
Introduction to Wireless Signal Propagation

Raj Jain

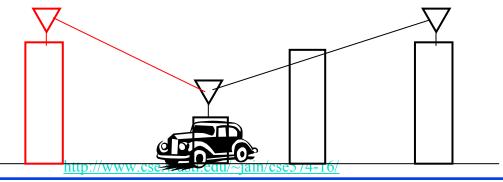
Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-16/

Washington University in St. Louis

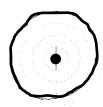
http://www.cse.wustl.edu/~jain/cse574-16/



- 1. Reflection, Diffraction, Scattering
- 2. Fading, Shadowing, multipath
- 3. Fresnel Zones
- 4. Multi-Antenna Systems, Beam forming, MIMO
- 5. OFDM

Note: This is the 2nd in a series of 2 lectures on wireless physical layer. Modulation, coding, Shannon's theorem, etc were discussed in the other lecture.

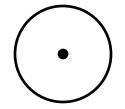
Wireless Radio Channel


- □ Path loss: Depends upon distance and frequency
- Noise
- □ Shadowing: Obstructions
- □ Frequency Dispersion (Doppler Spread) due to motion
- Interference
- □ Multipath: Multiple reflected waves
- □ Inter-symbol interference (ISI) due to dispersion

Washington University in St. Louis

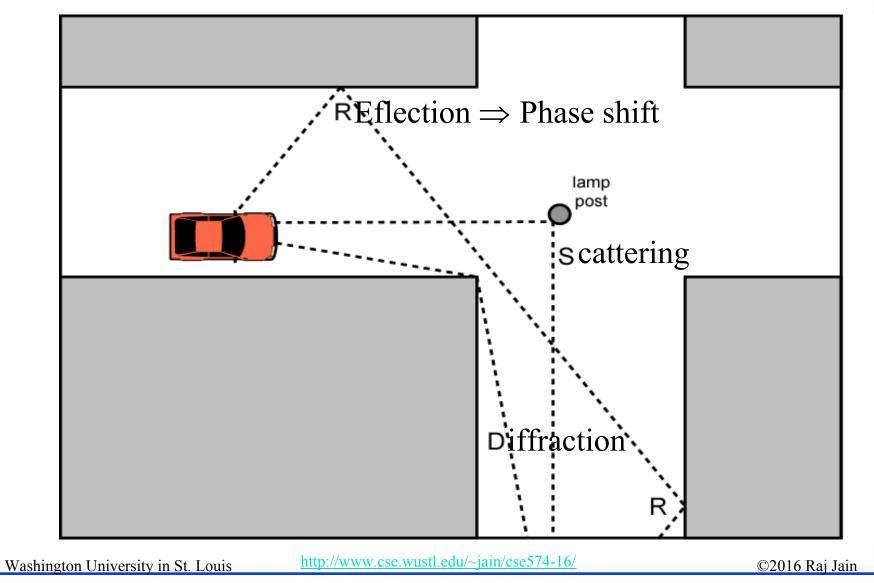
Antenna

- □ Transmitter converts electrical energy to electromagnetic waves
- Receiver converts electromagnetic waves to electrical energy
- Same antenna is used for transmission and reception
- Omni-Directional: Power radiated in all directions
- Directional: Most power in the desired direction
- Isotropic antenna: Radiates in all directions equally
- Antenna Gain = Power at particular point/Power with Isotropic Expressed in dBi



Omni-Directional

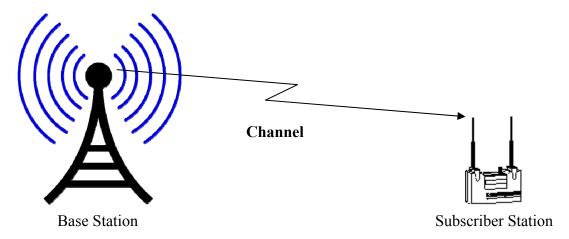
 $P_r = P_t G_t G_r (\lambda/4\pi d)^2$


Directional

Isotropic

http://www.cse.wustl.edu/~jain/cse574-16/

Reflection, Diffraction, Scattering


Reflection, Diffraction and Scattering (Cont)

