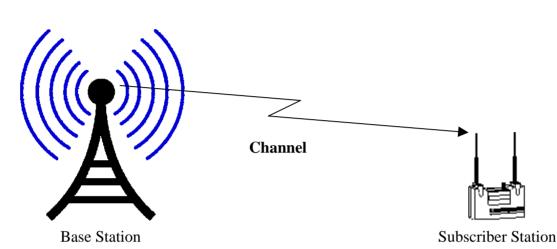
Wireless Physical Layer Concepts: Part II

Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at: <u>http://www.cse.wustl.edu/~jain/cse574-10/</u>

Washington University in St. Louis

- Channel Model
- □ Path Loss, Fading, Shadowing, Noise
- □ d⁻⁴ Power Law
- Fresnel Zones
- Tapped Delay Line Model
- Doppler Spread


Wireless Radio Channel

- □ Path loss: Depends upon distance and frequency
- Noise
- □ Shadowing: Obstructions
- □ Frequency Dispersion (Doppler Spread) due to motion
- □ Interference
- □ Multipath: Multiple reflected waves
- □ Inter-symbol interference (ISI) due to dispersion

4 - 3

couis CO10 Raj Jain

Channel Model

- Power profile of the received signal can be obtained by convolving the power profile of the transmitted signal with the impulse response of the channel.
- □ Convolution in time = multiplication in frequency
- □ Signal *x*, after propagation through the channel *H* becomes *y*: y(f)=H(f)x(f)+n(f)
- □ Here H(f) is **channel response**, and n(f) is the noise. Note that x, y, H, and n are all functions of the signal frequency f.

Path Loss

Power is distributed equally to spherical area 4π d²
The received power depends upon the wavelength
If the Receiver collects power from area A_R:

$$P_R = P_T G_T \frac{1}{4\pi d^2} A_R$$

Receiving Antenna Gain

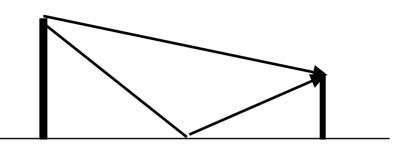
$$G_R = \frac{4\pi}{\lambda^2} A_R$$
$$P_R = P_T G_T G_R \left(\frac{\lambda}{4\pi d}\right)^2$$

This is known as Frii's Law. Attenuation in free space increases with frequency.

Path Loss (Cont)

In practice the distance exponent is higher:
3.5 to 5.5 (after a breakpoint)

