Introduction to 60 GHz Millimeter Wave Multi-Gigabit Wireless Networks

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at: http://www.cse.wustl.edu/~jain/cse574-16/

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

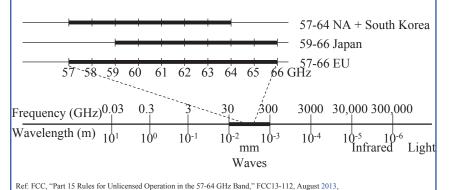
©2016 Raj Jain

©2016 Rai Jair

7-1

- 1. 60 GHz Frequency Allocations and characteristics
- 2. 60 GHz Wireless Standards
- 3. IEEE 802.11ad
- 4. WirelessHD
- 5. WirelessHD HRP OFDM Parameters

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Ja

7-2

60GHz Frequency Allocations

- □ 7-9 GHz in 57-66 GHz (**millimeter** waves 30GHz-300GHz)
- \Box 4 Channels of \sim 2 GHz
- □ Significant activity after FCC made 57-64 GHz license-exempt

60 GHz Power Limits

□ Equivalent Isotropically Radiated Power (EIRP):

Power that an isotropic antenna would have to emit to match the directional reception

Region	GHz	Transmit	EIRP	Antenna	
		dBm	dBm	Gain dBi	
US/Canada	7	27	43	33 if 10dBm	
				Transmit	
Japan	7	10	58	47	
Korea	7	10	27	17	
Australia	3.5	10	51.7	41.8	
Europe	9	13	57	30	

Ref: S. Yong, P. Xia, A. Valdes-Garcia, "60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice," Wiley, Aug. 2011, 296 pp., ISBN:0470747706, Safari Book Washington University in St. Louis

7-3

http://www.cse.wustl.edu/~jain/cse574-16/

Advantages of 60 GHz Band

- 1. Large spectrum: 7 GHz
 - > 7 Gbps requires only 1 b/Hz (BPSK ok).
 - Complex 256-OAM not needed
- **Small Antenna Separation:** 5 mm wavelength. /4=1.25 mm
- **Easy Beamforming**: Antenna arrays on a chip.
- Low Interference: Does not cross walls. Good for urban neighbors
- **Directional Antennas**: Spatial reuse is easy
- **Inherent security**: Difficult to intercept
- **Higher power transmission:**
 - FCC allows up to 27 dBm at 60 GHz but amplifiers difficult
 - 60 GHz: 10 dBm+30 dBi Antenna gain = 40 dBm EIRP
 - 802.11n: 22 dBm+3 dBi Antenna gain = 25 dBm EIRP

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Disadvantages of 60 GHz Band

- **Large Attenuation**: Attenuation / frequency²
 - Strong absorption by Oxygen
 - Need larger transmit power: 10W allowed in 60GHz
 - Need high antenna gain ⇒ directional antennas
 - Short Distance ~ 10m
- **Directional Deafness**: Can't hear unless aligned
 - Carrier sense not possible
 - RTS/CTS does not work
 - Multicast Difficult
- Easily Blocked: By a human/dog Need a relay

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Multi-Gigabit Wireless Applications

- □ Cable Replacement: High-Definition Uncompressed streaming video
- □ Interactive **gaming**
- ☐ High-speed file transfer
- □ Wireless Mesh Backhaul (200-400m)

60 GHz Wireless Standards

- **IEEE 802.11ad-2014**
- ECMA-387-2009 (European Computer Manufacturers Association). Second Edition 2010.
- IEEE 802.15.3c-2009
- WirelessHD 2010
- WiMAX 802.16-2001 used 10-66 GHz licensed bands for fixed broadband wireless access (WirelessMAN-SC) but was not widely deployed.
- ARIB STD-T69 (2005): Millimeter Wave Video Transmission Equipment for Specified Low Power Radio Stations. Association of Radio Industries and Business (ARIB), Japan
- ARIB STD-T74 (2005): Millimeter Wave Data Transmission Equipment for Specified Low Power Radio Stations (Ultra High-Speed Wireless LAN System)

