPv4 because of address issues
- WSMP packets contain channel #, data rate, power level and priority
- □ IPv6 streams need to inform MLME about their profile that includes channel #, data rate, and power level
- □ IEEE 802.11e is extended to support 4 queues for each channel
- □ Channel Router: Directs the packet to the right channel and queue
- □ Channel Selector: Monitors channels and schedules transmission with the specified power and data rate

802.11p Channel Coordination Function

WBSS Formation

- Any WAVE device can start a WBSS when requested by an application.
- □ Provider: Device that starts WBSS (OBU or RSU). Generates announcements.
- □ Users: Devices that join WBSS
- □ Persistent WBSS: Announced every sync interval
- Non-Persistent WBSS: Short lived. Announced at formation only, e.g., to support on-demand file download
- Server applications register with WME with a Provider Service Identifier (PSID) like port numbers.
- □ A WBSS is initiated when first application registers.
- □ The Provider Service Table (PST) is broadcast periodically

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

WBSS Formation (Cont)

- □ User applications register their interests with their WME.
- WME monitors announcements and check to see if PST of a WBSS is of interest.
- WBSS are shutdown when there is no active application

Non-WBSS Communication

- □ Outside the context of a BSS (OCB) Mode:
 - > Stations do not have to be a member of a BSS to transmit
 - > A WAVE device can send a WSMP message to a broadcast address on CCH
 - Another WAVE device can respond to this WSMP message on the CCH
 - > No BSS advertisement or synchronization
 - > Timing Advertisements from provider: Default parameter values and a timestamp indicating local time
 - > Authentication handled by higher layers
- □ OCB stations use slightly higher AIFS than WBSS members.
- □ OCB stations use wild card in the BSS ID field in MAC frames

802.11p Products

- Arada Systems: OBU and RSU
- □ Cohda Wireless: WAVE-DSRC Radio
- NXP: Software Defined Radios for Cohda's radios
- Unex: OBUs
- Ittiam: HDL implementation (IP)
- Card Access Engineering: Product designs
- □ LITEPOINT: Test platform
- □ Rohde & Schwarz: Spectrum analyzers and signal generators

OBU

RSU

Radio

SDR+Radio

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Future

- □ DSRC is designed for short range communication
- □ Good for the city but long-range communication is also required on highways using cellular technology
- □ Will require multi-channel OBUs

Summary

- 1. VANETs have a dynamic topology, very tight delay constraint for critical messages. V2V and V2I Communication between RSU and OBU.
- 2. DSRC uses 10MHz Channels with OFDM in 5.9 GHz. CCH for Control and safety critical messages. SCH for all other messages.
- 3. ASTM started WAVE with WAVE Short message Service Protocol. IEEE 1609.1-4 standards extended 802.11 MAC management and security for DSRC.
- 4. IEEE 802.11p PHY **OFDM** is similar to 802.11a but with double symbols durations.
- 5. QoS similar to IEEE 802.11e but four queues for each channel.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Homework 8

	Your Name:		
1.	Broadcast within a limited area is	called	
2.	In in VANETs, receivers integrated their own		
	information and forward.		
3.	DSRC spectrum is in	GHz band.	
4.	DSRC spectrum is divided into	channels of	
	MHz each.		
5.	The middle channel is used as	channel while the two	
	channels on each side are used as	channels.	
6.	WAVE PHY layer is		
7.	DSRC allows only IP version	traffic.	
8.	DSRC PHY uses	data carriers in a	
	MHz band.		
9.	WAVE uses	QoS queues for each channel.	
10.	Any WAVE device can start a	and become a provider.	
Wasl	nington University in St. Louis http://www.cse.	wustl.edu/~jain/cse574-16/ ©2016 Raj Jain	

Reading List

- □ Christoph Sommer, Falko Dressler, "Vehicular Networking," Cambridge University Press, November 2014, 384 pp., ISBN:978-1-107-04671-9 (Safari Book).
- Karagiannis, G.; Altintas, O.; Ekici, E.; Heijenk, G.; Jarupan, B.; Lin, K.; Weil, T., "Vehicular Networking: A Survey and Tutorial on Requirements, Architectures, Challenges, Standards and Solutions," in *Communications Surveys & Tutorials, IEEE*, vol.13, no.4, pp.584-616, Fourth Quarter 2011, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5948952 (Must Read)

Wikipedia Links

- □ http://en.wikipedia.org/wiki/IEEE_802.11p
- http://en.wikipedia.org/wiki/Wireless Access for the Vehicular Environment
- □ http://en.wikipedia.org/wiki/Dedicated_short-range_communications
- □ <u>http://en.wikipedia.org/wiki/Vehicular ad hoc network</u>
- □ http://en.wikipedia.org/wiki/Intelligent vehicular ad-hoc network
- □ http://en.wikipedia.org/wiki/Vehicular communication systems
- http://en.wikipedia.org/wiki/Abiding Geocast / Stored Geocast
- □ http://en.wikipedia.org/wiki/Geocast
- □ http://en.wikipedia.org/wiki/Vehicle infrastructure integration

