
Introduction to IEEE 802.11 Wireless LANs

Raj Jain

Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130

Jain@cse.wustl.edu

Audio/Video recordings of this class lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-14/

<u>htt</u>

http://www.cse.wustl.edu/~jain/cse574-14/

©2014 Rai Jain

- 1. IEEE 802.11 Features
- 2. IEEE 802.11 Physical Layers
- 3. IEEE 802.11 MAC
- 4. IEEE 802.11 Architecture
- 5. Frame Format
- 6. Power Management

Note: This is 1st of 2 lectures on WiFi. The 2nd lecture covers recent developments such as high-throughput WiFi, white spaces, etc.

Washington University in St. Louis

http://www.cse.wustl.edu/~jain/cse574-14/

©2014 Rai Jain

IEEE 802.11 vs. WiFi

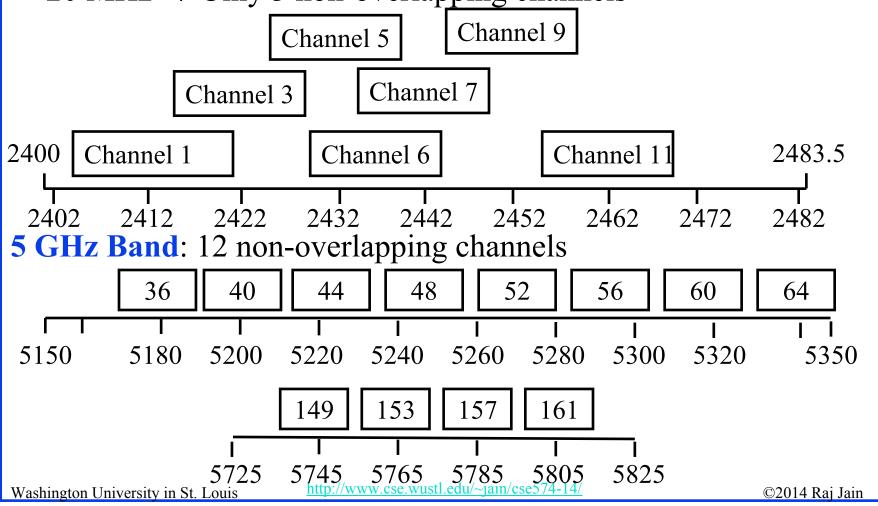
- □ IEEE 802.11 is a standard
- □ WiFi = "Wireless Fidelity" is a trademark
- □ Fidelity = Compatibility between wireless equipment from different manufacturers
- WiFi Alliance is a non-profit organization that does the compatibility testing (WiFi.org)
- 802.11 has many options and it is possible for two equipment based on 802.11 to be incompatible.
- □ All equipment with "WiFi" logo have selected options such that they will interoperate.

IEEE 802.11 Features

- □ Original IEEE 802.11-1997 was at 1 and 2 Mbps.
 Newer versions at 11 Mbps, 54 Mbps, 108 Mbps, 200 Mbps,...
- □ All versions use "License-exempt" spectrum
- □ Need ways to share spectrum among multiple users and multiple LANs \Rightarrow Spread Spectrum (CDMA)
- ☐ Three Phys:
 - > Direct Sequence (DS) spread spectrum using ISM band
 - > Frequency Hopping (FH) spread spectrum using ISM band
 - > Diffused Infrared (850-900 nm) bands
- Support multiple priorities
- Support time-critical and data traffic
- Power management allows a node to doze off

ISM Bands

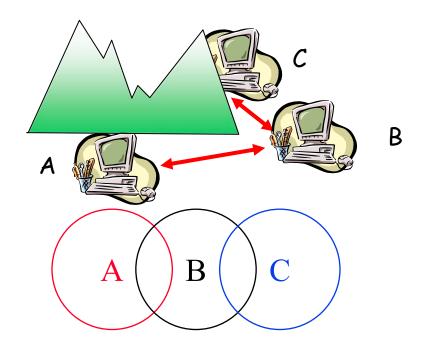
☐ Industrial, Scientific, and Medical bands. License exempt


