Wireless Cellular Networks: 1G and 2G

Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130

Audio/Video recordings of this lecture are available at:

http://www.cse.wustl.edu/~jain/cse574-08/

- Cellular Architecture
- □ Advanced Mobile Phone System (AMPS)
- Cellular Digital Packet Data (CDPD)
- Wireless Cellular Generations
- GSM
- CdmaOne

Characterizing Frequency Reuse

- D = minimum distance between centers of cells that use the same band of frequencies (called co-channels)
- $\square R = radius of a cell$
- □ d = distance between centers of adjacent cells (d = $R\sqrt{3}$)
- \square N = number of cells in repetitious pattern (**Cluster**)
 - > Reuse factor
 - > Each cell in pattern uses unique band of frequencies
- □ Hexagonal cell pattern, following values of N possible

> $N = I^2 + J^2 + (I \times J), I, J = 0, 1, 2, 3, ...$

- □ Possible values of N are 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ...
- $\Box D/R = \sqrt{3N}$
- $\Box \quad \mathrm{D/d} = \sqrt{N}$

Ref: Derivation in Section 3.2 of Murthy and Manoj

 \mathbf{D}

Frequency Reuse Example

What would be the minimum distance between the centers of two cells with the same band of frequencies if cell radius is 1 km and the reuse factor is 12?

 $D/R = \sqrt{3N}$ $D = (3 \times 12)^{1/2} \times 1 \text{ km}$ = 6 km

Cellular Architecture (Cont)

- Base station controller (BSC) and Base transceiver station (BTS)
- □ One BTS per cell.
- □ One BSC can control multiple BTS.
 - > Allocates radio channels among BTSs.
 - > Manages call handoffs between BTSs.
 - Controls handset power levels
- Mobile Switching Center (MSC) connects to PSTN and switches calls between BSCs. Provides mobile registration, location, authentication. Contains Equipment Identity Register.

Cellular Architecture (Cont)

- Home Location Register (HLR) and Visitor Location Register (VLR) provide call routing and roaming
- VLR+HLR+MSC functions are generally in one equipment
- Equipment Identity Register (EIR) contains a list of all valid mobiles.
- Authentication Center (AuC) stores the secret keys of all SIM cards.
- Each handset has a International Mobile Equipment Identity (IMEI) number.

Advanced Mobile Phone System (AMPS)

- □ First generation analog system for North America
- □ Two 25-MHz bands are allocated to AMPS
 - Forward (Down): BS to mobile unit (869–894 MHz)
 - > Reverse (Up): Mobile to base station (824–849 MHz)
- □ In each market two operators are accommodated
- □ Each operator is allocated only 12.5 MHz in each direction
- ❑ Channels spaced 30 kHz apart ⇒ 416 channels per operator 21 Control/paging/access, and 395 traffic channels
- Each call uses two traffic channels Forward = Reverse + 45 MHz
- Control channels are 10 kbps digital channels
 Traffic channels are analog using frequency modulation

Cellular Digital Packet Data (CDPD)

- □ Allows data to use idle cellular channels
- Data hops from one channel to next as the channels become busy or idle
- Quickly hops-off a channel grabbed by cellular system.
 In practice, dedicated channels.

	Voice Call	Data packets
	Idle Channel	– p
shington University in St. Louis	CSE574s	©2008 Raj Jain
	15-10	

Wireless Generations

- □ 1G: Analog Cellular Phones. Needs a modem. 9.6 kbps max.
- 2G: Digital Cellular Phones. No modem required. 19.3 kbps max. GSM, CDMA => Clear voice, Encryption
- □ 2.5G: GPRS. 144kbps. Data only.
- □ 3G: Future high-speed data with Voice. 64 kbps to 2 Mbps
- □ 4G: **IP based**

Wireless Generations (Cont)

□ Acronyms:

- > Advanced Mobile Phone System (AMPS)
- > Total Access Communication System (TACS)
- Interim Standard (IS) from Electronic Industry Association (EIA)/Telecommunications Industry Association (TIA)
- > Digital Advanced Mobile Phone System (D-AMPS)
- Global system for mobile communication (GSM)
- Digital Communication Network (DCN)
- North America (NA)
- Frequency/Time/Code division multiple access (FDMA/TDMA/CDMA)

P('N Personal Communication Service (PCS) □ Personal = User specific (vs location specific) \Rightarrow Phone # for user regardless of his/her location FCC spectrum for PCS requires digital service □ PCS = Digital Cellular = IS-136, GSM, or CDMA □ PCS Spectrum: Unlic. B E EF B F Α Α D PCS 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 MHz Blocks A, B are for major trading areas. Blocks C, D, E, F are for basic trading areas. Unlicensed PCS is nationwide. Washington University in St. Louis CSE574s ©2008 Raj Jain 15 - 13

CdmaOne
Code Division Multiple Access (CDMA)
CdmaOne = 2G (IS-95a), CdmaTwo = IS-95b, CDMA2000 = 3G
□ Each user uses the entire spectrum. 22-40 calls per carrier.
Different spreading code for each user.
Neighboring cells can use the same frequency spectrum (but different codes).
Precise power control is critical.
Can serve more users than TDMA or GSM
Data users limited to 4.8 and 14.4 kbps
CdmaTwo extension offers up to 115.2 kbps
Verizon, Sprint networks are CdmaOne networks

GSM

- Global System for Mobile Communication (GSM)
- 1982: Started as "Groupe Special Mobile" by Conference of European Posts and Telecom (CEPT)
- Good speech quality, ISDN compatibility, and fraud secure.
- □ Specs completed in 1990, Service began in 1992.
- □ 900 MHz operation in Europe.
- UK allocated 1800 MHz and adapted GSM standard as "DCS 1800"
- **DCS** 1800 also used in Russia and Germany.

