# Wireless Mesh and Multi-Hop Relay Networks

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-08/



### **Multi-Hop Networks**

- Relay: Dedicated *carrier owned* infrastructure, Tree based topology. One end of the path is the base station
- Mesh: Routing by *subscriber* equipment, Multiple connections, mesh topology





### **Multi-Hop Relay Networks**

- □ Next generation networks need very high data rates
- **D**ata rate  $\propto 1$ /distance
  - $\Rightarrow$  High density of cell towers  $\Rightarrow$  High cost
- Multi-hop Networks have fixed infrastructure
  Do not complex routing techniques
- Relays are low-cost low transmit power and have no connection to wired infrastructure
- □ More capacity due to shorter distances and frequency reuse
- □ Goal: High capacity and coverage (not absence of infrastructure)



### **Coverage Extension**

- □ Side streets can be covered by relays
- □ A series of relays can be used to forward traffic to base
- □ Relaying either in time domain or frequency domain

Mobile



### **Throughput Enhancement**

- Virtual Antenna Arrays
- □ Multiple cooperating relays act as distributed MIMO
- Challenges: Synchronization, Sharing of Channel State Information



©2008 Raj Jain

# iCAR

- □ Integrated Cellular and Ad-Hoc Relaying System
- Relaying stations are used to divert traffic from congested cells to nearby lightly loaded cells
- Even existing calls can be moved
  ⇒ Secondary relaying



### 802.16j Mobile Multi-hop Relay (MMR)

 Three types of Relays: Fixed, Nomadic (special events, Indoor), Mobile Relays (Trains)



# **802.16j Technical Issues**

- Centralized vs. distributed control:
  Functional division between Base and Relay
- □ Scheduling
- **Radio Resource management**
- Power Control
- **Call Admission and Traffic Shaping Policies**
- QoS: Network wide load balancing, Congestion control
- □ Security
- Management

Note: Routing is not an issue with fixed relays

### **Multi-Hop Relay Networks: Summary**

- Relay concept applies to Cellular Networks and to Wireless Access
- Relays can help overcome obstacles
- □ Relays help improve the capacity by decreasing the distance
- Relays help decrease the cost since they are much cheaper than base stations
- □ Routing with fixed relays is simple
- Increasing delays
  - $\Rightarrow$  Number of hops must be limited to two or three
- $\Box$  Distributed MIMO  $\Rightarrow$  Improvement in data rates

### **Mesh Networks**

### **WPAN Mesh: 802.15.5**

### □ WLAN Mesh: 802.11s

### 802.15.5 WPAN Mesh Networking

- Goal: Range Extension, *Routing Redundancy*
- □ Issues:
  - > Handle Multiple Master devices
  - > Handle multiple super frame coexistence
  - Fair sharing of channel time
  - > Minimal changes to 802.15.3 and 802.15.4





### **802.11s Device Classes**

- □ Stations (STA): Non-mesh capable station
- □ Mesh Points (MP): Mesh capable station
- □ Mesh AP (MAP): MP + AP
- Mesh Portal (MPP): Entry/exit to wired network. Support transparent bridging, address learning, and bridge-to-bridge communication (spanning tree etc).
- Root Portal: MPP configured for topology building. Elected to become the root of the default forwarding tree



### **802.11s Hybrid Wireless Mesh Protocol**

Two Configurations: With Root Portal and Without Root Portal Route Discovery:

- □ W/O Root Portal:
  - On-demand Radio Metric AODV (RM-AODV) Cost = Amount of air time consumed per packet transmission
  - Radio Aware OLSR Path Selection Protocol (Optional)
    Frequency of LS forwarding is reduced with hops (Fish eye state routing)
- □ W Root Portal: Most of the traffic is to the root.
  - > Proactive. Tree based distance vector routing.

©2008 Rai Jain

### **Common Channel Framework**

- □ All stations use a single control channel
- □ Stations dynamically select the data channel
- They announce it on the common control channel using RTX/CTX (Not RTS/CTS) packets





### **Wi-Fi Mesh Products**

#### LocustWorld.com

MeshAP S/W: Freeware from locustworld.com. Allows computers to act as wireless routers.

- > Uses AODV protocol. Problem of false DVs.
- MeshBox: Complete hw/sw package
- MeshBox 2 or MexBox: Uses two Wi-Fi radio modules.
  Successive routers could share a channel, e.g., 1+2, 2+3, 3+1 among three routers.

#### □ FireTide Network:

> HotPort 4.9 GHz Public Safety Mesh Nodes,

- HotPort Indoor Mesh Nodes,
- > HotPort Outdoor Mesh Nodes.
- Uses MANET (Topology Bradcast based on Reverse Path Forwarding (TBRPF) protocol

| Washington University in St. Louis | CSE574s | ©2008 Raj Jain |
|------------------------------------|---------|----------------|
|                                    | 21-19   |                |

### Wi-Fi Mesh Products (Cont)

Motorola Mesh Networks,

http://www.motorola.com/mesh/index.htm

- □ Tropos Networks, <u>www.tropos.com</u>
- □ PacketHop Communications, <u>www.packethop.com</u>
- □ MeshDynamics, <u>http://www.meshdynamics.com/index.html</u>
- □ SkyPilot Networks, <u>http://www.skypilot.com/</u>
- Proxim Wireless, http://www.proxim.com/can/index.html
- □ Nortel Networks,

http://www2.nortel.com/go/solution\_content.jsp?segId=0&catI d=0&parId=0&prod\_id=47160&locale=en-US

□ WaveWireless, <u>www.wavewireless.com</u>



- Multi-Hop Relay Networks are designed for coverage extension and throughput enhancements
- 802.16j Mobile Multi-hop Relay (MMR) standard allows for fixed, nomadic, and mobile relays
- 802.15.5 WPAN Mesh is being designed for routing redundancy and range extension
- 802.11s Mesh Networks use RM-AODV and RA-OLSR for on-demand routing along with pro-active tree based routing

Washington University in St. Louis

### References

- R. Tafazolli (ed), "Technologies for the Wireless Future," Wiley, 2005, 576 pp., ISBN: 0470012358
- □ Murthy and Manoj, Chapter 13
- G. Held, "Wireless Mesh Networks," Auerbach Publications, 2006, ISBN:0849329604
- I. F. Akyldiz, et al, "Wireless Mesh Networks: A Survey," Computer Networks, 2004, <u>http://www.ece.gatech.edu/research/labs/bwn/mesh.pd</u>