Wireless Networking: Issues and Trends

Raj Jain

Washington University in Saint Louis Saint Louis, MO 63131 Jain@cse.wustl.edu

These slides are available on-line at:

http://www.cse.wustl.edu/~jain/cse574-06/

Washington University in St. Louis

CSE574s

©2006 Raj Jain

- 1. Top 10 Recent Networking Developments
- 2. Wireless: History
- 3. Life Cycles of Technologies
- 4. Wireless Industry Trends
- 5. Wireless Research Trends

Top 10 Recent Networking Developments

- 1. Large investments in Security: Message Aware Networking \Rightarrow All messages scanned by security gateways
- 2. Wireless (WiFi) is spreading (Intel Centrino)
- 3. More Cell phones than POTS. Smart Cell phones w PDA, email, video, images ⇒ Mobility
- 4. Broadband Access is growing faster than cell phones
- 5. Ethernet extending from Enterprise to Access to Metro ...
- 6. Wiring more expensive than equipment \Rightarrow Wireless Access
- 7. Voice over Internet Protocol (VOIP) is in the Mainstream VOIP over Broadband/Wi-Fi/Cellular
- 8. Multi-service IP: Voice, Video, and Data
- 9. Terabyte/Petabyte storage (Not VoD)
 ⇒ High-Speed Networking
- 10. Gaming: Internet and wireless based

2002-2005: Mega-to-Giga Transition

- Memory in Laptops: Megabytes to Gigabytes
- □ Cordless Phones: 900 Mega Hertz to 2.4/5.8 GHz
- Processors: MIPS (Mega Instructions per second) to GFIPS (Giga Flops)
- Digital Cameras: 100-500 Mega Pixels to Giga Pixels
- □ Office Networks: 10/100 Mega bps to 1-10 Giga bps
- Worldwide Wireless Network Users: Millions to Billions

Wireless: History

□ 1880: Hertz discovered electromagnetic waves 1880 □ 1898: First commercial radio data service 1921: First Mobile Radio: 1900 Wireless dispatch system for Detroit Police 1946: First Mobile Telephone Service: 1920 In St. Louis by AT&T. Half-duplex \Rightarrow Push to talk. □ 1970: First Cellular Phone Service: 1940 In Chicago by AT&T w cell, handoff, and roaming □ 1971: First Wireless Data Network: Aloha at University of Hawaii 1960 1990: First Commercial Wireless LAN Product AT&T WaveLAN 1980 1997: First Wireless LAN Standard - IEEE 802.11 2000 2Mbps

Washington University in St. Louis

2-6

Telecom Revenue

	Revenue in Billions						
	2003	2004	2005	2006	2007	2008	Annual
							Growth
Video	0.2	0.3	.05	1.0	1.6	2.5	65.7%
Consumer Broadband	2.8	3.5	4.0	4.2	4.6	4.8	11.4%
Consumer long distance	20.7	18.2	16.0	13.6	11.3	9.2	-15.0%
Business local	26.3	26.7	26.4	26.1	25.8	25.5	-0.6%
Business long distance	26.1	24.5	23.0	21.3	19.7	18.2	-7.0%
Business data	44.8	45.6	46.6	47.1	46.8	45.4	0.3%
Consumer local	46.9	42.2	39.0	36.2	34.0	32.3	-7.25%
Wireless	91.5	108.7	119.2	132.8	144.5	153.6	10.9%
Total	260.7	271.5	277.0	285.0	291.3	294.9	2.5%

- □ Long distance is disappearing.
- □ Most of the revenues are going to be from wireless.
- Source: Instat/MDR (Business Week, Feb 28, 2005)

Wireless Data Connections

North American Wireless Data Connections (Millions)

Wireless Industry Trends

- Wireless industry is stronger than wireline.
 Particularly strong growth in developing countries.
- □ 48% of global telco revenues coming from wireless
- □ 26% of wireless revenues coming from data (vs voice)
- □ Past: Voice, email, SMS, Ring tones
- □ Present: Push, Gaming, Pictures, Instant Messaging
- Future: Music, Video, Location, Remote monitoring, mcommerce
- Long Term: Video telephony, remote enterprise applications, remote management, Multiparty collaboration

Home Networking Equipment Trends (in millions)

Washington University in St. LouisCSE574s©2006 Raj Jain

Mobility

- 1.35 Billion mobile subscribers vs 1.2 Billion Fixed line subscribers at the end of 2003 [ITU]
- Number of wired phones in USA is declining for the first time since the Great Depression.
- 20% of world population is mobile. Need internet access.
 70% of internet users in Japan have mobile access
- □ Vehicular mobility up to 250 Km/h (IEEE 802.20)

©2006 Raj Jain

Wireless Technologies to Watch 2006

- Ultra-wide band has arrived (Many companies showing products)
- □ MIMO: Pre-N routers
- □ Multimedia over Wireless: Media center extenders
- □ Video over Cell phones
- □ Wireless storage for home 4x250GB
- Wireless USB

□ RFID

Wireless Research Trends

- NSF funded \$40M for networking research over the past three years
- □ Three areas:
 - Software programmable networks
 - Sensor Networks
 - > All other type of networking
 - > Two Thirds of networking funding on wireless
- Defense Networks are mostly wireless