- □ Reflection: Surface large relative to wavelength of signal
 - > May have phase shift from original
 - > May cancel out original or increase it
- $lue{}$ **Diffraction**: Edge of impenetrable body that is large relative to λ
 - > May receive signal even if no line of sight (LOS) to transmitter
- **□** Scattering
 - > Obstacle size on order of wavelength. Lamp posts etc.
- □ If LOS, diffracted and scattered signals not significant
 - > Reflected signals may be
- ☐ If no LOS, diffraction and scattering are primary means of reception

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Channel Model

- □ Power profile of the received signal can be obtained by *convolving* the power profile of the transmitted signal with the impulse response of the channel.
- □ Convolution in time = multiplication in frequency
- $lue{}$ Signal x, after propagation through the channel H becomes y:

$$y(f)=H(f)x(f)+n(f)$$

 \square Here H(f) is **channel response**, and n(f) is the noise. Note that x, y, H, and n are all functions of the signal frequency f.

Washington University in St. Louis

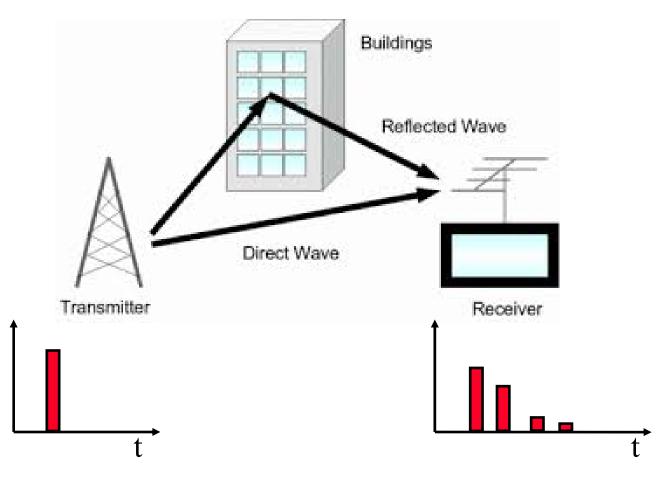
http://www.cse.wustl.edu/~jain/cse574-16/

Path Loss

- \Box Power is distributed equally to spherical area $4\pi d^2$
- □ The received power depends upon the wavelength
- \square If the Receiver collects power from area A_R :

$$P_R = P_T G_T \frac{1}{4\pi d^2} A_R$$

Receiving Antenna Gain


$$G_R = \frac{4\pi}{\lambda^2} A_R$$

$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$$

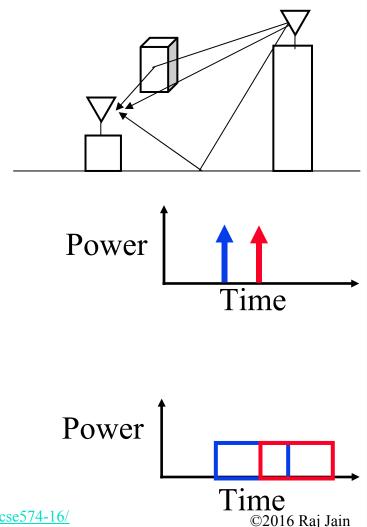
☐ This is known as Frii's Law.