From	To	Bandwidth	Availability
6.765 MHz	6.795 MHz	30 kHz	
13.553 MHz	13.567 MHz	14 kHz	Worldwide
26.957 MHz	27.283 MHz	326 kHz	Worldwide
40.660 MHz	40.700 MHz	40 kHz	Worldwide
433.050 MHz	434.790 MHz	1.74 MHz	Europe, Africa, Middle east,
			Former Soviet Union
902.000 MHz	928.000 MHz	26 MHz	America, Greenland
2.400 GHz	2.500 GHz	100 MHz	Worldwide
5.725 GHz	5.875 GHz	150 MHz	Worldwide
24.000 GHz	24.250 GHz	250 MHz	Worldwide
61.000 GHz	61.500 GHz	500 MHz	
122.000 GHz	123.000 GHz	1 GHz	
244 GHz	246 GHz	2 GHz	

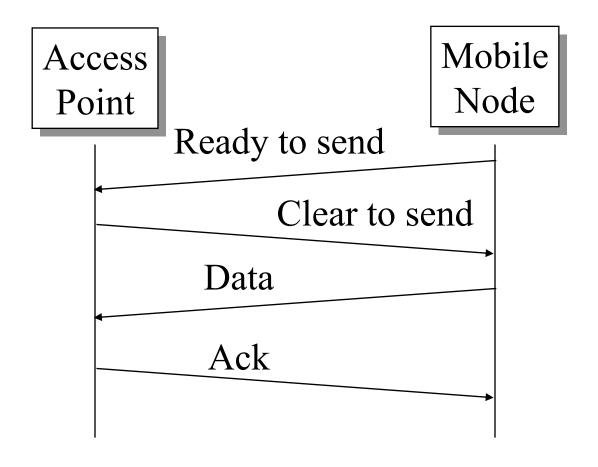
Ref: http://en.wikipedia.org/wiki/ISM_band Washington University in St. Louis

North American Channels

2.4 GHz Band: 14 5-MHz Channels. Only 12 in USA.


20 MHz ⇒ Only 3 non-overlapping channels

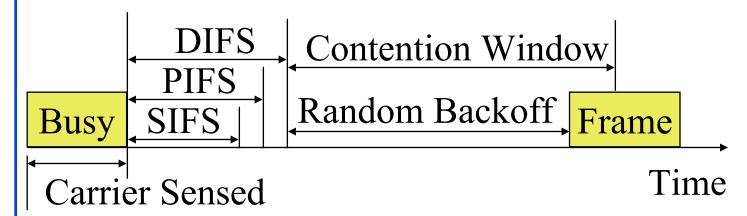
IEEE 802.11 Physical Layers


- ☐ Issued in four stages
- □ First version in 1997: IEEE 802.11
 - > Includes MAC layer and three physical layer specifications
 - > Two in 2.4-GHz band and one infrared
 - > All operating at 1 and 2 Mbps
 - No longer used
- Two additional amendments in 1999:
 - IEEE 802.11a-1999: 5-GHz band, 54 Mbps/20 MHz, OFDM
 - > IEEE 802.11b-1999: 2.4 GHz band, 11 Mbps/20 MHz
- □ Fourth amendment:
 - > IEEE 802.11g-2003 : 2.4 GHz band, 54 Mbps/20 MHz,

