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OverviewOverview

1. Empirical Channel Models
2. Multi-Antenna Systems: Beam forming and MIMO
3. Space-Time Block Codes
4. Time Division Duplexing
5. OFDM, OFDMA, SOFDMA
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Empirical Channel ModelsEmpirical Channel Models

Based on measured data in the field
1. Hata Model
2. COST 231 Extension to Hata Model
3. COST 231-Walfish-Ikegami Model
4. Erceg Model
5. Stanford University Interim (SUI) Models
6. ITU Path Loss Models
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Hata ModelHata Model

! Based on 1968 measurement in Tokyo by Okumura
! Closed form expression by Hata in 1980 
! fc = carrier frequency, 

ht = height of the transmitting (base station) antenna, 
hr = height of the receiving (mobile) antenna
a() =  correction factor for the mobile antenna height based on 
the size of the coverage area

! Designed for 150-1500 MHz

, 10( ) = 69.55 26.16 ( )logL urban cP d dB f+

10 10 1013.82 ( ) ( ) (44.9 6.55 ( )) ( )log log logt r th a h h d− − + −
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COST 231 Extension to Hata ModelCOST 231 Extension to Hata Model

! European Cooperative for Scientific and Technical (COST)
! Extended Hata model to 2 GHz: 
! CM = 0 dB for medium sized cities and suburbs 

= 3 dB for metropolitan areas
! Other Parameters:

" Carrier Frequency: 1.5 GHz to 2 GHz 
" Base Antenna Height: 30 m to 300 m
" Mobile Antenna Height: 1m to 10 m
" Distance: 1 km to 20 km

, 10 10( ) = 46.3 33.9 ( ) 13.82 ( )log logL urban c tP d dB f h+ −

10 10( ) (44.9 6.55 ( )) ( )log logr t Ma h h d C− + − +
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COST 231COST 231--WalfishWalfish--Ikegami ModelIkegami Model
! Combining with models proposed by Walfisch and Ikegami
! Considers additional characteristics of the urban environment:

" Heights of buildings 
" Width of roads 
" Building separation 
" Road orientation with respect to the direct radio path 

! Distinguishes LoS and NLoS. For LoS, the total path loss is: 

! Other Parameters:
" Carrier frequency: 800�2,000 MHz
" Height of BS antenna: 4�50m
" Height of MS antenna: 1�3m
" Distance: 0.02�5km

= 42.6 26 log ( ) 20 log ( )L cP dB d f+ +
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Erceg ModelErceg Model
! Experimental data collected by AT&T Wireless Services across 

the United States in 95 existing macro cells at 1.9GHz
! The median path loss at distance is given by: 

! D0=100 m, γ is the path-loss exponent with: 

! hb is the height of the base station in meters

0 0 010 10= 20 (4 / ) 10 ( / ) >log logLP dB d d d s for d dπ λ γ+ +

= /b ba bh d hγ − +

Model Parameter Terrain A Terrain B Terrain C
a 4.6 4 3.6 
b 0.0075 0.0065 0.005 
c 12.6 17.1 20 
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Stanford University Interim (SUI) ModelsStanford University Interim (SUI) Models

! Set of 6 channel models: 3 terrain types, a variety of 
Doppler spreads, delay spread and line-of-sight/non-
line-of-site 

Channel Terrain 
Type 

Doppler 
Spread 

Delay 
Spread 

LOS

SUI-1 C Low Low High
SUI-2 C Low Low High
SUI-3 B Low Low Low
SUI-4 B High Moderate Low
SUI-5 A Low High Low
SUI-6 A High High Low

 



5-9
©2008 Raj JainCSE574SWashington University in St. Louis

SUI SUI –– 1 Channel Model1 Channel Model
 Tap 1  Tap 2  Tap 3  Units  
Delay  0  0.4  0.9  µs  
Power (omni ant.)  
90% K-factor (omni)  
75% K-factor (omni)  

