Wireless Sensor Networks

Raj Jain
Washington University in Saint Louis
Saint Louis, MO 63130
Jain@cse.wustl.edu

Audio/Video recordings of this lecture are available at:

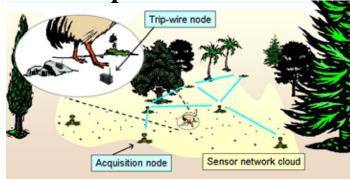
http://www.cse.wustl.edu/~jain/cse574-08/

Washington University in St. Louis

CSE574s

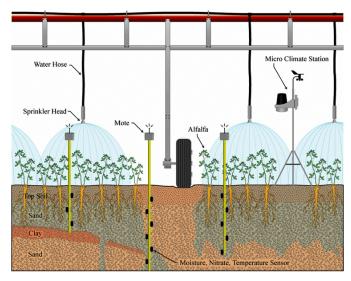
- Sensor Applications
- Sensor Network Architecture
- Data Dissemination
- MAC Protocols for Sensor Networks
- Location Discovery
- Quality of a Sensor Network
- Time Synchronization
- Transport Layer Issues
- Sensor Network Security
- Real-Time Communication

Washington University in St. Louis


CSE574s

Sensor Applications

Battlefield Surveillance Chemical, Biological Weapons



Habitat exploration of animals

Washington University in St. Louis

Crops and Agriculture Forest Fires and Flood Detection

Patient heart rate, blood pressure

Sensor (vs. Ad-Hoc)

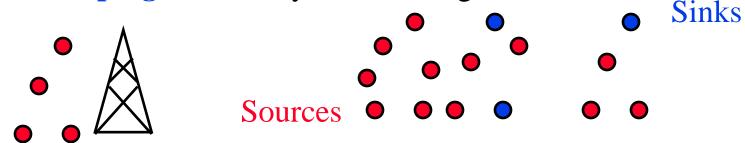

- □ Large scale
- Batteries may not be replaceable
- May not have global identifiers
- □ Queries may be data centric rather than address centric:
 - > Who's temperature is more than 95 degree vs. What is your temperature?
 - ⇒ Geographical routing, Data fusion, Data aggregation

Washington University in St. Louis

CSE574s

Sensor Network Architecture

- 1. Layered: Base station, one-hop layer, 2-hop layer, ...
- 2. Clustered: Nodes elect and communicate through cluster heads

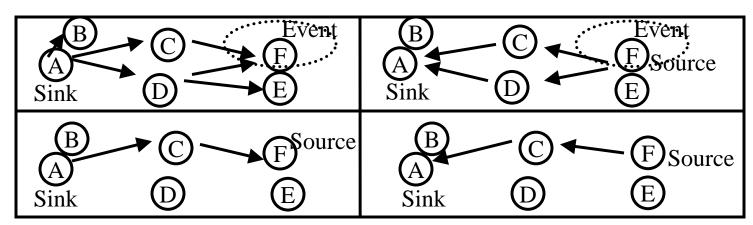

CSE574s

©2008 Raj Jain

Washington University in St. Louis

Data Dissemination

- □ *Sources, Sinks*, and *Events*
- **Data Gathering**: Sources send periodically to central collection points (base station)
- □ Data Diffusion: Sinks propagate their interests (type of data or event) Nodes cache interests and report events when detected
 - Flooding: Implosion (duplicate messages),
 overlap (multiple sources),
 blind (no consideration of energy or resources)
 - > Gossiping: Randomly select a neighbor

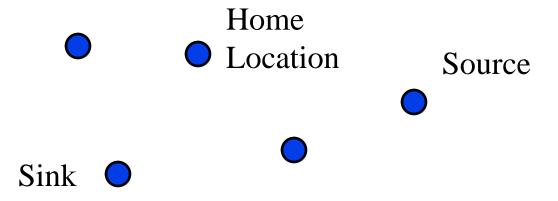


Washington University in St. Louis

CSE574s

Directed Diffusion

- Sensor nodes generate queries. Flooded to entire network.
- □ Intermediate node cache the queries and the previous neighbor
- □ A gradient (= rate) is applied at each hop to the query
- Data is propagated along the reverse path proportional to the gradient
- □ Sink can reinforce a path by requesting higher rates along that path