Hidden Node Problem

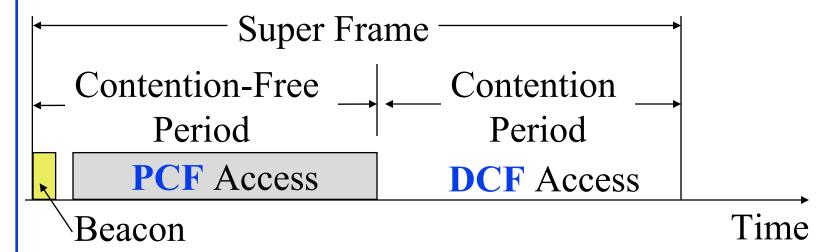
- □ A can hear B, B can hear C, but C cannot hear A.
- □ C may start transmitting while A is also transmitting ⇒ A and C can't detect collision.
- □ CSMA/CD is not possible ⇒ Only the receiver can help avoid collisions

4-Way Handshake



Washington University in St. Louis

IEEE 802.11 MAC


- □ Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
- □ Listen before you talk. If the medium is busy, the transmitter backs off for a random period.
- Avoids collision by sending a short message:
 Ready to send (RTS)
 RTS contains dest. address and <u>duration</u> of message.
 Tells everyone to backoff for the duration.
- □ Destination sends: Clear to send (CTS)
 Other stations set their network allocation vector (NAV) and wait for that duration
- \square Can not detect collision \Rightarrow Each packet is acked.
- MAC-level retransmission if not acked.

IEEE 802.11 Priorities

- ☐ Initial interframe space (IFS)
- □ Highest priority frames, e.g., Acks, use short IFS (SIFS)
- Medium priority time-critical frames use "Point Coordination Function IFS" (PIFS)
- Asynchronous data frames use "Distributed coordination function IFS" (DIFS)

Time Critical Services

- ☐ Timer critical services use **Point Coordination Function**
- The point coordinator allows only one station to access
- □ Coordinator sends a beacon frame to all stations.
 Then uses a polling frame to allow a particular station to have contention-free access
- Contention Free Period (CFP) varies with the load.

IEEE 802.11 DCF Backoff

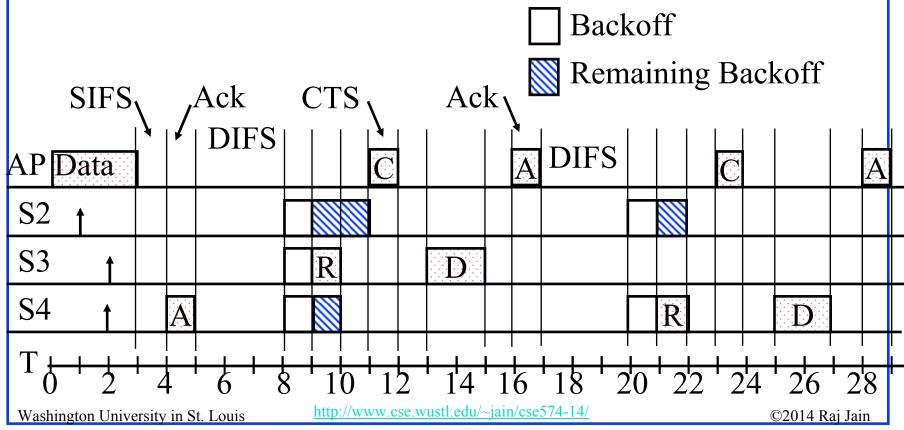
- MAC works with a single FIFO Queue
- Three variables:
 - > Contention Window (CW)
 - Backoff count (BO)
 - > Network Allocation Vector (NAV)
- □ If a frame (RTS, CTS, Data, Ack) is heard, NAV is set to the duration in that frame. Stations sense the media after NAV expires.
- □ If the medium is idle for DIFS, and backoff (BO) is not already active, the station draws a random BO in [0, CW] and sets the backoff timer.
- □ If the medium becomes busy during backoff, the timer is stopped and a new NAV is set. After NAV, back off continues.