Top 10 Downloads from Computer Communications

- Christos Xenakis and Lazaros Merakos
 Security in third Generation Mobile Networks
 Computer Communications, 27 (2004) 638-650
- 2. Marko Hannikainen, Timo D. Hamalainen, Markku Niemi and Jukka Saarinen **Trends in personal wireless data communications** Computer Communications, 25 (2002) 84-99
- 3. David Remondo and Ignas G. Niemegeers, Ad hoc networking in future wireless communications Computer Communications, 26 (2003) 36-40
- 4. S. DasBit and S. Mitra, **Challenges of computing in mobile cellular environment--a survey**, Computer Communications, 26 (2003) 2090-2105
- 5. Theuns Verwoerd and Ray Hunt Intrusion detection techniques and approaches Computer Communications, 25 (2002) 1356-1365
- 6. S. A. M. Makki, Niki Pissinou and Philippe Daroux **Mobile and wireless Internet access** Computer Communications, 26 (2003) 734-746
- Costas Lambrinoudakis, Stefanos Gritzalis, Fredj Dridi and Gunther Pernul Security requirements for e-government services: a methodological approach for developing a common PKI-based security policy Computer Communications, 26 (2003) 1873-1883
- 8. Kwok-Yan Lam, Siu-Leung Chung, Ming Gu and Jia-Guang Sun Lightweight security for mobile commerce transactions Computer Communications, 26 (2003) 2052-2060
- Antonio Grilo, Mario M. Macedo and Mario S. Nunes IP QoS support in IEEE 802.11b WLANs Computer Communications, 26 (2003) 1918-1930
- Walter Hirt
 Ultra-wideband radio technology: overview and future research Computer Communications, 26 (2003) 46-52

Washington University in St. Louis

Wireless Issues

- Security (IEEE 802.11i)
- □ Higher Data Rates:
 - > Ultra-wide band (vs Bluetooth)
 - > Wireless USB
 - > Multiple In Multiple Out (MIMO) antennas: IEEE 802.11n
- Longer distance (WiMAX, >1Mbps to 50 km) IEEE 802.22 Regional Area Networks
- □ Seamless Networking \Rightarrow Handoff (IEEE 802.21)
- □ Mobility (IEEE 802.20)
- Multimedia over Wireless: Media center extenders, VOIP/Video over cell phones
- Channel congestion in license-exempt band

Research Areas

- Disruption Tolerant Networking: Frequent Disconnection due to mobility, power outage, DTN nodes have limited storage
- **2. Overlay Networking**: Virtual Networks, P2P, Application level optimization
- 3. Sensor Networks: Large scale, Energy efficient
- 4. Distributed Computing Networks (Grids): Grid Storage
- 5. Security

Disruption Tolerant Networking

- Frequent Disconnection due to mobility, power outage (Military Ad hoc networks)
- Regular or unpredictable disconnections (LEO satellites)
- Very high delay networks (Inter-planetary networks)
- Aka Delay Tolerant/Difficult/challenged/disconnected/ Intermittent networks
- DTN routers need storage but not unlimited
- End-to-end retransmissions not desirable
- Congestion management in DTNs
- Path selection and scheduling in DTNs
- □ Ref: DTN IRTF

Sensor Networks

- A large number of low-cost, low-power, multifunctional, and small sensor nodes consisting of sensing, data processing, and communicating components
- □ Key Issues:
 - 1. Scalability
 - 2. Power consumption
 - 3. Fault tolerance
 - 4. Network topology
 - 5. Transmission media
 - 6. Cost
 - 7. Operating environment
 - 8. Hardware constraints

Washington University in St. Louis

- Wireless is the major source of carrier revenue ⇒ Significant growth in Wireless networking
- 2. Internet has flattened the world \Rightarrow More mobility and need to be connected
- 3. NSF, DARPA, and other research agencies see more research opportunities in wireless than in other areas of networking
- 4. Internet is 40 years old, mobile networking is just beginning \Rightarrow Great job and research opportunities.

Washington University in St. Louis

HTML – An Intro

<HTML><HEAD>

• • •

. . .

</HEAD></BODY>

</BODY>
</HTML>

Washington	University	y in S	t I ouis
w ashington	Universit	yms	i. Louis

HTML Intro (2)

<HTML>

<HEAD>

<TITLE>CSE574S: Advanced Topics in Networking </TITLE> <META NAME="AUTHOR" CONTENT="Raj Jain">

<META NAME="Classification" CONTENT="Technical">

<META NAME="Keywords" CONTENT="Quality of Service, Voice over IP">

<META NAME="Description" CONTENT="Lectures and reports on recent advances in networking ">

</HEAD>

<BODY>

<H1>CSE574S: Advanced Topics in Networking </H1>

<H2>Issue 1: High Speed</H2>

Washington University in St. Louis

HTML Intro (3)

- <H3>1.1 Local Area Networks</H3>
- $\langle UL \rangle$
- Item 1
-
- Google
- Section 2
- <H2>Section 2</H2>
-

</Body>

</HTML>

Project Homework 2

- □ Prepare your personal web page. Must include your photograph
- Use meta-HTML commands in the header to indicate title, keywords, description, etc
- Must use at least all the commands listed in "HTML Intro" slides. Use others as appropriate.
- Use only a text editor
- Submit a link to the page via email to CSE574@cec.wustl.edu with a subject field of: CSE 574S Homework 2
- □ Validate your page on:
 - > W3C Markup Validation Service, <u>http://validator.w3.org/</u>
 - > HTML code check by Net Mechanic, <u>http://www.netmechanic.com/toolbox/html-code.htm</u>
 - CSE HTML Validator , <u>http://www.htmlvalidator.com/</u>