GSM (Cont)

- FCC allocated 1900 MHz for PCS. Many carriers adapted GSM standard as "DCS 1900" or "North American GSM"
- VoiceStream, Powertel, and Bellsouth Mobility use NA GSM.
- □ 280 GSM networks in 100 countries worldwide.

¹⁵⁻¹⁷

GSM Radio Link (Cont)

- **3** 890-915 MHz uplink, 935-960 MHz downlink
- □ 25 MHz \Rightarrow 124 × 200kHz Channels
- □ Each channel is TDMA with burst (slot) period of 15/26 ms.
- **\Box** Eight burst periods = TDMA frame of 120/26 ms.
- □ One channel = one burst period per TDMA frame.
- □ 26 TDMA frames ⇒ one Multiframe
 24 are used for traffic, 1 for control, and 1 is unused.
 Slow Associated Control Channel (SACCH)
 If SACCH does not have sufficient capacity, Fast Associated
 Control Channel (FACCH) is used by stealing ½ of some bursts.
- □ Stealing bits identify whether the 1/2-slot carries data or control
- □ 200 kHz = 270.8 kbps/8 slots \Rightarrow 34 kbps/slot 15/26 ms/slot \Rightarrow 270.8*15/26 = 156.25 bits/slot
 - \Rightarrow 9.6 kbps/user after encryption and FEC overhead
- □ Full rate vocoders \Rightarrow Voice is sampled at 64 kbps compressed to 16 kbps. Washington University in St. Louis CSE574s ©2008 Raj Jain

GSM Specs

- Subscriber Identify Module (SIM) contains a micro-controller and storage. Contains authentication, encryption, and accounting info.
 Owners need 4-digit PIN.
- SIM cards can contain additional info such as emergency medical info.
- Mobile Assisted Handoff: Mobile sends identities of six candidate base stations for handoff. MSC selects.
- □ Short Message Service (SMS)
 - > Up to 160 characters
 - Sent over control channel
 - > Unicast or broadcast

Cellular System Capacity Example

- A particular cellular system has the following characteristics: cluster size =7, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.
- A. Using FDMA/FDD:
 - 1. How much bandwidth is available per cell using FDD?
 - 2. How many users per cell can be supported using FDMA?
 - 3. What is the cell area?
 - 4. What is the cell radius assuming circular cells?
- B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
 - 1. What is the bandwidth and data rate per channel?
 - 2. How many time slots are needed in a TDMA frame to support the required number of users?
 - 3. If the TDMA frame is 10ms, how long is each user slot in the frame?
 - 4. How many bits are transmitted in each time slot?

Cellular System Capacity (Cont)

- A particular cellular system has the following characteristics: cluster size =7, uniform cell size, user density=100 users/sq km, allocated frequency spectrum = 900-949 MHz, bit rate required per user = 10 kbps uplink and 10 kbps downlink, and modulation code rate = 1 bps/Hz.
- □ A. Using FDMA/FDD:
 - 1. How much bandwidth is available per cell using FDD? 49 MHz/7 = 7 MHz/cell
 - $FDD \Rightarrow 3.5 \text{ MHz/uplink or downlink}$
 - 2. How many users per cell can be supported using FDMA? $10 \text{ bbms/wser} = 10 \text{ bHz} \Rightarrow 250 \text{ wsers per cell}$
 - 10 kbps/user = 10 kHz \Rightarrow 350 users per cell
 - 3. What is the cell area?
 - 100 users/sq km \Rightarrow 3.5 Sq km/cell
 - 4. What is the cell radius assuming circular cells?
 - $\pi r^2 = 3.5 \Rightarrow r = 1.056 \text{ km}$

Cellular System Capacity (Cont)

- B. If the available spectrum is divided in to 35 channels and TDMA is employed within each channel:
 - 1. What is the bandwidth and data rate per channel?

3.5 MHz/35 = 100 kHz/Channel = 100 kbps

2. How many time slots are needed in a TDMA frame to support the required number of users?

10 kbps/user \Rightarrow 10 users/channel

3. If the TDMA frame is 10ms, how long is each user slot in the frame?

10 ms/10 = 1 ms

4. How many bits are transmitted in each time slot?1 ms x 100 kbps = 100 b/slot

- 1. Geometry of cells and frequency reuse
- 2. Generations: 1G (Analog), 2G (digital), 3G (Data)
- 3. AMPS is 1G cellular technology using FDMA
- 4. IS-95 is 2G cellular technology using CDMA
- 5. GSM is 2G cellular technology using TDMA

Reading Assignment

- Read sections 3.1 to 3.5 from Murthy and Manoj or read chapter 14 of Stallings Data and Computer Communications, 8th edition (Both books are in 2 hour reserve section of the WUSTL library).
- GSM Mobile Services,"

http://www.geocities.com/gsmmobilereport/index.htm