0  
4  
20  

-15  
0  
0  

-20  
0  
0  

dB  

Power (30° ant.)  
90% K-factor (30°)  
75% K-factor (30°)  

0  
16  
72  

-21  
0  
0  

-32  
0  
0  

dB  

Doppler  0.4  0.3  0.5  Hz  
Antenna Correlation: ρENV = 0.7  
Gain Reduction Factor: GRF = 0 dB  
Normalization Factor: Fomni = -0.1771 
dB,  
                         F30°   = -0.0371 dB  

Terrain Type: C  
Omni antenna: τRMS = 0.111 µs,  
overall K: K = 3.3 (90%); K = 10.4 
(75%)  
30° antenna: τRMS = 0.042 µs,  
overall K: K = 14.0 (90%); K = 44.2 
(75%)  
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ITU Path Loss ModelsITU Path Loss Models
! Indoor office, outdoor-to-indoor pedestrian, and vehicular. Low 

delay spread (A),  medium delay spread (B)
! Pedestrian:

Tap Channel A  Channel B  Doppler 
spectrum 

 Relative 
delay (ns) 

Average 
power (dB) 

Relative 
delay (ns) 

Average 
power (dB)  

1  0  0  0  0  Classic  
2  110  �9.7  200  �0.9  Classic  
3  190  �19.2  800  �4.9  Classic  
4  410  �22.8  1 200  �8.0  Classic  
5  �  �  2 300  �7.8  Classic  
6  �  �  3 700  �23.9  Classic  
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ITU Vehicular Channel ModelITU Vehicular Channel Model

Tap Channel A  Channel B  Doppler spectrum

 Relative 
delay (ns)  

Average 
power 
(dB)  

Relative 
delay (ns) 

Average 
power 
(dB)  

 

1  0  0.0  0  �2.5  Classic  
2  310  �1.0  300  0  Classic  
3  710  �9.0  8.900  �12.8  Classic  
4  1 090  �10.0  12 900  �10.0  Classic  
5  1 730  �15.0  17 100  �25.2  Classic  
6  2 510  �20.0  20 000  �16.0  Classic  
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MultiMulti--Antenna SystemsAntenna Systems

! Receiver Diversity
! Transmitter Diversity
! Beam forming
! MIMO
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Receiver DiversityReceiver Diversity

! User multiple receive antenna
! Selection combining: Select antenna with highest SNR
! Threshold combining: Select the first antenna with SNR above 

a threshold
! Maximal Ratio Combining: Phase is adjusted so that all signals 

have the same phase. Then weighted sum is used to maximize 
SNR

× × × ×a1 a2 a3 aM

Σ
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Transmitter DiversityTransmitter Diversity

! Use multiple antennas to transmit the signal
Ample space, power, and processing capacity at the transmitter 
(but not at the receiver).

! If the channel is known, phase each component and weight it 
before transmission so that they arrive in phase at the receiver
and maximize SNR

! If the channel is not known, use space time block codes

× × × ×a1 a2 a3 aM
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Beam formingBeam forming

! Phased Antenna Arrays: 
Receive the same signal using multiple antennas

! By phase-shifting various received signals and then 
summing ⇒ Focus on a narrow directional beam

! Digital Signal Processing (DSP) is used for signal 
processing ⇒ Self-aligning
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MIMOMIMO
! Multiple Input Multiple Output
! RF chain for each antenna 

⇒ Simultaneous reception or transmission of multiple streams 

2x3
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Space Time Block Codes (STBC)Space Time Block Codes (STBC)
! Invented 1998 by Vahid Tarokh.
! Transmit multiple redundant copies from multiple antennas
! Precisely coordinate distribution of symbols in space and time. 
! Receiver combines multiple copies of the received signals 

optimally to overcome multipath.
! Example: Two antennas:

S1            S2
-S2*         S1*

Space

Time
Antenna 1 Antenna 2

Slot 1
Slot 2

S1* is complex conjugate of S1 ⇒ columns are orthogonal
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Time Division Duplexing (TDD)Time Division Duplexing (TDD)
! Duplex = Bi-Directional Communication
! Frequency division duplexing (FDD) (Full-Duplex) 

