WiMAX Part II: MAC

Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

Washington University in St. Louis

- □ Key Features
- QoS Classes
- □ ARQ, Hybrid ARQ (HARQ)
- Protocol Structure
- Payload Header Suppression
- □ MAC Headers
- Scheduling and Link Adaptation

WiMAX MAC: Key Features

- Flexible and Extensible Same MAC for all current and future PHYs
- □ Modular: Several optional features. Negotiable SS/BS features
- □ Multiple Topologies: PTP, PMP, mesh
- □ Multiple Antenna Technologies: Adaptive Antennas, MIMO
- Multiple Protocol Payloads: ATM, Packets (IP or Ethernet), W or w/o header suppression
- □ Flexible Retransmission Policies: ARQ, HARQ
- **TDD** and FDD Support
- Variety of Subscribers: Several per subscriber or per connection parameters
- Integrated QoS
- □ Security

Washington University in St. Louis

Base Station and Subscriber Stations

- Base Station (BS): Controls the entire system, frame size, scheduling, admission control, QoS, Ranging, clock synchronization, power control and handoff.
 - > All traffic goes through BS
- Subscriber Station (SS): Find BS, Acquire PHY synchronization, Obtain MAC parameters, Generate bandwidth requests, make local scheduling decisions, follow transmission/reception schedule from BS, perform initial ranging, maintenance ranging, power control
- Mobile Station (MS): Mobility management, Handoff, Power Conservation

Framing and Duplexing

- \Box Burst = n MPDUs with per burst CRC
- Burst Profile: Modulation type, FEC, preamble type, guard time
- Downlink Interval Usage Code (DIUC): Identifies burst profile
- DL Channel Descriptor (DCD): Describes DL PHY. Broadcast periodically by BS. Frame duration, Defines DIUCs.
- Uplink Interval Usage Code (UIUC): Identifies UL burst profiles
- □ UL Channel Descriptor (UCD): Describes UL PHY.

MAP Time Relevance

- DL MAP always refers to current frame
- UL MAP may be broadcast one frame ahead
- FDD UL MAP allows for a round-trip delay and MAP processing time

Frame Control

Downlink

Uplink

Connections and Service Flows

- □ Service Flows = Higher layer flows
- □ Each Service flow has a connection
- □ Extra connections for management and control
- □ 16-bit CID \Rightarrow 65,535 connections
- □ Each station has many connections with BS:
 - > Initial Ranging CID
 - > Basic CID
 - > Primary Management CID
 - > Secondary Management CID: Higher layer
 - > Multicast Polling CID: Bandwidth requests

IEEE 802.16 – QoS Classes

Connection oriented: All traffic is assigned a connection Five Service Classes:

- 1. Unsolicited Grant Service (UGS): CBR traffic, e.g., voice Specified throughput, delay, and delay jitter
- 2. Enhanced Real-Time Polling Service (ertPS): Silence suppressed voice. On/off UGS.
- Real-Time Polling Services (rtPS): rtVBR, e.g., streaming video. Specified peak and average throughput, delay and delay jitter.
- 4. Non-Real-Time Polling Service (nrtPS): nrtVBR, e.g., FTP. Specified peak and average throughput
- 5. Best Effort (BE); No throughput or delay guarantees

ARQ

- □ Allows selective repeat (Stop and Wait, go back n)
- ARQ block size negotiated at connection setup
 Depends upon the Type of Service (ToS), expected delay, etc
- □ ARQ block cannot be fragmented
- □ A fragment may contain blocks from multiple SDUs

Hybrid (HARQ)

- □ Only in OFDMA PHY
- □ Four variants (subpackets) of the burst
- 2nd subpacket is sent iff 1st is not received correctly
 ⇒ Stop and Wait with immediate or synchronous acks
 - \Rightarrow Dedicated PHY channel for acks
- □ The receiver tries to decode using both 1st and 2nd subpackets
- □ Process continues until success or 4th subpacket

IEEE 802.16 Protocol Structure

Service Specific Convergence Sublayer (CS)

MAC PHY MAC Common Part Sublayer (CPS)

Security Sublayer

Physical Layer (PHY)