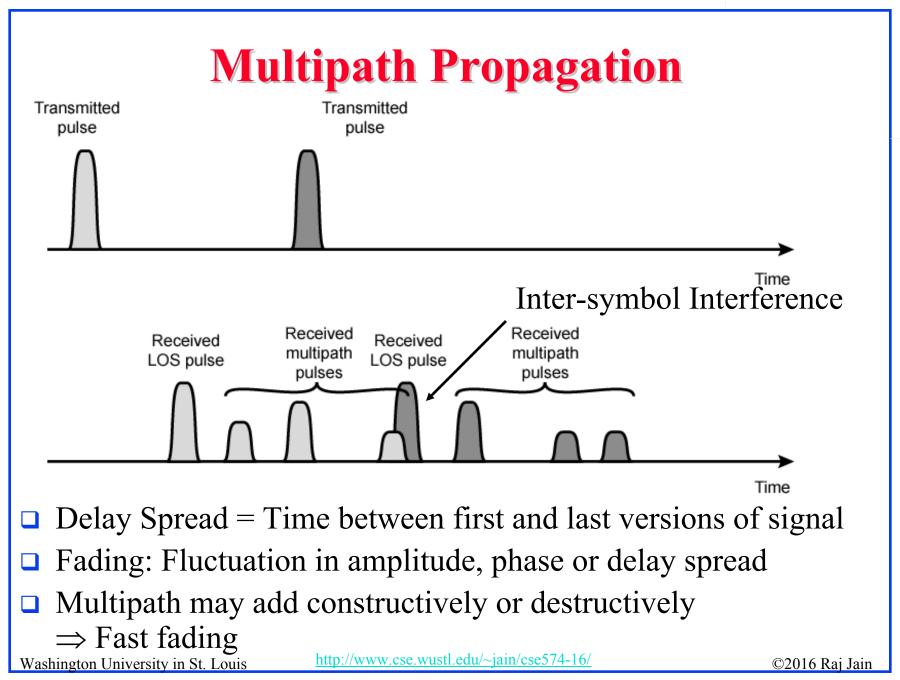
Attenuation in free space increases with frequency.

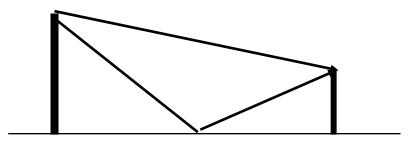
Multipath

Multiple reflected copies of the signal are received

Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse574-16/


Inter-Symbol Interference


Symbols become wider

⇒ Limits the number of bits/s
Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse574-16/

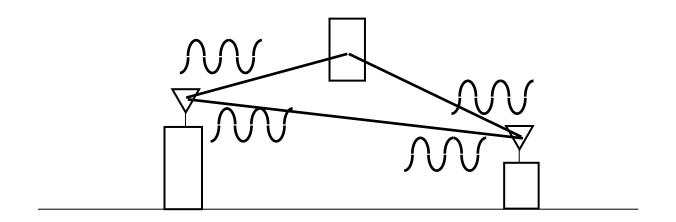
d⁻⁴ Power Law

☐ Using a two-ray model

$$P_R = P_T G_T G_R \left(\frac{h_t h_r}{d^2}\right)^2$$

- \square Here, h_T and h_R are heights of transmit and receive antennas
- ☐ It is valid for distances larger than

$$d_{\text{break}} = 4h_T h_R / \lambda$$

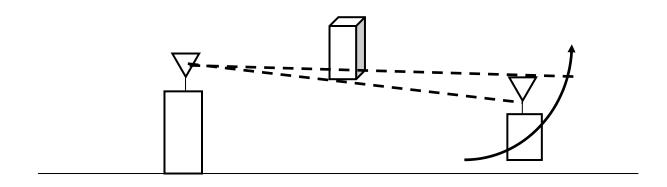

- Note that the received power becomes independent of the frequency.
- Measured results show n=1.5 to 5.5. Typically 4.

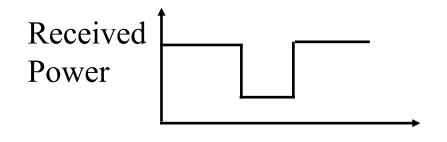
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Small Scale Fading