IEEE 802.11 DCF Backoff

□ Initially and after each successful transmission:

$$CW = CW_{min}$$

□ After each unsuccessful attempt

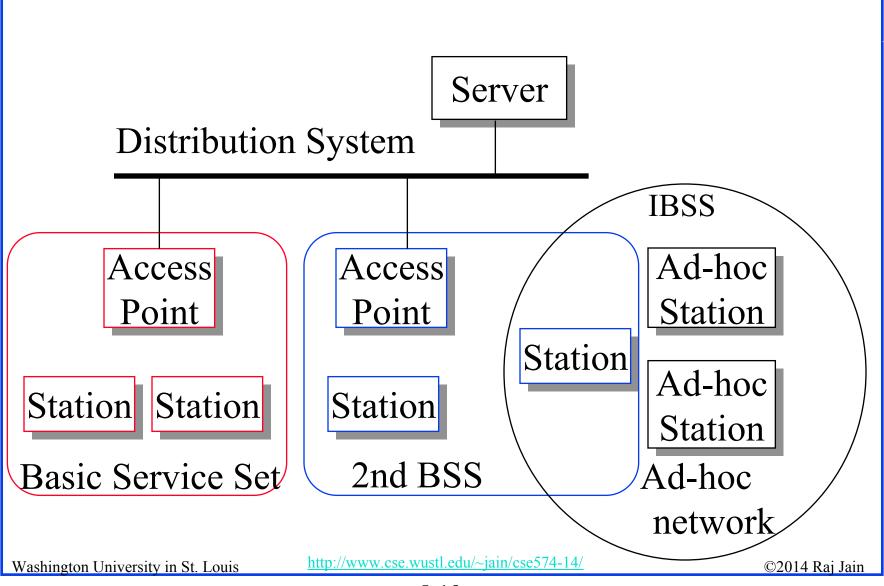

$$CW = min\{2CW+1, CW_{max}\}$$

Typical Parameter Values

- □ For DS PHY: Slot time = 20 us, SIFS = 10 us, CWmin = 31, CWmax = 1023
- □ For FH PHY: Slot time = 50 us, SIFS = 28 us, CWmin = 15, CWmax = 1023
- □ 11a: Slot time = 9 us, SIFS= 16 us, CWmin= 15, CWmax=1023
- □ 11b: Slot time = 20 us, SIFS = 10 us, CWmin= 31, CWmax=1023
- □ 11g: Slot time = 20 us or 9 us, SIFS = 10 us, CWmin= 15 or 31, CWmax=1023
- \square PIFS = SIFS + 1 slot time
- \Box DIFS = SIFS + 2 slot times

DCF

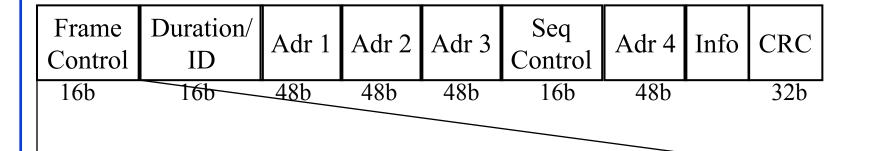
■ Example: Slot Time = 1, CWmin = 5, DIFS=3, PIFS=2, SIFS=1,


DCF: Example (Cont)

- □ T=1 Station 2 wants to transmit but the media is busy
- □ T=2 Stations 3 and 4 want to transmit but the media is busy
- □ T=3 Station 1 finishes transmission.
- T=4 Station 1 receives ack for its transmission (SIFS=1) Stations 2, 3, 4 set their NAV to 1.
- □ T=5 Medium becomes free
- □ T=8 DIFS expires.
 Stations 2, 3, 4 draw backoff count between 0 and 5.
 The counts are 3, 1, 2
- □ T=9 Station 3 starts transmitting. Announces a duration of 8 (RTS+SIFS+CTS+SIFS+DATA+SIFS+ACK). Station 2 and 4 pause backoff counter at 2 and 1 resp. and wait till T=17
- □ T=15 Station 3 finishes data transmission
- □ T=16 Station 3 receives Ack.
- □ T=17 Medium becomes free