Google Trends WirelessHD 802.15.3c ECMA 387 2005 2007 2009 2011 2013 2015

- □ Google trends shows number of searches over time
 - > No one is interested in ECMA 387 or 802.15.3c
 - > WirelessHD was hot in 2008-2009 but now being taken over by 802.11ad
- □ Google Search:
 - > 2-3 products on WiHD on Amazon
 - > 10-15 products on WiGig on Amazon

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

7-9

Sample 60 GHz Products

11n+WiGig Card for Latitude

Dell WiGig Docking Station

HP WiGig Docking Station

DVDO WirelessHD HDMI Cable Replacement Kit

Washington University in St. Louis

tp://www.cse.wustl.edu/~iain/cse574-16/

©2016 Rai Jair

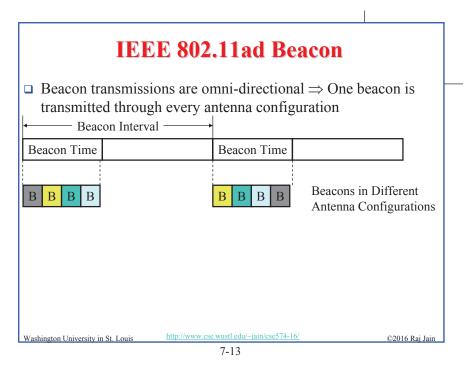
7-10

IEEE 802.11ad

- ☐ Personal Basic Service Set (PBSS):
 Group of stations that communicate
- □ PBSS Central Point (PCP) provides scheduling and timing using beacons
- □ Each super-frame called "Beacon Interval" is divided in to: Beacon Time (BT), Associating Beamforming Training (A-BFT), Announcement Time (AT), and Data Transfer Time (DTT)

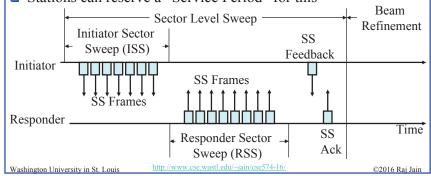
	◀		— Beacon Interv	val	
	Beacon Time	Associating Beam- Forming Time	Announcement Time	Data Transfer Time	
	$SP1 \dots SPn CBP1 \dots CBPm$				
V	Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/ ©2016 Raj Ja				

IEEE 802.11ad (Cont)


- □ Only PCP can send a beacon during beacon time
- □ In A-BFT, PCP performs antenna training with its members
- □ In AT, PCP polls members and receives non-data responses
- □ In DTT, all stations exchange data frames in a dedicated service period (SP) or by contention in contention-based period (CBP)
- □ During DTT, stations use either Distributed Coordination Function (DCF) or Hybrid Coordination Function (HCF)

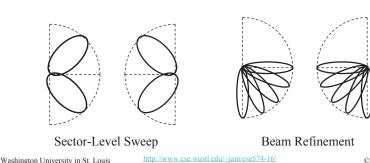
Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse574-10


©2016 Raj Jair

7-11

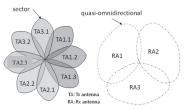
IEEE 802.11ad Antenna Training ■ Each station finds the optimal antenna configuration


- with its recipient using a two-stage search
- □ Sector Level Sweep (SLS): First it sends in all sectors and finds the optimal sector
- □ Beam Refinement Procedure (BRP): It searches through the optimal sector to find the optimal parameters in that sector
- Stations can reserve a "Service Period" for this

7-14

Antenna Alignment

- **Beam Search**: Binary search through sectors using beam steering
- □ **Beam Tracking**: Some bits are appended to each frame to ensure that the beams are still aligned.



http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

Antenna Training Example

- □ Initiator (left) has 3 antennas with 3, 3, 2 sectors. Responder (right) has 3 antennas with 1 sector each
- □ Initiator performs 3 sweeps with 8 frames each using a different sector. Responder sends feedbacks.
- They find the best receive antenna and the best transmit antenna.

