Quality of Service (QoS) in Data Networks

Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse574-06/

- QoS Mechanisms
- □ ATM QoS
- Integrated services/RSVP
- Differentiated Services
- □ Multiprotocol Label Switching (MPLS)
- Comparison of different QoS approaches
- QoS over Wireless

Quality of Service

- Service: Movie, Song, Telephone Call, FTP
- Quality of Service: Picture quality, Color quality, sound quality,
- □ For network based services, service quality may depend upon:
 - > Throughput Min, max, average rate
 - Delay Max delay, delay variation (Jitter)
 - Packet Loss Rate
 - > Reliability Links going up/down
- Each layer PHY, MAC, IP, TCP, and application has to have mechanisms to guarantee QoS

QoS Components (1) Signaling Admission control Shaping Policing Classification Scheduling(6) Routing **Buffer Mgmt Traffic Monitoring Drop Policies** and feedback Washington University in St. Louis CSE574s ©2006 Raj Jain

9-4

QoS Components

- **1. Signaling**: Users need to tell/negotiate their QoS requirements with the network
- 2. Admission Control: Network can deny requests that it can not meet
- **3. Shaping**: Traffic is smoothed out so that it is easier to handle
- **4. Policing**: Ensuring that the users are sending at the rate they agreed to
- **5.** Marking/Classification: Packets are classified based on the source, destination, TCP ports (application)
- 6. Scheduling: Different flows get appropriate treatment
- 7. **Drop Policies**: Low priority packets are dropped.
- 8. Routing: Packets are sent over paths that can meet the QoS
- **9.** Traffic Management: Sources may be asked to reduce their rates to meet the loss rate and delay guarantees

Washington University in St. Louis

CSE574s

Traffic Shaping

- Altering the traffic characteristics of a given flow is called traffic shaping
- □ The source must shape its traffic prior to sending it to network so it does not violate traffic contract

9-6

Traffic Policing

- Users violating the traffic contract can jeopardise the QoS of other connections
- The network must protect well behaving users against such traffic violations
- Policing functions are deployed at the edge (entry) of the network
 Conforming traffic

Peak Rate Policing with Leaky Bucket

- Enforces sustained rate and maximum burst size
- □ Requires only one counter
 - > counter is decremented, to a minimum of zero, at the avg rate
 - > counter is incremented by one, to a maximum of a limiting value, for each packet arrival
- An arriving packet is nonconforming if counter is at its limit

- Packets from multiple flows are queued at a given transmission link
- To give different QoS, multiple queues may be used. Buffer allocation, scheduling, and drop policies for each queue are set to provide different QoS

- □ ATM cells are fixed size: 48-byte payload + 5-byte header
- □ IP packets can be segmented into ATM cells at entry to ATM connection and reassembled at the end
- □ Each cell has a circuit number: Virtual Circuit Id (VCI)
- □ Circuit number determines the cell's queuing and forwarding
- □ Circuits have be set up before use
- □ Circuits are called Virtual Circuits (VCs)
- Multiple VCs can be grouped in to a "virtual path" (VP) Washington University in St. Louis CSE574s ©2006 Raj Jain

ATM Service Categories

- □ Constant Bit Rate (CBR): Throughput, delay, delay variation guaranteed
- Real-Time Variable Bit Rate (rt-VBR): Average Throughput, delay, delay variation guaranteed
- □ Non-Real-Time Variable Bit Rate (nrt-VBR): Throughput guaranteed.
- □ Unspecified Bit Rate (UBR): No Guarantees. Best Effort.
- Available Bit Rate (ABR): Minimum Throughput. Very low loss. Feedback.
- □ **Guaranteed Frame Rate (GFR)**: Minimum Throughput. Frame based guarantee.
- ATM also has Rate shaping, Connection-Admission control (CAC), Policing, and QoS-based routing (PNNI).