! Time division duplex (TDD): Half-duplex 

! Most WiMAX deployments will use TDD.
" Allows more flexible sharing of DL/UL data rate
" Does not require paired spectrum
" Easy channel estimation ⇒ Simpler transceiver design
" Con: All neighboring BS should time synchronize

Base Subscriber

Base SubscriberBase Subscriber
Frequency 1

Frequency 2
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InterInter--Symbol InterferenceSymbol Interference

! Symbols become wider
⇒ Limits the number of bits/s

Power

Time

Power

Time

Power

Time
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OFDMOFDM
! Orthogonal Frequency Division Multiplexing
! Ten 100 kHz channels are better than one 1 MHz Channel 

⇒ Multi-carrier modulation

! Frequency band is divided into 256 or more sub-bands. 
Orthogonal ⇒ Peak of one at null of others

! Each carrier is modulated with a BPSK, QPSK, 16-QAM, 64-
QAM etc depending on the noise (Frequency selective fading)

! Used in 802.11a/g, 802.16, 
Digital Video Broadcast handheld (DVB-H) 

! Easy to implement using FFT/IFFT
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Advantages of OFDMAdvantages of OFDM
! Easy to implement using FFT/IFFT
! Computational complexity = O(B log BT) compared 

to previous O(B2T) for Equalization. Here B is the 
bandwidth and T is the delay spread.

! Graceful degradation if excess delay
! Robustness against frequency selective burst errors
! Allows adaptive modulation and coding of subcarriers
! Robust against narrowband interference (affecting 

only some subcarriers)
! Allows pilot subcarriers for channel estimation
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OFDM: Design considerationsOFDM: Design considerations
! Large number of carriers ⇒ Smaller data rate per carrier

⇒ Larger symbol duration ⇒ Less inter-symbol interference
! Reduced subcarrier spacing ⇒ Increased inter-carrier 

interference due to Doppler spread in mobile applications
! Easily implemented as Inverse Discrete Fourier Transform 

(IDFT) of data symbol block
! Fast Fourier Transform (FFT) is a computationally efficient 

way of computing DFT

10 Mbps 1 Mbps

1 μs0.1 μs



5-23
©2008 Raj JainCSE574SWashington University in St. Louis

OFDMAOFDMA

! Orthogonal Frequency Division Multiple Access
! Each user has a subset of subcarriers for a few slots
! OFDM systems use TDMA
! OFDMA allows Time+Freq DMA ⇒ 2D Scheduling

U1 U2 U3

Time

Freq.

OFDM

Time

Freq.

OFDMA
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Scalable OFDMA (SOFDMA)Scalable OFDMA (SOFDMA)

! OFDM symbol duration = f(subcarrier spacing)
! Subcarrier spacing = Frequency bandwidth/Number of 

subcarriers
! Frequency bandwidth=1.25 MHz, 3.5 MHz, 5 MHz, 

10 MHz, 20 MHz, etc.
! Symbol duration affects higher layer operation 

⇒ Keep symbol duration constant at 102.9 us
⇒ Keep subcarrier spacing 10.94 kHz
⇒ Number of subcarriers ∝ Frequency bandwidth

This is known as scalable OFDMA
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Summary: Wireless PHY Part IIISummary: Wireless PHY Part III

1. Empirical Channel models give path loss based on measured 
data

2. Multiple Antennas: Receive diversity, transmit diversity, 
Smart Antenna, MIMO

3. MIMO use multiple antennas for high throughput 
4. Space-time block codes use multiple antennas to transmit 

related signals
5. OFDM splits a band in to many orthogonal subcarriers. 

OFDMA = FDMA + TDMA
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Homework 5Homework 5

! In a scalable OFDMA system, the number of carriers 
for 10 MHz channel is 1024. How many carriers will 
be used if the channel was 1.25 MHz, 5 MHz, or 8.75 
MHz.