Ref: A. Suarez Sarmiento and E. M. Lopez, "Multimedia Services and Streaming for Mobile Devices," IGI Global, Sep 2011,

http://www.cse.wustl.edu/~jain/cse574-16/ Washington University in St. Louis

IEEE 802.11ad PCP Cluster

- □ Overlapping PBSS avoid interference by electing a "Synchronization PCP" (S-PCP) for the PCP cluster
- □ All PCP's select the beacon interval to be an integral multiple of that selected by S-PCP
 - ⇒ Non-overlapping beacon transmit intervals
- □ All PCP allocate Service Periods in their schedule for BT of all other PCP's
 - ⇒ All PCP's hear all allocations
 - ⇒ Avoid overlapping scheduling

Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai J

7-17

Spatial Frequency Sharing (SFS)

- Multiple transmissions may be scheduled on the same frequency at the same time if they don't interfere
- PCP asks stations to send results of "Directional Channel Quality" during an overlapping SP. The stations measure the channel quality and send to PCP.

PCP then knows which station pairs can share the same slot.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Ia

7-18

IEEE 802.11ad Relays

- □ Link Switch Relays: MAC relays like a switch. Receive complete frames from the source and send to destination.
- □ Link Cooperation Relays: Phy relays like a hub. Amplify and forward (AF) or decode and forward (DF)
 - \Rightarrow Destination may receive direct signal and relayed signal
 - \Rightarrow Spatial diversity

802.11ad Summary

- 1. **Centralized** scheduling. Only **PCP** can send beacons. It sends beacons in all sectors.
- 2. Superframe (**Beacon Interval**) consists of Beacon Time, Associating Beamforming Training, Announcement Time, and Data Transfer Time
- 3. Announcement time is used for collecting requests
- 4. Data transfer can be pre-allocated or by contention
- 5. **Antenna training** is a 2-phase process. Sector selection and beam refinement.
- 6. Multiple transmission can take place on the same frequency at the same time (**Spatial Frequency Sharing**).
- 7. Relays can be used if LoS blocked.

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse574-16/

©2016 Raj Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jaii

7-19

WirelessHD

- 60 GHz wireless standard to connect television, displays to laptops, blu-ray players, DVRs, ...
- □ Designed for high-quality uncompressed video e.g., 2560×1440p, 60Hz, 36b color = 8.0 Gbps
- □ Lossless, 3D, 48b color, 240 Hz refresh, 4k (4048p) resolution video streaming from smart phones and tablets
- □ Wireless Video Area Network (WVAN): 10m+
- □ 4 Channels of 1.76 GHz each
- □ Very-high data rates (28 Gbps+) using spatial multiplexing (4 concurrent streams)
- □ Non-line of sight operation

Ref: WirelessHD.org, "WirelessHD Specification Overview,"

http://www.wirelesshd.org/pdfs/WirelessHD-Specification-Overview-v1.1May2010.pdf

Washington University in St. Louis http://www.cse.wusti.edu/~jain/cse574-

7-2.1

WirelessHD PHYs

- Three PHYs:
 - . **High-Rate PHY (HRP):** 1-7 Gbps for high-quality video
 - 2. **Medium-Rate PHY (MRP):** 0.5-2 Gbps for lower power mobile applications
 - 3. **Low-Rate PHY (LRP):** 2.5-40 Mbps for omnidirectional control and discovery, multicast, acks for HRP/MRP, antenna beam forming, capability exchange
- □ HRP/MRP (HMRP) and LRP use the same band: Use TDMA
- Peer-to-Peer \Rightarrow No access point (but need one coordinator)
- A device may have coordinator capability. |
 Generally displays and storage devices have this capability

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

7-22

WirelessHD MAC

- Two MAC capabilities:
 - Coordinator: Controls timing and keeps track of members of WVAN
 - 2. Other stations
- Everyone can transmit and receive LRP
- Some may be able to receive HMRP but may/may not be able to transmit HMRP
- Shutdown and sleep modes
- Channel estimation
- Higher Layer: Video format selection, video coding/encoding, service discovery, ...