□ The signal amplitude can change by moving a few inches ⇒ Small scale fading

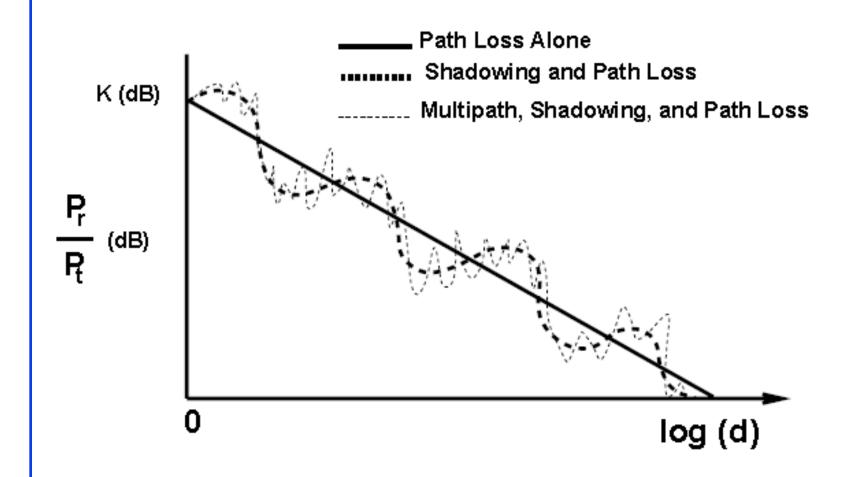



Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Shadowing

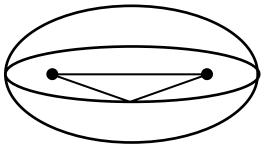
□ Shadowing gives rise to large scale fading



Position

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

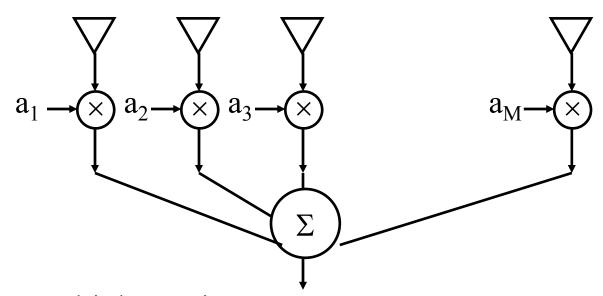

Total Path Loss

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Fresnel Zones

- Draw an ellipsoid with BS and MS as Foci
- □ All points on ellipsoid have the same BS-MS run length
- □ Fresnel ellipsoids = Ellipsoids for which run length = $LoS + i\lambda/2$
- □ At the Fresnel ellipsoids results in a phase shift of i\pi
- Radius of the i^{th} ellipsoid at distance d_T from the transmitter and d_R from the receiver is $\frac{1}{\sqrt{1\lambda d_T d_R}}$
- □ Free space (d²) law is followed up to the distance at which the first Fresnel Ellipsoid touches the ground

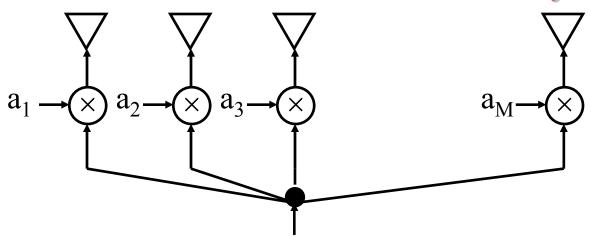

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Multi-Antenna Systems

- □ Receiver Diversity
- □ Transmitter Diversity
- □ Beam forming
- MIMO

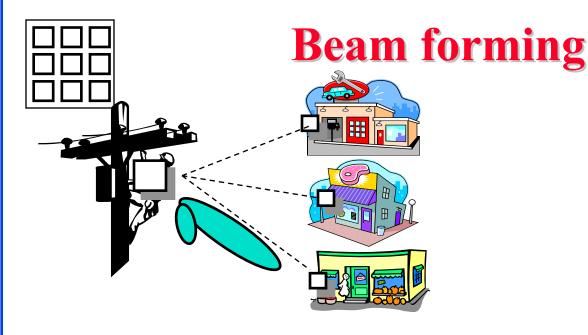
Receiver Diversity



- User multiple receive antenna
- Selection combining: Select antenna with highest SNR
- □ Threshold combining: Select the first antenna with SNR above a threshold
- Maximal Ratio Combining: Phase is adjusted so that all signals have the same phase. Then weighted sum is used to maximize SNR

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/


Transmitter Diversity

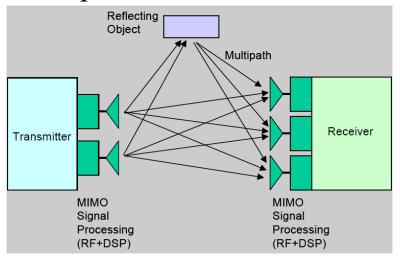
- □ Use multiple antennas to transmit the signal Ample space, power, and processing capacity at the transmitter (but not at the receiver).
- □ If the channel is known, phase each component and weight it before transmission so that they arrive in phase at the receiver and maximize SNR
- ☐ If the channel is not known, use space time block codes