DCF: Example (Cont)

- □ T=20 DIFS expires
 Stations 2 and 4 start their backoff counter
- □ T=21 Station 4 starts transmitting RTS


IEEE 802.11 Architecture

IEEE 802.11 Architecture (Cont)

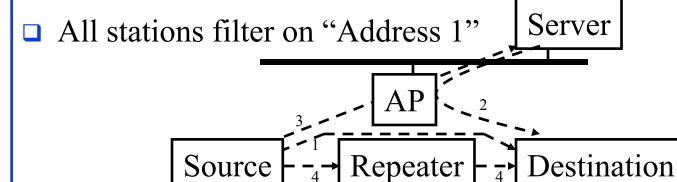
- \square Basic Service Area (BSA) = Cell
- Each BSA may have several access points (APs)
- **□** Basic Service Set (BSS)
 - = Set of stations associated with one AP
- □ Distribution System (DS) wired backbone
- Extended Service Area (ESA) = Multiple BSAs interconnected via a distribution system
- **■** Extended Service Set (ESS)
 - = Set of stations in an ESA
- □ Independent Basic Service Set (IBSS): Set of computers in ad-hoc mode. May not be connected to wired backbone.
- Ad-hoc networks coexist and interoperate with infrastructurebased networks

Frame Format

Prot.	Type	Sub	То	From	More	Retry	Power	More	WEP	Rsvd
Ver.		type	DS	DS	Frag.		mgt	Data		
2b	2b	4b	1b	1b	1b	1b	1b	1b	1b	1b

Type (Association, disassociation, re-association, probe, authentication, de-authentication, CTS, RTS, Ack, ..), retry/retransmission, Going to Power Save mode, More buffered data at AP for a station in power save mode, Wireless Equivalent Privacy (Security) info in this frame

MAC Frame Fields


□ Duration/Connection ID:

- > If used as duration field, indicates time (in μs) channel will be allocated for successful transmission of MAC frame. Includes time until the end of Ack
- > In some control frames, contains association or connection identifier

□ Sequence Control:

- > 4-bit fragment number subfield
 - □ For fragmentation and reassembly
- > 12-bit sequence number
- > Number frames between given transmitter and receiver

802.11 Frame Address Fields

Washington University in St. Louis

	To	From	Address	Address	Address	Address
	Distribution	Distribution	1	2	3	4
	System	System				
1	0	0	Destination	Source	BSS ID	-
			Address	Address		
2	0	1	Destination	BSS ID	Source	-
			Address		Address	
3	1	0	BSS ID	Source	Destination	_
				Address	Address	
4	1	1	Receiver	Transmitter	Destination	Source
			Address	Address	Address	Address

5-23

http://www.cse.wustl.edu/~jain/cse574-14/

©2014 Rai Jain

802.11 Power Management

■ Station tells the base station its mode: Power saving (PS) or active

- Mode changed by power mgmt bit in the frame control header.
- □ All packets destined to stations in PS mode are buffered
- AP broadcasts list of stations with buffered packets in its beacon frames: Traffic Indication Map (TIM)
- □ Subscriber Station (SS) sends a PS-Poll message to AP, which sends one frame. More bit in the header \Rightarrow more frames.
- With 802.11e unscheduled Automatic Power Save Delivery (APSD): SS transmits a data or null frame with power saving bit set to 0. AP transmits all buffered frames for SS.
- With Scheduled APSD mode:AP will transmit at prenegotiated time schedule. No need for polling.
- □ Hybrid APSD mode: PS-poll for some. Scheduled for other categories

Washington University in St. Louis

Summary

- 1. 802.11 uses Frequency hopping, Direct Sequence CDMA, OFDM
- 2. 802.11 PHYs: 802.11, 802.11a, 802.11b, 802.11g
- 3. Allows both: Ad-Hoc vs Infrastructure-based
- 4. 802.11 supports single FIFO Q. Uses SIFS, PIFS, DIFS

Homework 5

Two 802.11 stations get frames to transmit at time t=0. The 3rd station (AP) has just finished transmitting a long packet at t=0 to Station 1. The transmission parameters are: Slot time=1, SIFS=1, DIFS=3, CWmin=5, CWmax=7. Assume that the pseudo-random number generated are 1, 3. The data size for both stations is 3 slots. Draw a transmission diagram. At what time the two packets will get acknowledged assuming no new arrivals.

