Wireless Physical Layer Concepts: Part III

Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at: <u>http://www.cse.wustl.edu/~jain/cse574-08/</u>

Washington University in St. Louis

- 1. Empirical Channel Models
- 2. Multi-Antenna Systems: Beam forming and MIMO
- 3. Space-Time Block Codes
- 4. Time Division Duplexing
- 5. OFDM, OFDMA, SOFDMA

Empirical Channel Models

Based on measured data in the field

- 1. Hata Model
- 2. COST 231 Extension to Hata Model
- 3. COST 231-Walfish-Ikegami Model
- 4. Erceg Model
- 5. Stanford University Interim (SUI) Models
- 6. ITU Path Loss Models

Hata Model

$$P_{L,urban}(d)dB = 69.55 + 26.16\log_{10}(f_c)$$

 $-13.82\log_{10}(h_t) - a(h_r) + (44.9 - 6.55\log_{10}(h_t))\log_{10}(d)$

□ Based on 1968 measurement in Tokyo by Okumura

□ Closed form expression by Hata in 1980

$$\Box$$
 f_c = carrier frequency,

 h_t = height of the transmitting (base station) antenna,

 h_r = height of the receiving (mobile) antenna

a() = correction factor for the mobile antenna height based on the size of the coverage area

Designed for 150-1500 MHz

COST 231 Extension to Hata Model $P_{L,urban}(d)dB = 46.3 + 33.9\log_{10}(f_c) - 13.82\log_{10}(h_t)$ $-a(h_r) + (44.9 - 6.55\log_{10}(h_t))\log_{10}(d) + C_M$

- □ European Cooperative for Scientific and Technical (COST)
- Extended Hata model to 2 GHz:
- $C_M = 0$ dB for medium sized cities and suburbs = 3 dB for metropolitan areas
- Other Parameters:
 - > Carrier Frequency: 1.5 GHz to 2 GHz
 - Base Antenna Height: 30 m to 300 m
 - Mobile Antenna Height: 1m to 10 m
 - > Distance: 1 km to 20 km

COST 231-Walfish-Ikegami Model

- Combining with models proposed by Walfisch and Ikegami
- □ Considers additional characteristics of the urban environment:
 - > Heights of buildings
 - Width of roads
 - Building separation
 - > Road orientation with respect to the direct radio path
- □ Distinguishes LoS and NLoS. For LoS, the total path loss is: $P_L dB = 42.6 + 26 \log(d) + 20 \log(f_c)$
- Other Parameters:
 - Carrier frequency: 800–2,000 MHz

0.02–5km

- ▹ Height of BS antenna: 4–50m
- ▹ Height of MS antenna: 1–3m

CSE574S

©2008 Rai Jain

Erceg Model

- Experimental data collected by AT&T Wireless Services across the United States in 95 existing macro cells at 1.9GHz
- □ The median path loss at distance is given by:

 $P_L dB = 20\log_{10}(4\pi d_0/\lambda) + 10\gamma \log_{10}(d/d_0) + s \text{ for } d > d_0$

 \Box D₀=100 m, γ is the path-loss exponent with:

$$\gamma = a - bh_b + d/h_b$$

 \Box h_b is the height of the base station in meters

Model Parameter	Terrain A	Terrain B	Terrain C
a	4.6	4	3.6
b	0.0075	0.0065	0.005
c	12.6	17.1	20

Stanford University Interim (SUI) Models

Set of 6 channel models: 3 terrain types, a variety of Doppler spreads, delay spread and line-of-sight/nonline-of-site

Channel	Terrain	Doppler	Delay	LOS
	Туре	Spread	Spread	
SUI-1	С	Low	Low	High
SUI-2	С	Low	Low	High
SUI-3	В	Low	Low	Low
SUI-4	В	High	Moderate	Low
SUI-5	Α	Low	High	Low
SUI-6	А	High	High	Low

SUI – 1 Channel Model

	Tap 1	Тар	2	Tap 3	Units
Delay	0	0.4		0.9	μs
Power (omni ant.)	0	-15		-20	dB
90% K-factor (omni)	4	0		0	
75% K-factor (omni)	20	0		0	
Power (30° ant.)	0	-21		-32	dB
90% K-factor (30°)	16	0		0	
75% K-factor (30°)	72	0		0	
Doppler	0.4	0.3		0.5	Hz
Antenna Correlation: $\rho_{ENV} = 0.7$ Terrain Type: C					
Gain Reduction Factor: GRF = 0 dB Omni antenna: $\tau_{RMS} = 0.111 \ \mu s$,					0.111 μs,
Normalization Factor: Fomni = -0.1771 overall K: K = 3.3 (90%); K = 10.4					
dB, (75%)					
F30° = -0.0371 dB 30° antenna: $\tau_{RMS} = 0.042 \ \mu s$,					042 μs,
	overall K: K = 14.0 (90%); K = 44.2				
(75%)					
Washington University in St. LouisCSE574S©2008 Raj Jain					
5-9					