CS: All functions that are specific to a higher layer protocol

- Classify SDUs based on MAC address, VLANs, priorities
- > Assigns Service Flow ID (SFID) and a connection identifier

> Optional payload header suppression (PHS)

• CPS:

Fragmentation and reassembly of large MAC SDUs

> Packing and unpacking of several small MAC SDUs

IEEE 802.16 Protocol Structure (Cont)

- > QoS control, Scheduling
- > Bandwidth request
- > Automatic repeat request (ARQ)

Payload Header Suppression

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Byte n

- □ PHS Fixed = Fixed header bytes
- □ PHS Mask = Which bytes?
- PHS Index = Which rule? Indicates mask and fixed values
- \Box PHS Verify \Rightarrow Compare before removing

Payload Header Suppression (Cont)

MAC Headers

Generic MAC Header: Total 6 bytes per MPDU

Header Type	Encryp Control	Payload Type	CRC Indicator	Encryp Key #	Len	Connection Identifier	Header Check
1b	1b	бb	1b	2b	11b	16b	8b

Header type: Generic or Stand-alone

- Payload type bits: Fast Feedback allocation/Grant management, Packing, Fragmentation, Frag/packing with ARQ, ARQ feedback, Mesh
- □ Bandwidth Request Header: Total 6 bytes

	Header Type	Encryption Control	Type: Incremental/ Aggregate	Bandwidth Request (Bytes)	CID	HCS
	1b	1b	3b	11b	16b	8b
Washington University in St. Louis CSE574s		CSE574s		C	2008 Raj Ja	
11-15						

Fragmentation Subheader

- □ Fragmentation Control: 00=No Frag, 01 Last Frag, 10=First Frag, 11=Middle
- □ Fragment Seq #: Mod 8 or mod 2048
- Block Seq #: Sequence # of the first block in this SDU
- Regular Fragmentation Subheader:

Grant Management Subheader

- Piggybacked bandwidth request
- □ UGS connections may use UGS-GMSH
 - > Slip indicator: Backlog building up

Slip Indicator	Poll Me	Reserved
1b	1b	14b

□ Non-UGS connections use simple GMSH

Number of Incremental Bytes Required

16b

Fragmentation, Packing, Concatenation

- □ Fragmentation with or without ARQ
- □ Packing: Fixed size SDU or variable size SDU
- □ Concatenation: Multiple PDUs in a burst

Fast Feedback Allocation Subheader

- □ Request feedback from an SS with Advanced Antenna System
- Allocation offset: Number of slots after which the SS should send the feedback (in Ul subframe after 2 frames from now)
- Feedback type: DL measurement, MIMO feedback, antenna #0, MIMO feedback Antenna #1, MIMO mode

Allocation Offset	Feedback Type
6b	2b

ARQ Feedback Information Element

CID	Last	Ack	Block Seq	#Ack	Ack	Ack	Ack
		Type	Number	Maps	Map	Map	Map
16b	1b	2b	11b	2b	16b	16b	16b

- □ Last \Rightarrow last in a series of ARQ feedback IEs packed together
- □ # Ack Maps: In this IE
- □ Ack Type:
 - > 00=Selective (Starting BSN and Bit map)
 - > 01=Cumulative (Ending successful BSN, no bit map)
 - > 10=Cumulative with selective (Successful up to BSN and a bit map)
 - > 11=cumulative with BSN (1 bit status for n blocks)

Washington University in St. Louis	CSE574s	©2008 Raj Jain
	11-21	

Scheduling and Link Adaptation

□ Scheduling:

- > Base schedules usage of the air link among the subscribers
- > Packet schedulers at the base and subscribers give transmission opportunities to multiple connection queues
- □ Link Adaptation
 - Base determines the contents of the DL and UL portions of each frame
 - Base determines the appropriate burst profile (code rate, modulation level and so on) for each subscriber
 - Base determines the bandwidth requirements of the individual subscribers based on the service classes of the connections and on the status of the traffic queues at the base and subscriber.

- Centralized resource allocation at base station Guaranteed QoS
- □ Efficient use of available bits
 - > Flexing fragmentation and packing
 - > ARQ and HARQ
- Complex scheduling to provide guarantees under variable conditions