A Review of Key Wireless Physical Layer Concepts

Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at: <u>http://www.cse.wustl.edu/~jain/cse574-08/</u>

Washington University in St. Louis

- □ Basic Concepts:
 - > Coding, Phase-Shift Keying (PSK), QAM, Decibels
 - Channel Capacity, Nyquist Theorem, Shannon's Theorem, Hamming Distance, Error Correction
 - Antenna, Reflection, Diffraction and Scattering, Multipath Propagation
- □ Recent Development:
 - > Spread Spectrum, Code Division Multiple Access
 - > OFDM
 - > Turbo Codes

Electromagnetic Spectrum

Frequency, Period, and Phase

□ A Sin(2π ft + θ), A = Amplitude, f=Frequency, θ = Phase Period T = 1/f, Frequency is measured in Cycles/sec or Hertz

- Signal element: Pulse (of constant amplitude, frequency, phase)
- Modulation Rate: 1/Duration of the smallest element =Baud rate
- **Data Rate**: Bits per second
- Data Rate = Fn(Bandwidth, signal/noise ratio, encoding)

Phase-Shift Keying (PSK)

Differential PSK:

0 = Same phase, 1 = Opposite phase A cos(2π ft), A cos(2π ft+ π)

□ **Quadrature PSK (QPSK):** Two bits

 $11 = A \cos(2\pi ft + 45^\circ), 10 = A \cos(2\pi ft + 135^\circ),$ $00=A \cos(2\pi ft+225^\circ), 01=A \cos(2\pi ft+315^\circ)$ Sum of two signals 90° apart in phase (In-phase I, Quadrature Q), Up to 180° phase difference between successive intervals

()1

10

 \mathbf{O}

Antenna

- □ Transmitter converts electrical energy to electromagnetic waves
- Receiver converts electromagnetic waves to electrical energy
- □ Same antenna is used for transmission and reception
- Omni-Directional: Power radiated in all directions
- Directional: Most power in the desired direction
- □ Isotropic antenna: Radiates in all directions equally
- Antenna Gain = Power at particular point/Power with Isotropic Expressed in dBi

Reflection, Diffraction and Scattering

Reflection: Surface large relative to wavelength of signal

- May have phase shift from original
- May cancel out original or increase it
- **Diffraction**: Edge of impenetrable body that is large relative to λ
 - May receive signal even if no line of sight (LOS) to transmitter

□ Scattering

- > Obstacle size on order of wavelength. Lamp posts etc.
- □ If LOS, diffracted and scattered signals not significant
 - > Reflected signals may be
- If no LOS, diffraction and scattering are primary means of reception

Washington University in St. Louis

- □ If the transmitter or receiver or both are mobile the frequency of received signal changes
- □ Moving towards each other => Frequency increases
- □ Moving away from each other => Frequency decreases

Frequency difference = velocity/Wavelength

Example: 2.4 GHz => $l= 3x10^8/2.4x10^9 = .125m$ 120km/hr = 120x1000/3600 = 33.3 m/s

Freq diff = 33.3/.125 = 267 Hz

Shannon's Theorem

 \Box Bandwidth = B Hz Signal-to-noise ratio = S/N \Box Maximum number of bits/sec = B log₂ (1+S/N) \Box Example: Phone wire bandwidth = 3100 Hz S/N = 30 dB $10 \text{ Log }_{10} \text{ S/N} = 30$ Log_{10} S/N = 3 $S/N = 10^3 = 1000$ Capacity = $3100 \log_{2} (1+1000)$ = 30,894 bps

Hamming Distance Hamming Distance between two sequences = Number of bits in which they disagree 011011 **Example:** 110001 $101010 \Rightarrow \text{Distance} = 3$ Difference

Error Correction Example

□ 2-bit words transmitted as 5-bit/word

<u>Data</u>	Codeword
00	00000
01	00111
10	11001
11	11110

Received = $00100 \Rightarrow$ Not one of the code words \Rightarrow Error

Distance (00100,00000) = 1 Distance (00100,00111) = 2

Distance (00100, 11001) = 4 Distance (00100, 11110) = 3

 \Rightarrow Most likely 00000 was sent. Corrected data = 00

b. Received = 01010 Distance(...,00000) = 2 = Distance(...,11110) Error detected but cannot be corrected

c. Three bit errors will not be detected. Sent 00000, Received 00111. Washington University in St. Louis CSE574s ©2008 Raj Jain

Convolutional Coding

- Block codes: Take k-bit blocks and output k+r-bit blocks
- Convolutional codes: Designed for long bit streams
- □ Code Rate = # of bits input/# bits output
- □ Constraint Length = Number of stages in the coder

3 - 25

OFDM

- Orthogonal Frequency Division Multiplexing
- Multicarrier modulation similar to DMT
- ❑ Available frequency band is divided into 256 or more subbands. Orthogonal ⇒ Peak of one at null of others
- Each carrier is modulated with a BPSK, QPSK, 16-QAM, 64-QAM etc depending on the noise (Frequency selective fading)
- □ Used in 802.11a/g, 802.16, HDTV

Washington University in St. Louis

©2008 Rai Jain

- 1. Hertz and Bit rate are related by Nyquist and Shannon's Theorems
- 2. Wireless signals have reflections, diffraction, scattering, multipath, fading, and Doppler shift
- 3. Frequency hopping and Direct Sequence are two methods of code division multiple access
- 4. OFDM splits a band in to many orthogonal subcarriers
- 5. Turbo codes use two coders and a interleaver and operate very close to Shannon's limit

Listening Assignment

- Those not familiar with modulation, coding, CRC, etc may want to listen to the following lectures from CSE473S: (Text book: William Stallings, "Data & Computer Communications," <u>Seventh Edition</u>, Prentice-Hall, ISBN 0-13-100681-9, <u>2004</u>.)
- Transmission Media, <u>http://www.cse.wustl.edu/~jain/cse473-05/i_4med.htm</u>
- Signal Encoding Techniques, <u>http://www.cse.wustl.edu/~jain/cse473-05/i_5cod.htm</u>

Digital Communications Techniques, <u>http://www.cse.wustl.edu/~jain/cse473-05/i_6com.htm</u>

Listening Assignment (Cont)

- Those who have not taken CSE473S with me may want to listen to the following lectures:
- □ Wireless LANs,

http://www.cse.wustl.edu/~jain/cse473-05/i_bwir.htm

Cellular Wireless Networks,

http://www.cse.wustl.edu/~jain/cse473-05/i_ccel.htm

□ Network Security,

http://www.cse.wustl.edu/~jain/cse473-05/i_isec.htm http://www.cse.wustl.edu/~jain/cse473-05/i_hsec.htm

Homework 3

- A telephone line is known to have a loss of 20 dB. The input signal power is measured at 1 Watt, and the output signal noise level is measured at 1 mW. Using this information, calculate the output signal to noise ratio in dB.
- 2. What is the maximum data rate that can be supported on a 10 MHz noise-less channel if the channel uses eight-level digital signals?
- 3. What signal to noise ratio (in dB) is required to achieve 10 Mbps through a 5 MHz channel?