ITU Path Loss Models

- Indoor office, outdoor-to-indoor pedestrian, and vehicular. Low delay spread (A), medium delay spread (B)
- **D** Pedestrian:

Тар	Channel A		Channel B		Doppler spectrum	
	Relative	Average	Relative	Average		
	delay (ns)	power (dB)	delay (ns)	power (dB)		
1	0	0	0	0	Classic	
2	110	-9.7	200	-0.9	Classic	
3	190	-19.2	800	-4.9	Classic	
4	410	-22.8	1 200	-8.0	Classic	
5	_	_	2 300	-7.8	Classic	
6	—	_	3 700	-23.9	Classic	
Washington University in St. Louis CSE574S ©2008 Rai Jain						
5-10						

ITU Vehicular Channel Model

Tap	Channel A		Channel B		Doppler spectrum
	Relative delay (ns)	Average power (dB)	Relative delay (ns)	Average power (dB)	
1	0	0.0	0	-2.5	Classic
2	310	-1.0	300	0	Classic
3	710	-9.0	8.900	-12.8	Classic
4	1 090	-10.0	12 900	-10.0	Classic
5	1 730	-15.0	17 100	-25.2	Classic
6	2 510	-20.0	20 000	-16.0	Classic

Multi-Antenna Systems

- **Receiver** Diversity
- **Transmitter Diversity**
- **Beam** forming
- □ MIMO

Washington University in St. Louis

- Use multiple antennas to transmit the signal Ample space, power, and processing capacity at the transmitter (but not at the receiver).
- If the channel is known, phase each component and weight it before transmission so that they arrive in phase at the receiver and maximize SNR

□ If the channel is not known, use space time block codes

- Phased Antenna Arrays: Receive the same signal using multiple antennas
- By phase-shifting various received signals and then summing ⇒ Focus on a narrow directional beam
- □ Digital Signal Processing (DSP) is used for signal processing ⇒ Self-aligning

Space Time Block Codes (STBC)

- □ Invented 1998 by Vahid Tarokh.
- Transmit multiple redundant copies from multiple antennas
- □ Precisely coordinate distribution of symbols in space and time.
- Receiver combines multiple copies of the received signals optimally to overcome multipath.
- □ Example: Two antennas:

5-19

Advantages of OFDM

- □ Easy to implement using FFT/IFFT
- Computational complexity = O(B log BT) compared to previous O(B²T) for Equalization. Here B is the bandwidth and T is the delay spread.
- Graceful degradation if excess delay
- Robustness against frequency selective burst errors
- □ Allows adaptive modulation and coding of subcarriers
- Robust against narrowband interference (affecting only some subcarriers)
- □ Allows pilot subcarriers for channel estimation

OFDM: Design considerations

- ❑ Large number of carriers ⇒ Smaller data rate per carrier
 ⇒ Larger symbol duration ⇒ Less inter-symbol interference
- Reduced subcarrier spacing ⇒ Increased inter-carrier interference due to Doppler spread in mobile applications
- Easily implemented as Inverse Discrete Fourier Transform (IDFT) of data symbol block
- Fast Fourier Transform (FFT) is a computationally efficient way of computing DFT

OFDMA

- □ Orthogonal Frequency Division <u>Multiple Access</u>
- □ Each user has a subset of subcarriers for a few slots
- □ OFDM systems use TDMA
- □ OFDMA allows Time+Freq DMA \Rightarrow 2D Scheduling

Scalable OFDMA (SOFDMA)

- OFDM symbol duration = f(subcarrier spacing)
- Subcarrier spacing = Frequency bandwidth/Number of subcarriers
- Frequency bandwidth=1.25 MHz, 3.5 MHz, 5 MHz, 10 MHz, 20 MHz, etc.
- Symbol duration affects higher layer operation
 ⇒ Keep symbol duration constant at 102.9 us
 ⇒ Keep subcarrier spacing 10.94 kHz
 ⇒ Number of subcarriers ∝ Frequency bandwidth This is known as scalable OFDMA

Summary: Wireless PHY Part III

- 1. Empirical Channel models give path loss based on measured data
- 2. Multiple Antennas: Receive diversity, transmit diversity, Smart Antenna, MIMO
- 3. MIMO use multiple antennas for high throughput
- 4. Space-time block codes use multiple antennas to transmit related signals
- 5. OFDM splits a band in to many orthogonal subcarriers. OFDMA = FDMA + TDMA

Homework 5

In a scalable OFDMA system, the number of carriers for 10 MHz channel is 1024. How many carriers will be used if the channel was 1.25 MHz, 5 MHz, or 8.75 MHz.