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

- □ Phased Antenna Arrays:

 Receive the same signal using multiple antennas
- □ By phase-shifting various received signals and then summing ⇒ Focus on a narrow directional beam
- □ Digital Signal Processing (DSP) is used for signal processing ⇒ Self-aligning

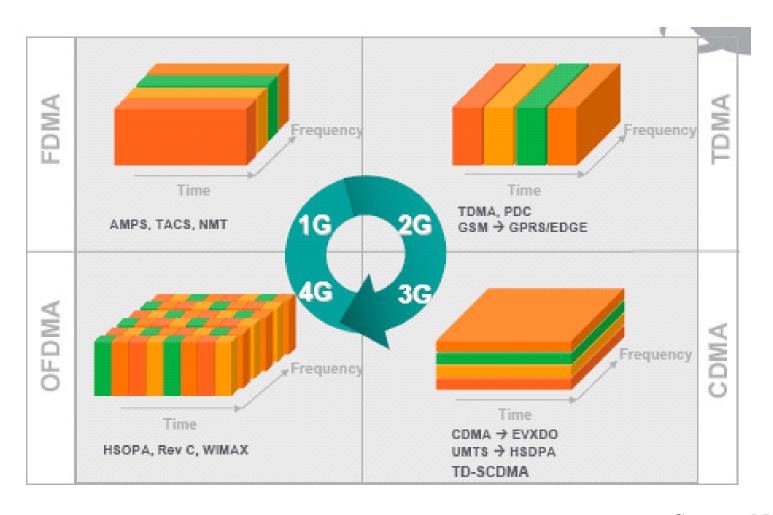

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

MIMO

- Multiple Input Multiple Output
- □ RF chain for each antenna
 - ⇒ Simultaneous reception or transmission of multiple streams

2x3


802.16e at 2.5 GHz, 10 MHz TDD, D:U=2:1

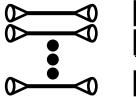
T:R	1x1	1x2	2x2	2x4	4x2	4x4
b/Hz	1.2	1.8	2.8	4.4	3.7	5.1

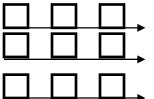
Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

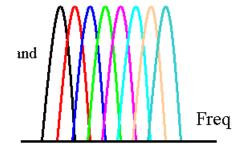
Multiple Access Methods

Source: Nortel


Washington University in St. Louis


http://www.cse.wustl.edu/~jain/cse574-16/

OFDM


- Orthogonal Frequency Division Multiplexing
- □ Ten 100 kHz channels are better than one 1 MHz Channel
 - ⇒ Multi-carrier modulation

- □ Frequency band is divided into 256 or more sub-bands.
 Orthogonal ⇒ Peak of one at null of others
- Each carrier is modulated with a BPSK, QPSK, 16-QAM, 64-QAM etc depending on the noise (Frequency selective fading)
- □ Used in 802.11a/g, 802.16, Digital Video Broadcast handheld (DVB-H)
- Easy to implement using FFT/IFFT

Washington University in St. Louis

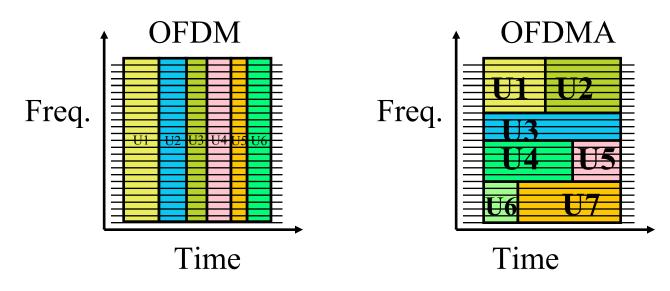
http://www.cse.wustl.edu/~jain/cse574-16/

Advantages of OFDM

- Easy to implement using FFT/IFFT
- □ Computational complexity = O(B log BT) compared to previous O(B²T) for Equalization. Here B is the bandwidth and T is the delay spread.
- □ Graceful degradation if excess delay
- □ Robustness against frequency selective burst errors
- □ Allows adaptive modulation and coding of subcarriers
- □ Robust against narrowband interference (affecting only some subcarriers)
- □ Allows pilot subcarriers for channel estimation