Washington University in St. Louis

://www.cse.wustl.edu/~jain/cse574-16

©2016 Raj Jain

©2016 Raj Jair

WirelessHD HRP OFDM Parameters


Parameter	Value	Symbol
Occupied Bandwidth	1.76 GHz	
Subcarrier Spacing	4.957 MHz	Df_{sc}
Number of subcarriers	355	
FFT Size	512	
Number of Data Subcarriers	336	N _{dsc}
Number of DC Subcarriers	3	
Number of Pilots	16	
Number of Null subcarriers	157	
FFT Period	$1/Df_{sc} = 201.73 \text{ ns}$	T_{FFT}
Guard Interval	$T_{FFT}/8 = 25.22 \text{ ns}$	T_{GI}
Symbol Duration	$T_{FFT} + T_{GI} = 226.95 \text{ ns}$	$T_{\rm S}$
Modulation	QPSK, 16-QAM, 64-QAM	
Outer block code	RS(224, 216)	
Inner Code	1/3, 1/2, 2/3, 5/6 (EEP)	
	2/5, 1/2, 4/7, 2/3, 4/5 (UEP)	<u> </u>

Similar tables for LRP and MRP

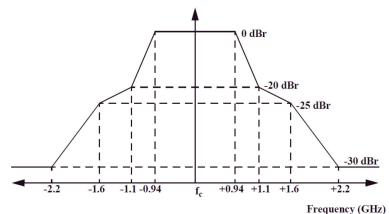
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

HRP OFDM Frequency Parameters

Parameter	Value	Symbol
Occupied Bandwidth	1.76 GHz	
Subcarrier Spacing	4.957 MHz	Df_{sc}
Number of subcarriers	355	
FFT Size	512	
Number of Data Subcarriers	336	N_{dsc}
Number of DC Subcarriers	3	
Number of Pilots	16	
Number of Null subcarriers	157	

□ Similar tables for MRP and LRP


Washington University in St. Louis

tp://www.cse.wustl.edu/~jain/cse574-16

©2016 Rai Jain

7-25

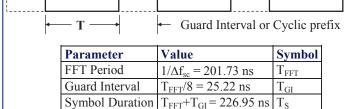
HRP Transmit Mask

Similar masks exist for LRP and MRP

 \Box dBr = deci-Bel relative

Ref. WirelessHD org. "WirelessHD Specification Overv

http://www.wirelesshd.org/pdfs/WirelessHD-Specification-Overview-v1.1May2010.pd


Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16

7-26

HRP OFDM Time Parameters

□ Symbol time = 1/subcarrier spacing = $1/\Delta f_{sc}$

Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-1

©2016 Raj Jain

HRP OFDM Coding Parameters

- \square Reed-Solomon Coding: RS(n,k) \Rightarrow Send n bits for k bits
- □ Equal Error Protection (EEP): All data bits and ECC bits are equally protected
- ☐ Unequal Error Protection (UEP): Bits are divided in subgroups. Each subgroup has a different protection level

Parameter	Value	Symbol
Modulation	QPSK, 16-QAM, 64-QAM	
Outer block code	RS(224, 216)	
Inner Code	1/3, 1/2, 2/3, 5/6 (EEP)	
	2/5, 1/2, 4/7, 2/3, 4/5 (UEP)	

Washington University in St. Louis

ttp://www.cse.wustl.edu/~jain/cse574-16

©2016 Raj Jain

©2016 Raj Jain

WirelessHD Summary

- 1. Designed for uncompressed video. Video Cable replacement.
- 2. Three PHYs: High-Rate (1-7 Gbps), Medium-Rate (0.5-2 Gbps), and Low-Rate(2.5-40 Mbps)
- 3. LRP is used for discovery, multicast
- 4. Centralized Access. Coordinator issues beacons and allocates reserved transmission slots
- 5. No access points. But some devices need **coordinator capabilities**.
- Random Access Time Blocks (RATBs) are used for unallocated transfers
- 7. Channel Time Blocks (CTBs) are used for pre-allocated transfers
- 8. Power save mode and device control commands in MAC