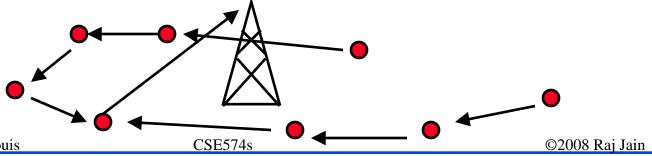


Washington University in St. Louis

CSE574s

Geographic Hash table

- Query (key) is hashed in a (x,y) coordinate and is sent to a node nearest to that coordinate \Rightarrow Home Location (k)
- □ The data is hashed and sent to its home location from where it is propagated to the sinks \Rightarrow Uniform Storage load
- Redundancy can be used for home location



Washington University in St. Louis

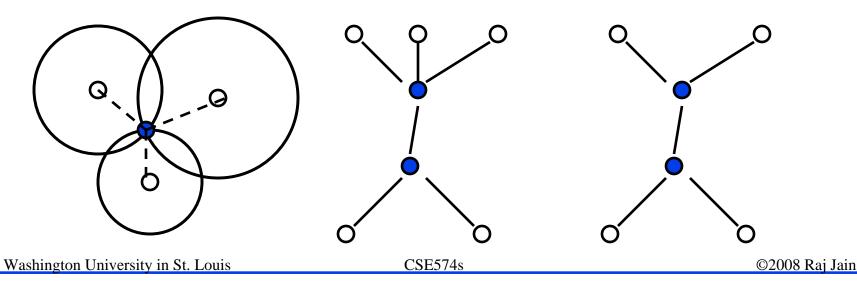
CSE574s

Data Gathering

- \Box Gathering \Rightarrow From all sensor nodes to the BS
- Minimize delay × energy
- PEGASIS: Power-Efficient Gathering for Sensor Information Systems
 - > Each nodes combines its data in the message and sends to its nearest neighbor not visited before
 - > Starting from the farthest node
 - > Ending at the leader which passes it to the base
 - > A Token is passed backwards from the leader

MAC Protocols for Sensor Networks

Three types:


- 1. Fixed Allocation: Predetermined assignment
- 2. Demand Based: Based on need
- 3. Contention based: No delay guarantee
- **□ Self-Organizing MAC for Sensors** (SMACS):
 - Capacity >> Data rate
 - > Neighbors synchronize and agree on times for transmission
 - ➤ Only neighbors synchronize ⇒ Synch energy saved
 - > Sleep when not transmitting \Rightarrow Further energy savings
- □ TDMA, FDMA, TDMA/FDMA, CSMA are also possible
- □ Bluetooth, 802.11, and ZigBee are MACs used in practice

Washington University in St. Louis

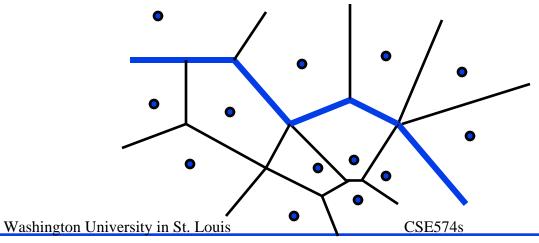
CSE574s

Location Discovery

- Location Stamp on data
- □ Indoor Localization: Reference nodes in each location
- □ Atomic Multi-Lateration: Need 3 references
- Iterative Multi-Lateration: Nodes with known location become references for others
- □ Collaborative Multi-Lateration: Use quadratic equations

Global Positioning System (GPS)

- US Department of Defense \$12B
- Man made stars
- 24 Satellites and their ground stations
- Triangulation
- \square Measures travel time of radio signal \Rightarrow Distance
- Satellites broadcast current time and their location using a Direct Sequence Code
- □ 1023 chips per bit
- \Box 3 satellites give (x, y, z)
- □ 4 satellites give (x, y, z, t)
- Correct for any delays experienced through the atmosphere
- http://www.edu-observatory.org/gps/tutorials.html


Washington University in St. Louis

CSE574s

Quality of a Sensor Network

- Quality = Coverage + Exposure
- Exposure: Ability to observe a target.