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/


OFDM: Design considerations

- □ Large number of carriers ⇒ Smaller data rate per carrier
 ⇒ Larger symbol duration ⇒ Less inter-symbol interference
- Reduced subcarrier spacing ⇒ Increased inter-carrier interference due to Doppler spread in mobile applications
- Easily implemented as Inverse Discrete Fourier Transform (IDFT) of data symbol block
- □ Fast Fourier Transform (FFT) is a computationally efficient way of computing DFT

OFDMA

- Orthogonal Frequency Division <u>Multiple Access</u>
- □ Each user has a subset of subcarriers for a few slots
- □ OFDM systems use TDMA
- \square OFDMA allows Time+Freq DMA \Rightarrow 2D Scheduling

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Scalable OFDMA (SOFDMA)

- □ OFDM symbol duration = f(subcarrier spacing)
- □ Subcarrier spacing = Frequency bandwidth/Number of subcarriers
- □ Frequency bandwidth=1.25 MHz, 3.5 MHz, 5 MHz, 10 MHz, 20 MHz, etc.
- Symbol duration affects higher layer operation
 - ⇒ Keep symbol duration constant at 102.9 us
 - ⇒ Keep subcarrier spacing 10.94 kHz
 - ⇒ Number of subcarriers ∝ Frequency bandwidth

This is known as scalable OFDMA

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Effect of Frequency

- □ Higher Frequencies have higher attenuation, e.g., 18 GHz has 20 dB/m more than 1.8 GHz
- □ Higher frequencies need smaller antenna Antenna \geq Wavelength/2, 800 MHz \Rightarrow 6"
- □ Higher frequencies are affected more by weather Higher than 10 GHz affected by rainfall 60 GHz affected by absorption of oxygen molecules
- □ Higher frequencies have more bandwidth and higher data rate
- ☐ Higher frequencies allow more frequency reuse They attenuate close to cell boundaries. Low frequencies propagate far.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Effect of Frequency (Cont)

- □ Lower frequencies have longer reach
 - ⇒ Longer Cell Radius
 - \Rightarrow Good for rural areas
 - ⇒ Smaller number of towers
 - ⇒ Longer battery life
- Lower frequencies require larger antenna and antenna spacing
 - ⇒ MIMO difficult particularly on mobile devices
- □ Lower frequencies ⇒ Smaller channel width
 - ⇒ Need aggressive MCS, e.g., 256-QAM
- \square Doppler shift = vf/c = Velocity ×Frequency/(speed of light)
 - ⇒ Lower Doppler spread at lower frequencies
- \square Mobility \Rightarrow Below 10 GHz

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Summary

- 1. Path loss increase at a power of 2 to 5.5 with distance.
- 2. Fading = Changes in power changes in position
- 3. Fresnel zones = Ellipsoid with distance of LoS+ $i\lambda/2$ Any obstruction of the first zone will increase path loss
- 4. Multiple Antennas: Receive diversity, transmit diversity, Smart Antenna, MIMO
- 5. OFDM splits a band in to many orthogonal subcarriers. OFDMA = FDMA + TDMA

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Homework 4

- A. Determine the mean received power at a SS. The channel between a base station at 14 m and the subscriber stations at 4m at a distance of 500m. The Transmitter and Receiver antenna gains are 10dB and 5 dB respectively. Use a power exponent of 4. Transmitted power is 30 dBm. Do All calculations using dB.
- B. With a subcarrier spacing of 10 kHz, how many subcarriers will be used in a system with 8 MHz channel bandwidth and what size FFT will be used?
- In a scalable OFDMA system, the number of carriers for 10 MHz channel is 1024. How many carriers will be used if the channel was 1.25 MHz, 5 MHz, or 8.75 MHz.