Service Class and QoS Parameters

Service Class	Traffic Parameter	QoS Parameter	
CBR	PCR	maxCTD, CDV, CLR	
rt-VBR	PCR, SCR, MBS	maxCTD, CDV, CLR	
nrt-VBR	PCR, SCR, MBS	CLR	
ABR	PCR, MCR	CLR (network specific)	
UBR	PCR	No QoS	
CDV = Cell delay variation PCR = Peak Cell Rate			

CDV = CCII uclay variation	1 Cr = 1 car C	
CLR = Cell Loss Rate	SCR = Sustain	ned (avg) Cell Rate
CTD = Cell Transfer Delay	MCR = Minin	num Cell Rate
5	MBS = Maxir	num Burst Size
Vashington University in St. Louis	CSE574s	©2006 Raj Jain
	9-13	

ATM QoS: Issues

- \Box Can't easily aggregate QoS: VP = Σ VCs
- Can't easily specify QoS: What is the CDV required for a movie?
- $\square Signaling too complex \Rightarrow Need Lightweight Signaling$
- Need Heterogeneous Point-to-Multipoint: Variegated VCs
- Need QoS Renegotiation
- Need Group Address
- Need priority or weight among VCs to map DiffServ and 802.1D

Integrated Services

- □ **Best Effort Service**: Like UBR.
- Controlled-Load Service: Performance as good as in an unloaded datagram network. No quantitative assurances. Like nrt-VBR or UBR w minimum cell rate (MCR)

□ Guaranteed Service: rt-VBR

- > Firm bound on data throughput and <u>delay</u>.
- > Delay jitter or average delay not guaranteed or minimized.
- > Every element along the path must provide delay bound.
- > Is not always implementable, e.g., Shared Ethernet.
- Like CBR or rt-VBR

RSVP

- Resource ReSerVation Protocol
- Internet signaling protocol
- Carries resource reservation requests through the network including traffic specs, QoS specs, network resource availability
- □ Sets up reservations at each hop

H5

RSVP Messages

S1

- Receivers send ResV messages in the reverse direction. Contain QoS spec.
- □ Similar requests from multiple receivers are merged.

S1

 \mathcal{A}

H5

RSVP and Integrated Services: Issues

- Complexity in routers: packet classification, scheduling
- ❑ Scalable in number of receivers per flow but Per-Flow State: O(n) ⇒ Not scalable with # of flows. Number of flows in the backbone may be large. ⇒ Suitable for small private networks
- Need a concept of "Virtual Paths" or aggregated flow groups for the backbone
- Need policy controls: Who can make reservations? Support for accounting and security.
 - \Rightarrow RSVP admission policy (rap) working group.

Issues (Cont)

□ **Receiver Based**:

Need sender control/notifications in some cases. Which receiver pays for shared part of the tree?

- Soft State: Need route/path pinning (stability).
 Limit number of changes during a session.
- **RSVP** does not have negotiation and backtracking
- □ Throughput and delay guarantees require support of lower layers. Shared Ethernet ⇒ IP can't do GS or CLS. Need switched full-duplex LANs.
- □ Can't easily do RSVP on ATM either
- □ Most of these arguments also apply to integrated services.

Differentiated Services

- □ IPv4: 3-bit precedence + 4-bit ToS
- OSPF and integrated IS-IS can compute paths for each ToS
- □ Many vendors use IP precedence bits but the service varies ⇒ Need a standard ⇒ Differentiated Services
- **DS** working group formed February 1998
- □ Only 6 of the 8 bits in ToS byte are used for DS
- □ DS code indicate per-hop behavior (PHB)

- Externally Observable Forwarding Behavior
- □ x% of link bandwidth
- □ Minimum x% and fair share of excess bandwidth
- □ Priority relative to other PHBs
- PHB Groups: Related PHBs. PHBs in the group share common constraints, e.g., loss priority, relative delay

Expedited Forwarding

- □ Also known as "Premium Service"
- □ Virtual leased line
- □ Similar to CBR
- Guaranteed minimum service rate
- □ Policed: Arrival rate < Minimum Service Rate
- Not affected by other data PHBs
 ⇒ Highest data priority (if priority queueing)
- **Code point: 101 110**

Assured Forwarding

□ PHB <u>Group</u>

- □ Four Classes: Decreasing weights in WFR/WFQ
- Three drop preference per class (one rate and two bucket sizes)

Assured Forwarding (Cont)

- DS nodes SHOULD implement all 4 classes and MUST accept all 3 drop preferences. Can implement 2 drop preferences.
- □ Similar to nrt-VBR/ABR/GFR
- **Code Points:**

Drop Prec.	Class 1	Class 2	Class 3	Class 4
Low	010 000	011 000	100 000	101 000
Medium	010 010	011 010	100 010	101 010
High	010 100	011 100	100 100	101 100