$$P_R = P_R (d_{\text{break}} \left(\frac{d}{d_{\text{break}}}\right)^{-n}$$

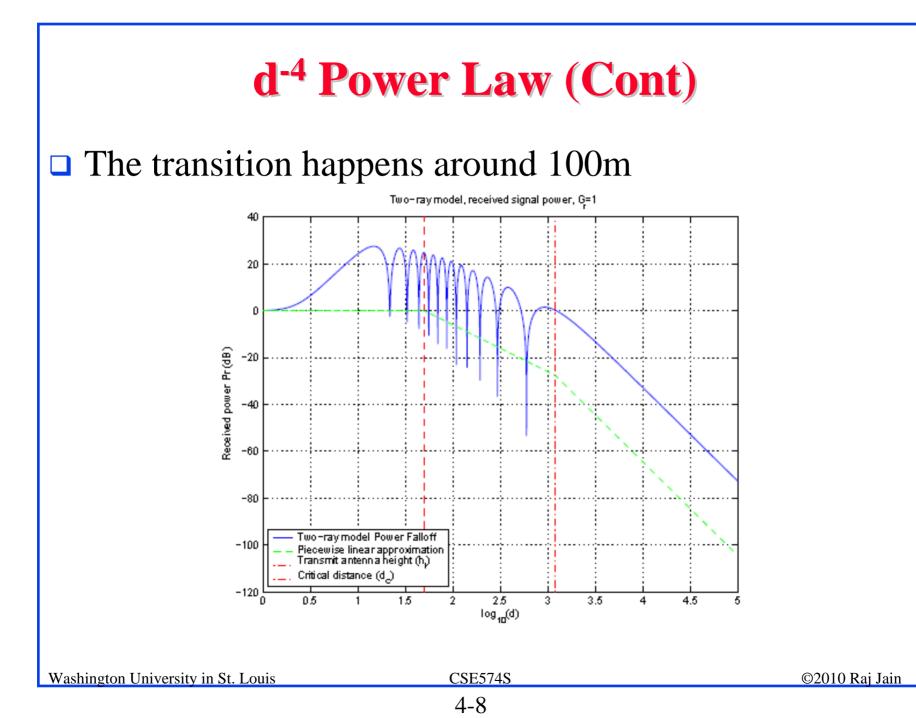

> n \approx 3.5 to 5.5

□ In log scale:

$$P_R(d=1m) = P_T + G_T + G_R + 20\log_{10}\left(\frac{\lambda}{4\pi}\right)$$

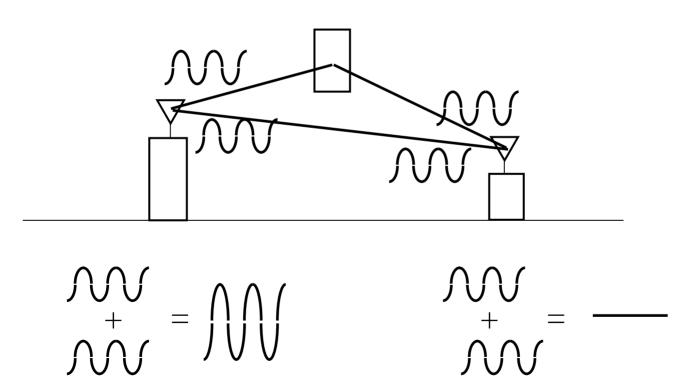
$$P_R(d) = P_R(1) - 20\log_{10}d$$

d⁻⁴ Power Law


Using a two-ray model

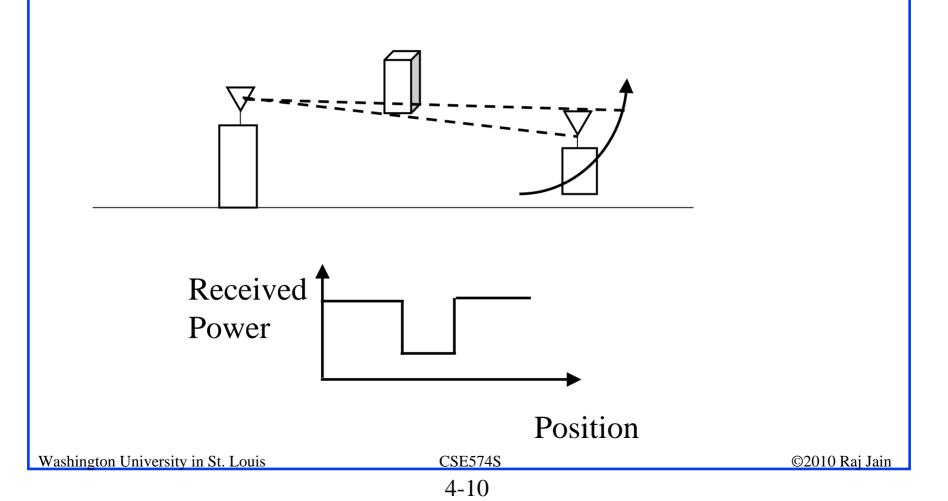
$$P_R = P_T G_T G_R \left(\frac{h_t h_r}{d^2}\right)^2$$