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jair

7-29

Summary

- 1. 60 GHz, a.k.a. mm wave, has large bandwidth, small antenna separation allows easy beamforming and gigabit speeds but short distance due to large attenuation
- 2. Tri-band Wireless LAN devices with 2.4 GHz, 5.8GHz, and 60GHz are coming
- 3. 802.11ad LAN uses a PBSS central control point (PCP)
- 4. WirelessHD was designed for HD video.
- In all cases antenna alignment and tracking is required.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jair

7-30

Homework 7

- A. What is the EIRP of a system that transmits 1 Watt using a 10 dBi antenna?
- B. An OFDM system has to be designed using 1GHz band with 5 MHz spacing. What is the number of:
 - > Used Subcarriers
 - > Size of FFT
 - > FFT duration
 - > Symbol duration assuming 1/4th cyclic prefix
 - ➤ Data bit rate using QPSK with RS(224, 216) coding with ¾ rate inner code. Assume 7/8th of the subcarriers are used for data transmission.

Washington University in St. Louis

ttp://www.cse.wustl.edu/~iain/cse574-16/

©2016 Raj Jain

Reading List

- □ S. Yong, P. Xia, A. Valdes-Garcia, "60 GHz Technology for Gbps WLAN and WPAN: From Theory to Practice," Wiley, Aug. 2011, 296 pp., ISBN:0470747706, Safari Book
- □ WirelessHD.org, "WirelessHD Specification Overview," http://www.wirelesshd.org/pdfs/WirelessHD-Specification-Overview-v1.1May2010.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jai

7-31

Wikipedia Links

- □ http://en.wikipedia.org/wiki/Wireless Gigabit Alliance
- □ http://en.wikipedia.org/wiki/WirelessHD
- □ http://en.wikipedia.org/wiki/Equivalent isotropically radiated power
- □ http://en.wikipedia.org/wiki/Extremely high frequency
- http://en.wikipedia.org/wiki/Frame aggregation
- □ http://en.wikipedia.org/wiki/Beamforming
- □ http://en.wikipedia.org/wiki/Phased array
- □ http://en.wikipedia.org/wiki/Antenna array (electromagnetic)
- http://en.wikipedia.org/wiki/Wireless USB
- □ http://en.wikipedia.org/wiki/MAC service data unit
- □ http://en.wikipedia.org/wiki/Protocol data unit
- □ http://en.wikipedia.org/wiki/Block acknowledgement

Washington University in St. Louis

©2016 Rai Jain

©2016 Rai Jain

http://www.cse.wustl.edu/~jain/cse574-16/ 7-33

References

- □ IEEE 802.11ad-2012, "IEEE Standard for Information Technology Telecommunications and Information Exchange Between Systems – Local and Metropolitan Area Networks – Specific Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band," 28 December 2012, 628 pp.
- □ FCC, "Part 15 Rules for Unlicensed Operation in the 57-64 GHz Band," FCC13-112, August 2013, http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-13-112A1.pdf
- □ IEEE 802.15.3c-2009, "IEEE Standard for Information Technology Telecommunications and Information Exchange Between Systems – Local and Metropolitan Area Networks – Specific Requirements, Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), Amendment 2: Millimeter-Wave-Based Alternative Physical Layer Extension," 12 October 2009, 203 pp.
- ECMA. "High Rate 60 GHz PHY. MAC and PALs." 2nd Edition. December 2010, 302pp. http://www.ecmainternational.org/publications/files/ECMA-ST/ECMA-387.pdf

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Raj Jain

7-34

References (Cont)

□ A. Suarez Sarmiento and E. M. Lopez, "Multimedia Services and Streaming for Mobile Devices," IGI Global, Sep 2011, ISBN:1613501447.