□Avoids 11x000 (used for network control)

Washington University in St. Louis

Problems with DiffServ

- □ per-hop ⇒ Need at every hop One non-DiffServ hop can spoil all QoS
- End-to-end ≠ Σ per-Hop
 Designing end-to-end services with weighted guarantees at individual hops is difficult.
 Only EF will work.
- Designed for <u>static</u> Service Level Agreements (SLAs) Both the network topology and traffic are highly dynamic.
- ❑ Multicast ⇒ Difficult to provision Dynamic multicast membership ⇒ Dynamic SLAs?

DiffServ Problems (Cont)

- \Box DiffServ is unidirectional \Rightarrow No receiver control
- ❑ Modified DS field ⇒ Theft and Denial of service. Ingress node should ensure.
- How to ensure resource availability inside the network?
- QoS is for the aggregate not per-destination. Multi-campus enterprises need inter-campus QoS.

©2006 Rai Jain

DiffServ Problems (Cont)

- QoS is for the aggregate not micro-flows. Not intended/useful for end users. Only ISPs.
 - Large number of short flows are better handled by aggregates.
 - Long flows (voice and video sessions) need perflow guarantees.
 - > High-bandwidth flows (1 Mbps video) need perflow guarantees.
- □ All IETF approaches are open loop control ⇒ Drop Closed loop control ⇒ Wait at source Data prefers waiting ⇒ Feedback

DiffServ Problems (Cont)

□ Guarantees ⇒ Stability of paths
 ⇒ Connections (hard or soft)
 Need route pinning or connections.

Multiprotocol Label Switching (MPLS) 3 3 □ Allows virtual circuits in IP Networks (May 1996) □ Each packet has a virtual circuit number called 'label' □ Label determines the packet's queuing and forwarding □ Circuits are called Label Switched Paths (LSPs) □ LSP's have to be set up before use □ Allows traffic engineering

Washington University in St. Louis

Traffic Engineering Using MPLS

- Trunk paths are setup based on policies or specified resource availability.
- □ A traffic trunk can have alternate sets of paths in case of failure of the main path. Trunks can be rerouted.
- Multiple trunks can be used in parallel to the same egress.
- Some trunks may preempt other trunks. A trunk can be preemptor, non-preemptor, preemptable, or nonpreemptable.
- □ Each trunk can have its own overbooking rate

⁹⁻³²

- Hosts may mark DS byte or use RSVP signaling or both or none.
- □ Why hosts? 1. Encryption, 2. Hosts know the importance of info even if the header fields are same
- □ Routers may mark DS byte if necessary.
- Routers at the intserv diff-serv boundary accept/reject RSVP requests based on current load

QoS Debate

- Massive Bandwidth vs Managed Bandwidth
- Per-Flow vs Aggregate
- Quantitative vs Qualitative
- □ Absolute vs Relative
- □ End-to-end vs Per-hop
- □ Soft State vs Hard State
- Path based vs Access based
- Source-Controlled vs Receiver Controlled

Comparison of QoS Approaches

Issue	ATM	IntServ	DiffServ	MPLS	IEEE 802.1D
Massive Bandwidth vs Managed Bandwidth	Managed	Managed	Massive	Managed	Massive
Per-Flow vs Aggregate	Both	Per-flow	Aggregate	Both	Aggregate
Quantitative vs Qualitative	Quantitativ e	Quantitativ e+Qualitat ive	Mostly qualitative	Both	Qualitative
Absolute vs Relative	Absolute	Absolute	Mostly Relative	Absolute plus relative	Relative
End-to-end vs Per- hop	e-e	e-e	Per-hop	e-e	Per-hop
Soft State vs Hard State	Hard	Soft	None	Hard	Hard
Path based vs Access based	Path	Path	Access	Path	Access
Source-Controlled vs Receiver Controlled	Unicast Source, Multicast both	Receiver	Ingress	Both	Source

Radio Spectrum Management

- Fixed Channel Allocation: Divide the spectrum in to N bands: N=i² + j² + ij, e.g., N=7
- Dynamic Channel Allocation:
 - > All channels in a central pool
 - Allocated to cells on a need basis
 - Adopts to changing traffic conditions
 - Complexity of management
- Hybrid Channel Allocation:
 - Some channels in central shared pool, some permanently assigned to cells
 - Shared channels assigned on demand