Reading List

- □ IEEE 802.11 Tutorial, http://wow.eecs.berkeley.edu/ergen/docs/ieee.pdf
- □ A Technical Tutorial on the IEEE 802.11 Protocol, http://www.sss-mag.com/pdf/802 11tut.pdf

Wikipedia Links

- □ http://en.wikipedia.org/wiki/Wireless_LAN
- □ <u>http://en.wikipedia.org/wiki/IEEE_802.11</u>
- □ http://en.wikipedia.org/wiki/Channel_access_method
- □ http://en.wikipedia.org/wiki/Direct-sequence_spread_spectrum
- □ http://en.wikipedia.org/wiki/Wi-Fi
- □ <u>http://en.wikipedia.org/wiki/Distributed_Coordination_Function</u>
- □ http://en.wikipedia.org/wiki/Carrier_sense_multiple_access
- http://en.wikipedia.org/wiki/Multiple_Access_with_Collision_Avoidance_f or Wireless
- □ http://en.wikipedia.org/wiki/Beacon frame
- □ http://en.wikipedia.org/wiki/IEEE_802.11
- □ http://en.wikipedia.org/wiki/IEEE_802.11_(legacy_mode)
- □ http://en.wikipedia.org/wiki/IEEE 802.11 RTS/CTS
- □ http://en.wikipedia.org/wiki/List_of_WLAN_channels
- □ http://en.wikipedia.org/wiki/Point_Coordination_Function
- □ http://en.wikipedia.org/wiki/Service_set_(802.11_network)
- □ http://en.wikipedia.org/wiki/Wi-Fi_Alliance

Acronyms

□ Ack Acknowledgement

□ AP Access Point

□ APSD Automatic Power Save Delivery

□ BO Backoff

■ BSA Basic Service Area

■ BSS Basic Service Set

□ BSSID Basic Service Set Identifier

□ CA Collision Avoidance

CD Collision Detection

CDMA Code Division Multiple Access

CFP Contention Free Period

□ CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

CTS Clear to Send

□ CW Congestion Window

CWmax Maximum Congestion Window

Washington University in St. Louis

Acronyms (Cont)

□ CWmin Minimum Congestion Window

DA Destination Address

DCF Distributed Coordination Function

DIFS DCF Inter-frame Spacing

□ DS Direct Sequence

ESA Extended Service Area

ESS Extended Service Set

□ FH Frequency Hopping

□ FIFO First In First Out

☐ GHz Giga Hertz

□ IBSS Independent Basic Service Set

□ ID Identifier

□ IEEE Institution of Electrical and Electronics Engineers

☐ IFS Inter-frame spacing

□ ISM Instrumentation, Scientific and Medical

LAN Local Area Network

Washington University in St. Louis

5-30

Acronyms (Cont)

MAC Media Access Control

□ MHz Mega Hertz

MIMO Multiple Input Multiple Output

NAV Network Allocation Vector

OFDM Orthogonal Frequency Division Multiplexing

PCF Point Coordination Function

□ PHY Physical Layer

PIFS PCF inter-frame spacing

PS Power saving

QoS Quality of Service

RA Receiver Address

RTS
Ready to Send

□ SA Source Address

□ SIFS Short Inter-frame Spacing

Acronyms (Cont)

SS Subscriber Station

□ TA Transmitter's Address

□ TIM Traffic Indication Map

■ WiFi Wireless Fidelity

■ WLAN Wireless Local Area Network