References

- Y. L. Morgan, "Notes on DSRC & WAVE Standards Suite: Its Architecture, Design and Characteristics," IEEE Communications Surveys and Tutorials, Vol 12, No. 4, 2010, pp. 504-518, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5462975
- R. Aquino-Santos, A. Edwards, and V. Rangel-Licea, "Wireless Technologies in Vehicular Ad-Hoc Networks," IGI Global, Feb 2012, 382 pp., ISBN:1466602090.
- Hadded, M.; Muhlethaler, P.; Laouiti, A.; Zagrouba, R.; Saidane, L.A., "TDMA-Based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis, and Open Research Issues," in Communications Surveys & Tutorials, IEEE, vol.17, no.4, pp.2461-2492, Fourth quarter 2015,
 - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7117340&isnumber=7331734
- Suthaputchakun, C.; Zhili Sun, "Routing protocol in intervehicle communication systems: a survey," in Communications Magazine, IEEE, vol.49, no.12, pp.150-156, December 2011, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6094020

References (Cont)

- Cailean, A.-M.; Cagneau, B.; Chassagne, L.; Popa, V.; Dimian, M., "A survey on the usage of DSRC and VLC in communication-based vehicle safety applications," in Communications and Vehicular Technology in the Benelux (SCVT), 2014 IEEE 21st Symposium on , vol., no., pp.69-74, 10-10 Nov. 2014,
 - http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7046710
- Araniti, G.; Campolo, C.; Condoluci, M.; Iera, A.; Molinaro, A., "LTE for vehicular networking: a survey," in Communications Magazine, IEEE, vol.51, no.5, pp.148-157, May 2013, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6515060
- □ ASTM, "ASTM E2213 03(2010) Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems 5 GHz Band Dedicated Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications," http://www.astm.org/Standards/E2213.htm Available for purchase.

References (Cont)

- □ IEEE, "IEEE standard 802.11p: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Amendment 6- Wireless access in vehicular environments," 2010, http://standards.ieee.org/getieee802/download/802.11p-2010.pdf
- □ IEEE P1609.1 SWG, "IEEE 1609.1 Trial-Use Standard for Wireless Access in Vehicular Environment (WAVE) Resource Manager," 2009
- □ IEEE P1609.2 SWG, "IEEE 1609.2 Trial Use Standard for Wireless Access in Vehicular Environments Security services for Applications and Management Messages," June 2009
- □ IEEE P1609.3 SWG, "IEEE 1609.3-2010: IEEE standard for wireless access in vehicular environments (WAVE) Networking services," 2010.
- □ IEEE P1609.4 SWG, "IEEE 1609.4-2010: IEEE standard for wireless access in vehicular environments (WAVE) Multi-channel operation," 2010.

Acronyms

☐ AIFS Arbitrated Inter-Frame Spacing

■ ASTM American Society for Testing and Materials

■ BPSK Binary Phase Shift Keying

□ BSS Basic Service Set

CCH Control Channel

dBm Decibel mill watt

DSRC Dedicated short-range communications

□ EIRP Equivalent Isotropically Radiated Power

■ FCC Federal Communications Commission

□ FFT Fast Fourier Transform

□ GHz Giga Hertz

□ GPS Global Positioning System

□ HALL High Availability Low Latency

□ HDL Hardware Description Language

■ ID Identifier

□ IEEE Institution for Electrical and Electronic Engineers

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Acronyms (Cont)

☐ IPv4 Internet Protocol version 4

☐ IPv6 Internet Protocol version 6

□ LAN Local Area Network

□ LLC Logical Link Control

MAC Media Access Control

MHz
Mega Hertz

MLME MAC Layer Management Entity

OBU On-board Unit

OCB Outside the context of a BSS

OFDM Orthogonal Frequency Division Multiplexing

PHY Physical Layer

□ PLCP Physical Layer Convergence Protocol

□ PLME Physical Layer Management Entity

PSID Provider Service Identifier

PST Provider Service Table

QoS Quality of Service

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Acronyms (Cont)

RSU Roadside Unit

□ SCH Service Channel

□ SDR Software Defined Radio

■ SWG Standards Working Group

TCP Transmission Control Protocol

□ UDP User Datagram Protocol

UTC Coordinated Universal Time

■ VANET Vehicular Ad-Hoc Networks

■ WAVE Wireless Access for Vehicular Environment

WBSS WAVE Basic Service Set

■ WME WAVE Management Entity

□ WSM WAVE Security Management Entity

■ WSMP WAVE Short Message Protocol

Scan This to Get These Slides

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Related Modules

Introduction to 5G,

http://www.cse.wustl.edu/~jain/cse574-16/j 195g.htm

Low Power WAN Protocols for IoT,

http://www.cse.wustl.edu/~jain/cse574-16/j_14ahl.htm

Introduction to 60 GHz millimeter Wave Gigabit Wireless Networks,

http://www.cse.wustl.edu/~jain/cse574-16/j 07sgh.htm

Internet of Things,

http://www.cse.wustl.edu/~jain/cse574-16/j 10iot.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/