 Ability decreases with the distance from the target
- □ Coverage: How well is the region covered with sensors Find the least covered path that could be followed by enemy
- **Voronoi Diagram**: Cost = Distance from nearest sensor Find the maximum cost path.
- Opposite Problem: Find the best covered path

Sensor Standards

- □ 802.11, Bluetooth, ZigBee
- IEEE 1451: Smart Transducer Interface for Sensors and Actuators
 - > Seven parts 1451.0 through 1451.6 dealing with different issues
 - > 1451.5 is wireless interface specifies 802.11, bluetooth and ZigBee

Washington University in St. Louis

CSE574s

Time Synchronization

- GPS not accessible inside buildings, under water.
- Send a time stamp to neighbor
- □ One-way Delay = Send Time (Preparing the message) + Access
 Time (media access) + propagation time + receive time (processing at receiver)
- Best to timestamp the message at the PHY layer of the receiver
- **□** Post Facto Synchronization:
 - > Announce time along with the event.
 - > Everyone else synchronizes to it
 - > Leader periodically sends sync messages, which are flooded
 - > Distributed election of the leader based on a random number
- Resynchronization: Upon merger of partitions. Better to advance the clock

Washington University in St. Louis

CSE574s

Transport Layer Issues

- Reliable transmission of data from sources to sinks
- **PSFQ**:
- \square Ask previous hop to retransmit if error \Longrightarrow Fetch
- \square Forward to next hops \Rightarrow Pump
- Pump slowly and fetch quickly (PSFQ)
 - ⇒ Minimize storage, maximize reliability
- □ Farthest node sends a report of delivery status to the source.
- □ Intermediate nodes append their status to the same message.

Washington University in St. Louis

CSE574s

Sensor Network Security

Public key too compute intensive

Localized Encryption and Authentication Protocol (LEAP)

- All nodes have an individual key shared with BS
- □ All nodes also have a group key
- \square Group key and Sensor ID \Rightarrow Master key of the sensor
- ☐ Hello to neighbor using group key and ID
 - ⇒ Master key of neighbors
- \square Master keys of two neighbors \Rightarrow Shared key between neighbors
- \square Group is then erased \Rightarrow No replay attack
- ☐ Immediate neighbors form a cluster.

 One node generates a cluster key and sends to all members.
- Assumes network setup is fast and so intruders can't affect initialization.

Washington University in St. Louis

CSE574s


Real-Time Communication

- □ SPEED: Geographical routing ⇒ Send packets to neighbors in the direction of the destination
- Nodes send delay feedback backwards as packets are forwarded
- □ Nodes can also send a backpressure message if delay too high
- Select the neighbor with least delay
- If no neighbor can meet the delay constraint, the packet is dropped
- \square No node close to the destination \Rightarrow Void
- □ Void avoidance ⇒ Issue a back-pressure with infinite delay
 ⇒ Search for alternate paths

Washington University in St. Louis

CSE574s

Summary

- Data diffusion queries are to a zone and to individual nodes
- Location Discovery is by triangulation or multi-lateration
- Quality of a Sensor Network is measured by coverage and exposure
- □ Time Synchronization by exchanging timestamps
- □ Transport: Pump slowly and fetch quickly increases reliability
- Real-Time Communication using deadline based forwarding

Washington University in St. Louis

CSE574s

Reading Assignment

□ Read Chapter 12 of Murthy and Manoj

Washington University in St. Louis

CSE574s

Homework

A node X receives three beacons from nodes A, B, and C at (0, 0, 0), (2, 6, 0), and (3, 4, 0), respectively. From the received signal strengths, it determines the distances to A, B, and C to be $\sqrt{26}$, $\sqrt{6}$, and $\sqrt{11}$, respectively. Find the coordinates of X.

Washington University in St. Louis

CSE574s