Acronyms

□ A-BFT Associating Beamforming Time

■ AF Amplify and forward

Association of Radio Industries and Business ARIB

■ AT Announcement Time

□ AV Audio Video

BFT Beamforming Time □ BP Beacon Period

BPSK Binary Phase Shift Keving BRP Beam Refinement Procedure

Beacon Time ■ BT

□ CAP Contention Access Period □ CBP Contention-based period

CMS Common mode signaling □ CRC Cyclic Redundancy Check □ CTA Channel Time Allocation

Channel Time Blocks □ CTB

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

©2016 Rai Jain

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

7-35

Acronyms (Cont)

	CTS	Clear to Send	
	dBi	Deci-Bel Isotropic	
	dBm	Deci-Bel milliwatt	
	DBS	Discovery Block Set	
	DCF	Distributed Coordination Function	
	DF	Decode and forward	
	DI	Discovery Interval	
	DTP	Data Transfer Period	
	DTT	Data Transfer Time	
	DTV	Digital Television	
	DVDO	Name of a company	
	DVR	Digital Video Recorder	
	ECMA	European Computer Manufacturers Association	
	EEP	Equal Error Protection	
	EIRP	Equivalent Isotropically Radiated Power	
***	himan Hai and in G	http://www.cse.wustl.edu/~iain/cse574-16/	@2016 P: T:

7-37

Acronyms (Cont)

	EM	Expectation Maximization	
	EU	Europe	
	EURASIP	Name of a Publisher	
	FCC	Federal Communications Commission	
	FCS	Frame Check Sequence	
	GHz	Giga Hertz	
	HCF	Hybrid Coordination Function	
	HCS	Header Check Sequence	
	HD	High Definition	
	HMRP	HRP/MRP	
	HRP	High Rate Protocol	
	HSI	High Speed Interface	
	IEEE	Institution of Electrical and Electronics Engineers	
	LAN	Local Area Network	
	LoS	Line of Sight	
	LRP	Low Rate Protocol	
Was	MAC shington University in S	Media Access Control	©2016 Raj Jain

7-38

Acronyms (Cont)

MCS	Modulation and Coding Scheme
MHz	Mega Hertz
MRP	Medium Rate Protocol
MSDD	Multiple-Symbol Differential Detection
MSDU	MAC Service Data Unit
NA	North America
OFDM	Orthogonal Frequency Division Multiplexing
OSD	On-Screen Display
PAL	Protocol Adaptation Layer
PAN	Personal Area Network
PBSS	Personal Basic Service Set
PCI	Peripheral Component Interconnect
PCIE	PCI Express
PCP	PBSS Control Point
PHY	Physical Layer
PNC	Piconet Coordinator

Acronyms (Cont)

QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RATB	Random Access Time Block
RTS	Ready to Send
RX	Receiver
S-CAP	Sub-Contention Access Period
SC	Single Carrier
SFS	Spatial Frequency Sharing
SH	Subframe Header
SLS	Sector Level Sweep
SP	Service Period
STB	Set-Top Box
STD	Standard
TDMA	Time Division Multiple Access
UEP	Unequal Error Protection

Washington University in St. Louis

o://www.cse.wustl.edu/~iain/cse574-16/

©2016 Raj Jain

©2016 Raj Jain

Washington University in St. Louis

Acronyms (Cont)

Universal Serial Bus □ USB

■ WLAN Wireless Local Area Network WPAN Wireless Personal Area Network

□ WVAN Wireless Video Area Network

7-41

Scan This to Get These Slides Washington University in St. Louis ©2016 Raj Jain 7-42

Related Modules

Introduction to 5G,

http://www.cse.wustl.edu/~jain/cse574-16/j 195g.htm

Low Power WAN Protocols for IoT,

http://www.cse.wustl.edu/~jain/cse574-16/j 14ahl.htm

Introduction to Vehicular Wireless Networks,

http://www.cse.wustl.edu/~jain/cse574-16/j 08vwn.htm

Internet of Things,

http://www.cse.wustl.edu/~jain/cse574-16/j 10iot.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzOMs-8NUw

http://www.cse.wustl.edu/~jain/cse574-16/