- □ Here, h_T and h_R are heights of transmit and receive antennas
- □ It is valid for distances larger than


$$d_{\rm break} = 4h_T h_R / \lambda$$

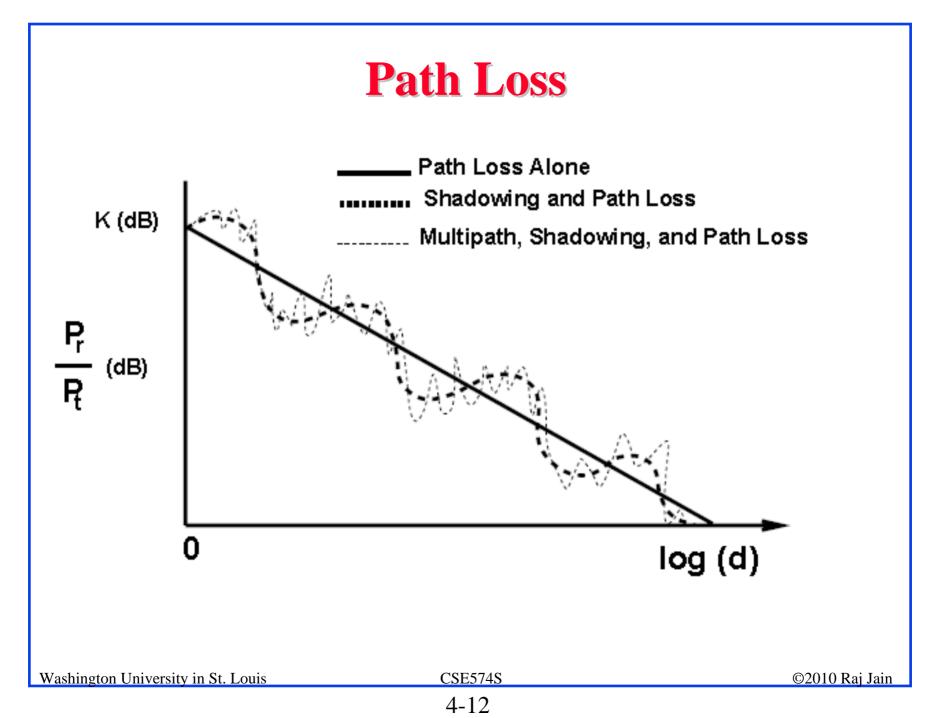
- Note that the received power becomes independent of the frequency.
- Measured results show n=1.5 to 5.5

