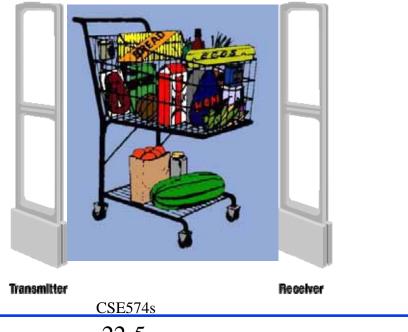


- □ What is RFID?
- **RFID:** Applications
- □ RFID Tags and RFID Readers
- Reader-Tag Coupling
- **RFID** Standards
- Security Issues

What is **RFID**?

- Radio Frequency Identification
- □ Reader queries using RF, ID sends its ID using RF
- Competes with Bar Code, Magnetic stripes, Magnetic Ink Character Recognition (MICR) on Bank Checks

RFID: Applications


- □ Pioneered by British during World War II to identify aircrafts
- 1960's US Government started using RFID on nuclear and hazardous materials
- Garage door openers use RFID
- Implants in human, horses, fishes, animals
 Animal ID Standards ISO 11784 and 11785 use RFID
- Automatic Toll Collection
- Access control, Equipment Tracking
- □ All shipments to DoD must be RFID tagged.
- Sensor+RFID can be used to monitor products inside sealed shipping containers

Applications (Cont)

- □ Warranty information on RFID tags
- Smart medical cabinets remind patients to take medications and call doctors if missed
- Retail loss prevention

Washington University in St. Louis

□ No need to unload grocery carts for checkout

©2008 Raj Jain

RFID Tags

- Tag = Antenna, Radio receiver, radio modulator, control logic, memory and a power system
- **Power Source**:
 - Passive Tags: Powered by incoming RF. Smaller, cheaper, long-life. Approx range 5m.
 - Active Tags: Battery powered. Can be read 100 ft away.

More reliable reading.

Semi-Passive tags: Transmit using 'Backscatter' of readers' RF power. Battery for logic. Range like passive. Reliability like active.

Tags (Cont)

□ Size:

- > Hitachi mu-chip is 0.4 mm on a side. Designed to be embedded in paper documents. Can be read within a few cm.
- Verichip makes tags the size of grain of rice. Designed to be implanted in humans. Identify patients.
- Semi-passive RFIDs used in E-Z Pass toll collection are paperback book size. 5-year battery.
- □ Security:
 - > **Promiscuous Tag**: Can be read by any reader. Most tags.
 - Secure Tag: Need reader authentication. Usually manual passwords.

Tags (Cont)

Components:

- Simple tags with Serial #. 96-bit block of readonly storage (ROM).
- > Read-write memory.
- > Tags may have embedded sensors (tire pressure sensor)
- □ Kill Feature: Special code causes the chip to stop responding.
- □ Multiple tags can interfere
 - \Rightarrow Need a singulation protocol
 - \Rightarrow Reader interrogates one tag at a time.

RFID Readers

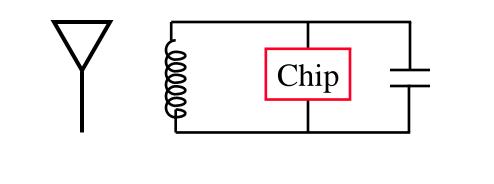
- □ Sends a pulse of radio energy and listens for tags response
- Readers may be always on, e.g., toll collection system or turned on by an event, e.g., animal tracking
- Postage stamps size readers for embedding in cell phones Larger readers are size of desktop computers
- □ Most RFID systems use License-exempt spectrum
- Trend towards high-frequency

Band	Frequency	λ	Classical Use
LF	125-134.2 kHz	2,400 m	Animal tagging and
HF	13.56 MHz	22 m	keyless entry
UHF	865.5-867.6 MHz (Europe)	32.8 cm	Smart cards, logistics, and
	915 MHz (USA)		item management
	950-956 MHz (Japan)		
ISM	2.4 GHz	12.5 cm	Item Management
Washington U	©2008 Raj Jai		

Reader-Tag Coupling

□ Passive tags have capacitor to store energy for replying (TDD)

- Can respond on another frequency while reader is still transmitting (FDD)
- Near-Field = Within a few wavelength Far-field = Beyond a few wavelengths
- Low-Frequency (large λ) system operate in near-field High-Frequency and UHF system operate in far-field
- 1. Inductive Coupling: In near-field
 - > Both Antennas are coils (like transformers)
 - Reader sends a AM/FM/PM modulated wave.
 - Tag responds by varying its load on the reader.



Coupling (Cont)

- 2. Back Scatter: In far-field
 - > Reflecting the energy back.
 - > Tag changes its reflection to respond.
- 3. Capacitive Coupling:

Washington University in St. Louis

- > Charged plates as antennas on readers and tags
- > Can be easily printed.