CAC: Blocking vs Dropping

- $\square Rejecting new connections \Rightarrow Blocking$
- □ No channel in new cell for a mobil user \Rightarrow Dropping
- Blocking preferred over dropping
- **Prioritization:**
 - > Handoffs higher priority over new connections
 - Starves new connections at highway intersections
- Guard Channels:
 - > Channels reserved for handoffs
 - New connections are not granted in guard channels
 - Can be dynamically adjusted depending upon the traffic in neighboring cells and predicted handoffs

Mean Opinion Score (MOS)

Rating	Quality	Distortion Level
5	Excellent	Imperceptible
4	Good	Just perceptible, but not annoying
3	Fair	Perceptible but slightly annoying
2	Poor	Annoying but not objectionable
1	Unsatisfactory	Very annoying and objectionable
Vashington Univers	ity in St. Louis	CSE574s ©2006 Raj Jair
		9-38

Voice Codecs

Vocoder	Bit Rate (kbps)	MOS	Application
G.711	64	4.5	Fixed telephone systems
G.729	8	4	Mobile telephone, VOIP
G.723	5.3 or 6.8	3.8	Video Telephony, VOIP
GSM Half Rate	5.6	3.5	GSM/2.5G Networks
GSM EFR	12.2	4.0	GSM/2.5G
GSM	13.0	3.5	GSM networks
AMR	4.75-12.2	3.5-4.0	3G mobile networks

Washington University in St. Louis

CSE574s

9-39

VOIP Quality Factors

Mean Opinion Score (MOS): 4 is Toll quality. Cellular systems have a quality of about 3.4

Transmission Impairments

□ Packet Loss:

- > Higher compression \Rightarrow Less loss resilience
- ≻ Higher interval of loss ⇒ more perceptible
 ⇒ Bursty losses are undesirable
- In G.729, loss of voiced frames causes more degradation than unvoiced frames. Loss of voiced frames at unvoiced/voiced transition causes significant degradation.

Transmission Impairments (Cont)

Delay:

- One-way delay between 50ms and 150ms is acceptable
 150 ms to 400 ms is marginally acceptable
 over 400 ms is unacceptable
 (3G defines 400 ms as upper limit)
- Propagation + Serialization (transmission) + PHY Channel coding (interleaving) + Media access delay (DIFS) + Bridge/router forwarding delay + queuing delay + packetization delay (application level) + algorithmic and look-ahead delay + decoding delay
- □ Header compression increases capacity by a factor of 2

VOIP over 802.11

- PCF vs DCF: PCF (CBR) is better but does not exploit voice activity detection.
 Is not implemented in products.
- Need Forward error correction (FEC) and automatic repeat request (ARQ)
- Acceptable performance for a single channel on 11 Mbps link. Not necessarily at lower rates.
- □ High delay jitter ⇒ High end-to-end delay (due to large play out buffer)
- □ EDCF priorities help significantly

Selective Packet Marking

- Speech property based Selective Packet Marking (SPB-Mark)
- Based on the observation that in G.729 coding, frames at unvoiced-to-voiced transition are important
- **Two priorities**
- Detect unvoiced-to-voiced transitions
- 10 to 20 frames at the beginning of transitions are protected.
 These frames are packed in packets at priority 1.
- Other frames are sent at priority 0
- Only priority 1 packets are retransmitted (ARQ'd) if lost.
 Priority 0 packets are not ARQ'd.

- □ QoS = Guaranteeing throughput, delay, jitter, loss
- □ ATM: CBR, rt-VBT, nrt-VBR, UBR, ABR, GFR
- □ Integrated Services: GS = rtVBR, CLS = nrt-VBR
- Signaling protocol: RSVP
- \Box Differentiated Services uses the DS byte \Rightarrow PHBs
- MPLS allows traffic engineering
- □ VOIP over wireless \Rightarrow Codec based prioritization

Reading Assignment

□ Read Sections 8.4, 0.1, 11.3, 11.4 of Dixit and Prasad

Read Chapter 10 of Dixit and Prasad on VOIP over Wireless

Washington University in St. Louis	CSE574s	©2006 Raj Jain
	0.44	