Small Scale Fading


□ The signal amplitude can change by moving a few inches ⇒ Small scale fading

⁴⁻⁹

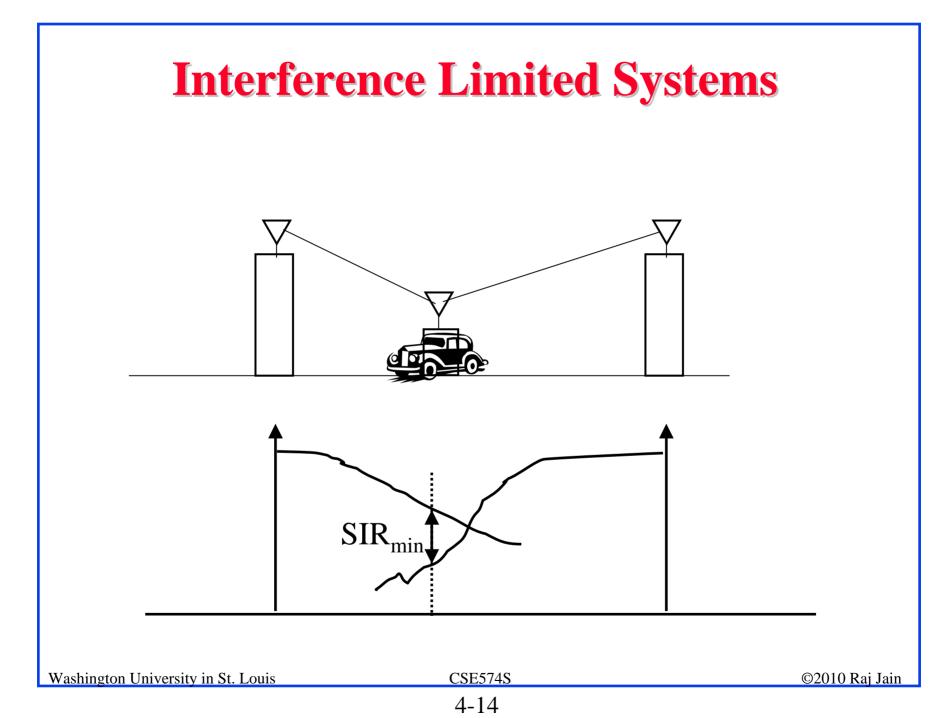
Large Scale Fading

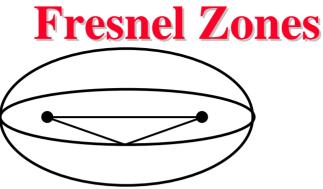

□ Shadowing gives rise to large scale fading

Shadowing

$$PL(d) dB = \overline{PL}(d_0) + 10\alpha \log\left(\frac{d}{d_0}\right) + \chi$$

- $\square \ \chi$ is a Gaussian random variable with standard deviation σ^2
- Power received at the same distance may be random and has log normal distribution
- Log Normal Shadowing

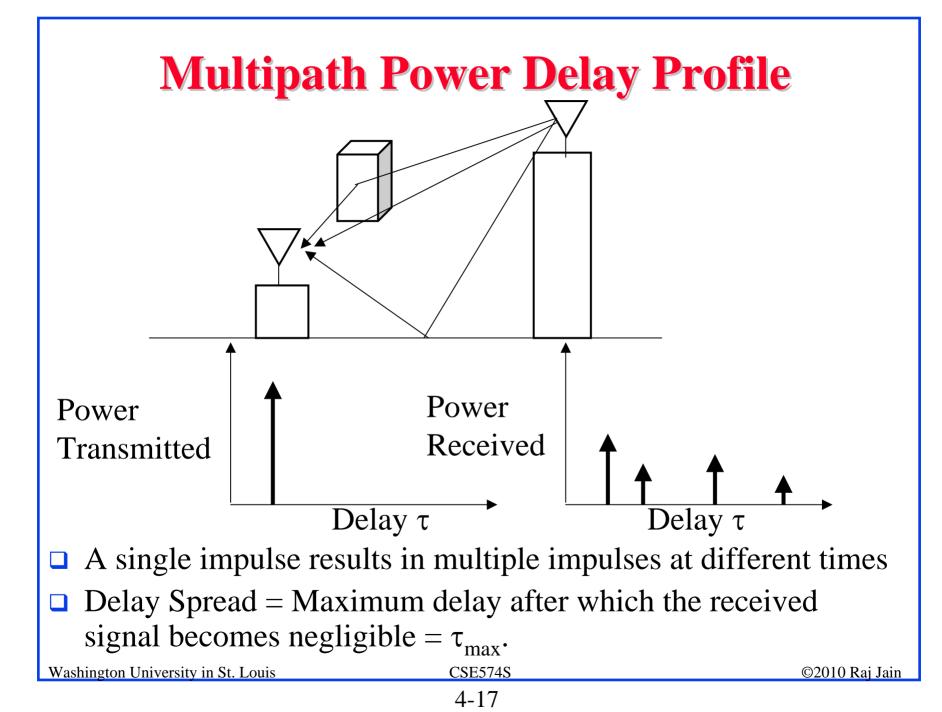


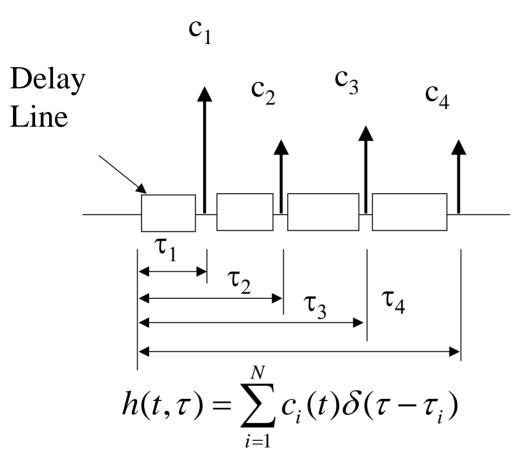

Noise

Noise consists of 3 components:

1. Thermal Noise: Proportional to absolute temperature

- > Noise Power Spectral Density $N_0 = k_B T$
- > Where, $k_B = Boltzman's constant = 1.38 \times 10^{-23}$ Joules/Kelvin
- ➤ For a band of width B:
 - □ Noise Power $P_n = N_0 B = -174 + 10 \log_{10}(B) dBm$ at 300°K
- 2. Spurious Emissions: Car ignition and Electronic devices Decreases at higher frequencies. More noise in urban areas.
- 3. Receiver Noise: Amplifiers and mixers add noise.
 - > Noise generated before the amplifiers also gets amplified




- Draw an ellipsoid with BS and MS as Foci
- □ All points on ellipsoid have the same BS-MS run length
- □ Fresnel ellipsoids = Ellipsoids for which run length = $LoS + i\lambda/2$
- □ At the Fresnel ellipsoids results in a phase shift of i\pi
- Radius of the ith ellipsoid at distance d_T from the transmitter and d_R from the receiver is $\sqrt{\frac{1\lambda d_T d_R}{d_T \pm d_T}}$
- Free space (d²) law is followed up to the distance at which the first Fresnel Ellipsoid touches the ground

Link Budget

Transmitted Power $P_T = 30$ W Cable Loss Antenna Gain G_T EIRP (Equivalent Isotropically Radiated Power)	= 45 dBm $= -5 dB$ $10 dB$ $50 dBm$
Receiver Sensitivity	-102 dBm
Fade Margin	12 dB
Minimum Received Power	-90 dBm
Allowable Path Loss	140 dB
Path loss at $d_{\text{break}} = 100 \text{m} \frac{\lambda}{4\pi d)^2}$	72 dB
Path loss beyond breakpoint $(d/100)^{-n}$	68 dB
Coverage distance $100 \times 10^{6.8/n}$	8.8 km if n=3.5

Tapped Delay Line Model

□ Coherence Time = Time for which channel remains same

□ Coherence Bandwidth = Bandwidth for which channel remains

Doppler Spread

- Power Delay Profile of Channel = Power distribution over time for an impulse signal
- Doppler Power Spectrum = Power Distribution over frequency for a signal transmitted at one frequency
- □ Non-zero for $(f-f_D \text{ to } f+f_D)$
- $\Box Doppler spread = f_D$
- □ Coherence Time = 1/Doppler Spread
- If the transmitter, receiver, or intermediate objects move very fast, the doppler spread is larege and coherence time is small

Typical Doppler Spread

Carrier Freq	Speed	Max Doppler Spread	Coherence Time
2.5 GHz	2 km/hr	4.6 Hz	200 ms
2.5 GHz	45 km/hr	104.2 Hz	10 ms
2.5 GHz	100 km/hr	231.5 Hz	4 ms
5.8 GHz	2 km/hr	10.7 Hz	93 ms
5.8 GHz	45 km/hr	241.7 Hz	4 ms
5.8 GHz	100 km/hr	537 Hz	2 ms

4-20

- □ Path loss increase at a power of 2 to 5.5 with distance.
- □ Fading = Changes in power changes in position
- □ Fresnel zones = Ellipsoid with distance of $LoS+i\lambda/2$ Any obstruction of the first zone will increase path loss
- □ Coherence time = Time for which channel remains same
- Doppler Spread = Frequency Band over which channel remains same

Homework 4

Determine the mean received power at a SS. The channel between a base station at 14 m and the subscriber stations at 4m at a distance of 500m. The Transmitter and Reciver antenna gains are 10dB and 5 dB respectively. Use a power exponent of 4. Transmitted power is 30 dBm.

References

R. Jain, "Channel Models Tutorial," http://www.cse.wustl.edu/~jain/cse574-08/ftp/channel_model_tutorial.pdf