CSE574s

RFID Range

- Reading range depends upon the transmitted power, antenna gains, frequency, reader receiver sensitivity.
- Affected by the environment: Metal objects (aluminum foil), Water (Wetness, salt water)

RFID Standards

□ ISO/IEC JTC1/SC31/WG4

- > Automatic Identification and Data Capture Techniques
- > ISO (International Organization for Standardization) and
- > IEC (International Electro-Technical Commission)
- > Joint Technical Committee number one, JTC 1 (ISO/IEC)
- Subcommittee SC 31
- □ Electronic Product Code (EPCGlobal) Industry consortium
- □ JTC 1/SC 17 Identification Cards and related devices
- □ ISO TC 104 / SC 4 Identification and communication
- □ ISO TC 23 / SC 19 Agricultural electronics
- □ CEN TC 278 Road Transport and Traffic Telematics
 - Comité Européen de Normalisation

(European Committee for Standardization) Washington University in St. Louis

©2008 Raj Jain

RFID Standards (Cont)

- CEN TC 23/SC 3/WG 3 Transportable Gas Cylinders -Operational Requirements - Identification of cylinders and contents
- □ ISO TC204 Transport Information and Control Systems
- American National Standards Institute (ANSI) X3T6: RF Identification
- European Telecommunications Standards Institute (ETSI)
- □ ERO European Radio communications Office (ERO)
- Universal Postal Union
- □ ASTM International (Testing Materials)

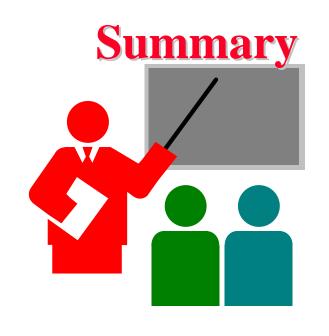
Security Issues

- □ Unauthorized Reading:
 - Competitors can scan closed boxes and find out what is inside
 - Someone can read your RFID enabled credit card
- **Unathorized Writing:**
 - Can change UPC/price of an item
 - Can kill a tag
- □ Solution: Reader authentication.
 - > Passwords can be sniffed.

Privacy

What can you do to prevent others from reading your RFID after you purchase the item?

- □ Kill the tag. Need authentication.
- Put the tag to sleep. Used for reusable tags. Libraries. Authentication to put to sleep and to awaken.
- Re-label: Customer can overwrite customer specific information. Manufacturer specific information can remain.
- Dual Labeling: One tag with customer specific information.
 One with manufacturer specific information.
- PIN: The reader needs to provide a PIN. The user can change the PIN.
- Distance-Sensitive: Tag is designed so that the information provided depends upon the distance
- Blocker: A device that generates random signal and prevents others from reading your RFIDs. Use aluminum foil.


Washington University in St. Louis

Range of Attacks

- □ Nominal reading range: Standard power reader
- Rogue reading range: More powerful readers can read from longer distance
- Tag-to-Reader Eavesdropping Range: Passively listen to response with a more sensitive receiver
- Reader-to-tag Eavesdropping Range: Passively listen to query with a more sensitive receiver. Can do this from very far.
- Detection Range: Can just detect the presence of a tag or a reader. Important in defense applications where important weapons or targets are tagged.

Types of Attacks

- Sniffing and eavesdropping: Passively listening with very sensitive readers. Competition can find what you are shipping/receiving
- □ Spoofing: Copy tag for use on other items
- Replay: Unauthorized access by recording and replaying the response. Garage door openers.
- Denial of Service: Frequency jamming
- **Blocking:** Aluminum foils

- 1. Three types: Passive, Active, Semi-Passive
- 2. Kill feature, secure and promiscuous tags
- 3. Low/High/Ultra High Frequency, ISM band
- 4. Near field and far field
- 5. Three Couplings: Inductive, Backscatter, Capacitive
- 6. Wireless security and privacy issues are even more severe with RFID due to limited tag capability.

Washington University in St. Louis	CSE574s	©2008 Raj Jain
	22-19	

Reading Assignment

- C. Jechlitschek, "A Survey Paper on RFID Trends," <u>http://www.cse.wustl.edu/~jain/cse574-06/rfid.htm</u>
- Introduction to Radio Frequency Identification (RFID), <u>http://www.aimglobal.org/technologies/rfid/resources/RFIDPri</u> <u>mer.pdf</u>
- Radio Frequency Identification, <u>http://www.technology.gov/reports/2005/RFID_April.pdf</u>
- □ How RFIDs Work,

http://electronics.howstuffworks.com/smart-label.htm

 How Anti-shoplifting Devices Work, <u>http://electronics.howstuffworks.com/anti-shoplifting-device.htm</u>