Reading List

- Jim Geier, "Radio Wave Fundamentals," Chapter 2 in his book "Designing and Deploying 802.11 Wireless Networks: A Practical Guide to Implementing 802.11n and 802.11ac Wireless Networks, Second Edition," Cisco Press, May 2015, 600 pp., ISBN:1-58714-430-1 (Safari Book), Chapter 2.
- □ Raj Jain, "Channel Models: A Tutorial," WiMAX Forum AATG, February 2007, first 7 of 21 pages, http://www.cse.wustl.edu/~jain/wimax/channel model tutorial.htm
- ☐ Jim Geier, "Wireless Networks first-step," Cisco Press, August 2004, 264 pp., ISBN:1-58720-111-9 (Safari Book), Chapter 3.
- □ Steve Rackley, "Wireless Networking Technology," Newnes, March 2007, 416 pp., ISBN:0-7506-6788-5 (Safari Book), Chapter 4.
- Stephan Jones; Ronald J. Kovac; Frank M. Groom, "Introduction to Communications Technologies, 3rd Edition," CRC Press, July 2015, 364 pp., ISBN:978-1-4987-0295-9 (Safari Book), Chapters 3 and 4.

http://www.cse.wustl.edu/~jain/cse574-16/

Wikipedia Links

https://en.wikipedia.org/wiki/Omnidirectional antenna https://en.wikipedia.org/wiki/Antenna gain https://en.wikipedia.org/wiki/Equivalent isotropically radiated power https://en.wikipedia.org/wiki/High-gain antenna https://en.wikipedia.org/wiki/Signal reflection https://en.wikipedia.org/wiki/Scattering https://en.wikipedia.org/wiki/Path loss https://en.wikipedia.org/wiki/Free-space path loss https://en.wikipedia.org/wiki/Log-distance path loss model https://en.wikipedia.org/wiki/Multipath propagation https://en.wikipedia.org/wiki/Multipath interference https://en.wikipedia.org/wiki/Intersymbol interference https://en.wikipedia.org/wiki/Fading https://en.wikipedia.org/wiki/Shadow fading https://en.wikipedia.org/wiki/Fresnel zone

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Wikipedia Links (Cont)

- https://en.wikipedia.org/wiki/Antenna_diversity
 https://en.wikipedia.org/wiki/Beamforming
 https://en.wikipedia.org/wiki/Antenna_array_(electromagnetic)
 https://en.wikipedia.org/wiki/Phased_array
- https://en.wikipedia.org/wiki/Smart_antenna
- https://en.wikipedia.org/wiki/Multiple_input_m
- □ https://en.wikipedia.org/wiki/Multiple-input_multiple-output_communications
- □ https://en.wikipedia.org/wiki/Diversity_combining
- □ https://en.wikipedia.org/wiki/Maximal-ratio_combining
- □ https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiplexing
- □ https://en.wikipedia.org/wiki/Orthogonal_frequency-division_multiple_access

Washington University in St. Louis

http://www.cse.wustl.edu/~iain/cse574-16/

Acronyms

■ BPSK Binary Phase-Shift Keying

□ BS Base Station

□ dB DeciBels

dBi DeciBels Intrinsic

□ dBm DeciBels milliwatt

□ DFT Discrete Fourier Transform

□ DMA Direct Memory Access

DSP Digital Signal Processing

DVB-H Digital Video Broadcast handheld

□ FDMA Frequency Division Multiple Access

□ FFT Fast Fourier Transform

□ IDFT Inverse Discrete Fourier Transform

□ IFFT Inverse Fast Fourier Transform

□ ISI Inter-symbol interference

□ kHz Kilo Hertz

□ LoS Line of Sight

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Acronyms (Cont)

MHz
Mega Hertz

MIMO Multiple Input Multiple Output

MS Mobile Station

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

□ RF Radio Frequency

SNR Signal to Noise Ratio

SS Subscriber Station

□ STBC Space Time Block Codes

■ TDMA Time Division Multiple Access

Scan This to Get These Slides

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/

Related Modules

Introduction to 5G,

http://www.cse.wustl.edu/~jain/cse574-16/j 195g.htm

Low Power WAN Protocols for IoT,

http://www.cse.wustl.edu/~jain/cse574-16/j 14ahl.htm

Introduction to Vehicular Wireless Networks,

http://www.cse.wustl.edu/~jain/cse574-16/j 08vwn.htm

Internet of Things,

http://www.cse.wustl.edu/~jain/cse574-16/j 10iot.htm

Audio/Video Recordings and Podcasts of Professor Raj Jain's Lectures,

https://www.youtube.com/channel/UCN4-5wzNP9-ruOzQMs-8NUw

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-16/